Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 194
Filter
Add more filters

Publication year range
1.
Cereb Cortex ; 33(23): 11247-11256, 2023 11 27.
Article in English | MEDLINE | ID: mdl-37782941

ABSTRACT

Accumulated evidence from animal studies suggests a role for the neuromodulator dopamine in memory processes, particularly under conditions of novelty or reward. Our understanding of how dopaminergic modulation impacts spatial representations and spatial memory in humans remains limited. Recent evidence suggests age-specific regulation effects of dopamine pharmacology on activity in the medial temporal lobe, a key region for spatial memory. To which degree this modulation affects spatially patterned medial temporal representations remains unclear. We reanalyzed recent data from a pharmacological dopamine challenge during functional brain imaging combined with a virtual object-location memory paradigm to assess the effect of Levodopa, a dopamine precursor, on grid-like activity in the entorhinal cortex. We found that Levodopa impaired grid cell-like representations in a sample of young adults (n = 55, age = 26-35 years) in a novel environment, accompanied by reduced spatial memory performance. We observed no such impairment when Levodopa was delivered to participants who had prior experience with the task. These results are consistent with a role of dopamine in modulating the encoding of novel spatial experiences. Our results suggest that dopamine signaling may play a larger role in shaping ongoing spatial representations than previously thought.


Subject(s)
Levodopa , Spatial Learning , Animals , Humans , Young Adult , Adult , Levodopa/pharmacology , Dopamine , Entorhinal Cortex/physiology , Spatial Memory
2.
Cereb Cortex ; 33(5): 1768-1781, 2023 02 20.
Article in English | MEDLINE | ID: mdl-35510942

ABSTRACT

Under high cognitive demands, older adults tend to resort to simpler, habitual, or model-free decision strategies. This age-related shift in decision behavior has been attributed to deficits in the representation of the cognitive maps, or state spaces, necessary for more complex model-based decision-making. Yet, the neural mechanisms behind this shift remain unclear. In this study, we used a modified 2-stage Markov task in combination with computational modeling and single-trial EEG analyses to establish neural markers of age-related changes in goal-directed decision-making under different demands on the representation of state spaces. Our results reveal that the shift to simpler decision strategies in older adults is due to (i) impairments in the representation of the transition structure of the task and (ii) a diminished signaling of the reward value associated with decision options. In line with the diminished state space hypothesis of human aging, our findings suggest that deficits in goal-directed, model-based behavior in older adults result from impairments in the representation of state spaces of cognitive tasks.


Subject(s)
Decision Making , Motivation , Humans , Aged , Reward , Aging/psychology , Computer Simulation
3.
Neuroimage ; 279: 120327, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37582418

ABSTRACT

Selective use of new information is crucial for adaptive decision-making. Combining a gamble bidding task with assessing cortical responses using functional near-infrared spectroscopy (fNIRS), we investigated potential effects of information valence on behavioral and neural processes of belief and value updating during uncertainty reduction in young adults. By modeling changes in the participants' expressed subjective values using a Bayesian model, we dissociated processes of (i) updating beliefs about statistical properties of the gamble, (ii) updating values of a gamble based on new information about its winning probabilities, as well as (iii) expectancy violation. The results showed that participants used new information to update their beliefs and values about the gambles in a quasi-optimal manner, as reflected in the selective updating only in situations with reducible uncertainty. Furthermore, their updating was valence-dependent: information indicating an increase in winning probability was underweighted, whereas information about a decrease in winning probability was updated in good agreement with predictions of the Bayesian decision theory. Results of model-based and moderation analyses showed that this valence-dependent asymmetry was associated with a distinct contribution of expectancy violation, besides belief updating, to value updating after experiencing new positive information regarding winning probabilities. In line with the behavioral results, we replicated previous findings showing involvements of frontoparietal brain regions in the different components of updating. Furthermore, this study provided novel results suggesting a valence-dependent recruitment of brain regions. Individuals with stronger oxyhemoglobin responses during value updating was more in line with predictions of the Bayesian model while integrating new information that indicates an increase in winning probability. Taken together, this study provides first results showing expectancy violation as a contributing factor to sub-optimal valence-dependent updating during uncertainty reduction and suggests limitations of normative Bayesian decision theory.


Subject(s)
Brain Mapping , Brain , Young Adult , Humans , Uncertainty , Bayes Theorem , Brain/physiology , Probability , Decision Making/physiology
4.
Neuroimage ; 273: 120099, 2023 06.
Article in English | MEDLINE | ID: mdl-37037380

ABSTRACT

Aging is associated with changes in spatial navigation behavior. In addition to an overall performance decline, older adults tend to rely more on proximal location cue information than on environmental boundary information during spatial navigation compared to young adults. The fact that older adults are more susceptible to errors during spatial navigation might be partly attributed to deficient dopaminergic modulation of hippocampal and striatal functioning. Hence, elevating dopamine levels might differentially modulate spatial navigation and memory performance in young and older adults. In this work, we administered levodopa (L-DOPA) in a double-blind within-subject, placebo-controlled design and recorded functional neuroimaging while young and older adults performed a 3D spatial navigation task in which boundary geometry or the position of a location cue were systematically manipulated. An age by intervention interaction on the neural level revealed an upregulation of brain responses in older adults and a downregulation of responses in young adults within the medial temporal lobe (including hippocampus and parahippocampus) and brainstem, during memory retrieval. Behaviorally, L-DOPA had no effect on older adults' overall memory performance; however, older adults whose spatial memory improved under L-DOPA also showed a shift towards more boundary processing under L-DOPA. In young adults, L-DOPA induced a decline in spatial memory performance in task-naïve participants. These results are consistent with the inverted-U-shaped hypothesis of dopamine signaling and cognitive function and suggest that increasing dopamine availability improves hippocampus-dependent place learning in some older adults.


Subject(s)
Dopamine , Spatial Navigation , Aged , Humans , Young Adult , Hippocampus/physiology , Levodopa/pharmacology , Spatial Memory/physiology , Spatial Navigation/physiology , Temporal Lobe/diagnostic imaging , Temporal Lobe/physiology , Double-Blind Method
5.
Hepatology ; 75(1): 182-195, 2022 01.
Article in English | MEDLINE | ID: mdl-34396571

ABSTRACT

BACKGROUND AND AIM: HBV DNA can be reduced using antiviral drugs in patients with chronic hepatitis B (CHB); however, the rate of HBeAg seroconversion remains low. A clinical trial was conducted to assess the efficacy and safety of a de novo designed liposome-based nanoparticle lipopeptide vaccine, εPA-44, for CHB. APPROACH AND RESULTS: A two-stage phase 2 trial, which included a 76-week, randomized, double-blind, placebo-controlled trial (stage 1) and a 68-week open-label extension (stage 2), was conducted in 15 centers across China (Clinicaltrials.gov No. NCT00869778). In stage 1, 360 human leukocyte antigen A2 (HLA-A2)-positive and HBeAg-positive patients were randomly and equally distributed to receive six subcutaneous injections of 600 µg or 900 µg εPA-44 or placebo at week 0, 4, 8, 12, 20, and 28. In stage 2, 183 patients received extended 900 µg εPA-44, and 26 patients were observed for relapse without further treatment. The primary endpoint was the percentage of patients with HBeAg seroconversion at week 76. At week 76, patients receiving 900 µg εPA-44 achieved significantly higher HBeAg seroconversion rate (38.8%) versus placebo (20.2%) (95% CI, 6.9-29.6%; p = 0.002). With a combined endpoint of HBeAg seroconversion, alanine aminotransferase normalization and HBV DNA < 2,000 IU/mL, both 900 µg (18.1%) and 600 µg (14.3%), resulted in significantly higher rate versus placebo (5.0%) (p = 0.002 and p = 0.02, respectively) at week 76. In stage 2, none (0 of 20) of 900 µg εPA-44-treated patients experienced serologic relapse. The safety profile of εPA-44 was comparable to that of placebo. CONCLUSIONS: Among HLA-A2-positive patients with progressive CHB, a finite duration of 900 µg εPA-44 monotherapy resulted in significantly higher HBeAg seroconversion rate than placebo and sustained off-treatment effect. A phase 3 trial is ongoing (ChiCTR2100043708).


Subject(s)
Hepatitis B e Antigens/blood , Hepatitis B virus/immunology , Hepatitis B, Chronic/therapy , Viral Hepatitis Vaccines/administration & dosage , Adolescent , Adult , Double-Blind Method , Female , Hepatitis B e Antigens/immunology , Hepatitis B, Chronic/blood , Hepatitis B, Chronic/immunology , Hepatitis B, Chronic/virology , Humans , Injections, Subcutaneous , Liposomes , Male , Nanoparticle Drug Delivery System , Seroconversion , Sustained Virologic Response , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/adverse effects , Vaccines, Subunit/chemistry , Viral Hepatitis Vaccines/adverse effects , Viral Hepatitis Vaccines/chemistry , Young Adult
6.
Neuroimage ; 264: 119670, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36243268

ABSTRACT

Previous studies indicate a role of dopamine in spatial navigation. Although neural representations of direction are an important aspect of spatial cognition, it is not well understood whether dopamine directly affects these representations, or only impacts other aspects of spatial brain function. Moreover, both dopamine and spatial cognition decline sharply during age, raising the question which effect dopamine has on directional signals in the brain of older adults. To investigate these questions, we used a double-blind cross-over L-DOPA/Placebo intervention design in which 43 younger and 37 older adults navigated in a virtual spatial environment while undergoing functional magnetic resonance imaging (fMRI). We studied the effect of L-DOPA, a dopamine precursor, on fMRI activation patterns that encode spatial walking directions that have previously been shown to lose specificity with age. This was done in predefined regions of interest, including the early visual cortex, retrosplenial cortex, and hippocampus. Classification of brain activation patterns associated with different walking directions was improved across all regions following L-DOPA administration, suggesting that dopamine broadly enhances neural representations of direction. No evidence for differences between regions was found. In the hippocampus these results were found in both age groups, while in the retrosplenial cortex they were only observed in younger adults. Taken together, our study provides evidence for a link between dopamine and the specificity of neural responses during spatial navigation. SIGNIFICANCE STATEMENT: The sense of direction is an important aspect of spatial navigation, and neural representations of direction can be found throughout a large network of space-related brain regions. But what influences how well these representations track someone's true direction? Using a double-blind cross-over L-DOPA/Placebo intervention design, we find causal evidence that the neurotransmitter dopamine impacts the fidelity of direction selective neural representations in the human hippocampus and retrosplenial cortex. Interestingly, the effect of L-DOPA was either equally present or even smaller in older adults, despite the well-known age related decline of dopamine. These results provide novel insights into how dopamine shapes the neural representations that underlie spatial navigation.


Subject(s)
Levodopa , Spatial Navigation , Humans , Aged , Levodopa/pharmacology , Dopamine/physiology , Spatial Navigation/physiology , Brain Mapping/methods , Magnetic Resonance Imaging
7.
Alcohol Clin Exp Res ; 46(4): 667-681, 2022 04.
Article in English | MEDLINE | ID: mdl-35257381

ABSTRACT

BACKGROUND: While drinking alcohol, one must choose between the immediate rewarding effects and the delayed reward of a healthier lifestyle. Individuals differ in their devaluation of a delayed reward based on the time required to receive it, i.e., delay discounting (DD). Previous studies have shown that adolescents discount more steeply than adults and that steeper DD is associated with heavier alcohol use in both groups. METHODS: In a large-scale longitudinal study, we investigated whether higher rates of DD are an antecedent or a consequence of alcohol use during adolescent development. As part of the IMAGEN project, 2220 adolescents completed the Monetary Choice Questionnaire as a DD measure, the Alcohol Use Disorders Identification Test, and the Timeline Follow Back interview at ages 14, 16, 18, and 22. Bivariate latent growth curve models were applied to investigate the relationship between DD and drinking. To explore the consequences of drinking, we computed the cumulative alcohol consumption and correlated it with the development of discounting. A subsample of 221 participants completed an intertemporal choice task (iTeCh) during functional magnetic resonance imaging at ages 14, 16, and 18. Repeated-measures ANOVA was used to differentiate between high-risk and low-risk drinkers on the development of neural processing during intertemporal choices. RESULTS: Overall, high rates of DD at age 14 predicted a greater increase in drinking over 8 years. In contrast, on average, moderate alcohol use did not affect DD from ages 14 to 22. Of note, we found indicators for less brain activity in top-down control areas during intertemporal choices in the participants who drank more. CONCLUSIONS: Steep DD was shown to be a predictor rather than a consequence of alcohol use in low-level drinking adolescents. Important considerations for future longitudinal studies are the sampling strategies to be used and the reliability of the assessments.


Subject(s)
Alcoholism , Delay Discounting , Adolescent , Adult , Humans , Longitudinal Studies , Reproducibility of Results , Reward , Young Adult
8.
Sensors (Basel) ; 22(4)2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35214306

ABSTRACT

In the early 2020s, the coronavirus pandemic brought the notion of remotely connected care to the general population across the globe. Oftentimes, the timely provisioning of access to and the implementation of affordable care are drivers behind tele-healthcare initiatives. Tele-healthcare has already garnered significant momentum in research and implementations in the years preceding the worldwide challenge of 2020, supported by the emerging capabilities of communication networks. The Tactile Internet (TI) with human-in-the-loop is one of those developments, leading to the democratization of skills and expertise that will significantly impact the long-term developments of the provisioning of care. However, significant challenges remain that require today's communication networks to adapt to support the ultra-low latency required. The resulting latency challenge necessitates trans-disciplinary research efforts combining psychophysiological as well as technological solutions to achieve one millisecond and below round-trip times. The objective of this paper is to provide an overview of the benefits enabled by solving this network latency reduction challenge by employing state-of-the-art Time-Sensitive Networking (TSN) devices in a testbed, realizing the service differentiation required for the multi-modal human-machine interface. With completely new types of services and use cases resulting from the TI, we describe the potential impacts on remote surgery and remote rehabilitation as examples, with a focus on the future of tele-healthcare in rural settings.


Subject(s)
Coronavirus Infections , Telemedicine , Delivery of Health Care , Humans , Internet , Pandemics , Telemedicine/methods , Touch
9.
J Neurophysiol ; 125(4): 1382-1395, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33689490

ABSTRACT

Performing a goal-directed movement consists of a chain of complex preparatory mechanisms. Such planning especially requires integration (or binding) of various action features, a process that has been conceptualized in the "theory of event coding." Theoretical considerations and empirical research suggest that these processes are subject to developmental effects from adolescence to adulthood. The aim of the present study was to investigate age-related modulations in action feature binding processes and to shed light on underlying neurophysiological development from preadolescence to early adulthood. We examined a group of healthy participants (n = 61) between 10 and 30 yr of age, who performed a task that requires a series of bimanual response selections in an embedded paradigm. For an in-depth analysis of the underlying neural correlates, we applied EEG signal decomposition together with source localization analyses. Behavioral results across the whole group did not show binding effects in reaction times but in intraindividual response variability. From age 10 to 30 yr, there was a decrease in reaction times and reaction time variability but no age-related effect in action file binding. The latter were corroborated by Bayesian data analyses. On the brain level, the developmental effects on response selection were associated with activation modulations in the superior parietal cortex (BA7). The results show that mechanisms of action execution and speed, but not those of action feature binding, are subject to age-related changes between the age of 10 and 30 yr.NEW & NOTEWORTHY Different aspects of an action need to be integrated to allow smooth unfolding of behavior. We examine developmental effects in these processes and show that mechanisms of action execution and speed, but not those of action feature binding, are subject to age-related changes between the age of 10 and 30 yr.


Subject(s)
Human Development/physiology , Motor Activity/physiology , Parietal Lobe/physiology , Psychomotor Performance/physiology , Reaction Time/physiology , Adolescent , Adult , Age Factors , Child , Electroencephalography , Female , Humans , Male , Young Adult
10.
J Hepatol ; 75(2): 454-461, 2021 08.
Article in English | MEDLINE | ID: mdl-34019941

ABSTRACT

Fatty liver disease associated with metabolic dysfunction is of increasing concern in mainland China, the world's most populous country. The incidence of fatty liver disease is highest in China, surpassing the incidence in European countries and the USA. An international consensus panel recently published an influential report recommending a novel definition of fatty liver disease associated with metabolic dysfunction. This recommendation includes a switch in name from non-alcoholic fatty liver disease (NAFLD) to metabolic (dysfunction)-associated fatty liver disease (MAFLD) and adoption of a set of positive criteria for disease diagnosis that are independent of alcohol intake or other liver diseases. Given the unique importance of this proposal, the Chinese Society of Hepatology (CSH) invited leading hepatologists and gastroenterologists representing their respective provinces and cities to reach consensus on alternative definitions for fatty liver disease from a national perspective. The CSH endorses the proposed change from NAFLD to MAFLD (supported by 95.45% of participants). We expect that the new definition will result in substantial improvements in health care for patients and advance disease awareness, public health policy, and political, scientific and funding outcomes for MAFLD in China.


Subject(s)
Fatty Liver/physiopathology , Gastroenterology/trends , China , Fatty Liver/classification , Gastroenterology/organization & administration , Humans
11.
J Neurophysiol ; 124(1): 207-217, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32233902

ABSTRACT

Attentional control is crucial for selectively attending to relevant information when our brain is confronted with a multitude of sensory signals. Graph-theoretical measures provide a powerful tool for investigating the efficiency of brain network communication in separating and integrating information. Albeit, it has been demonstrated that anodal transcranial direct current stimulation (atDCS) can boost auditory attention in situations with high control demands, its effect on neurophysiological mechanisms of functional brain network communication in situations when attentional focus conflicts with perceptual saliency remain unclear. This study investigated the effects of atDCS on network connectivity and θ-oscillatory power under different levels of attentional-perceptual conflict. We hypothesized that the benefit of atDCS on network communication efficiency would be particularly apparent in conditions requiring high attentional control. Thirty young adults participated in a dichotic listening task with intensity manipulation, while EEG activity was recorded. In a cross-over design, participants underwent right frontal atDCS and sham stimulations in two separate sessions. Time-frequency decomposition and graph-theoretical analyses of network efficiency (using "small-world" properties) were used to quantify θ-oscillatory power and brain network efficiency, respectively. The atDCS-induced effect on task efficiency in the most demanding condition was mirrored only by an increase in network efficiency during atDCS compared with the sham stimulation. These findings are corroborated by Bayesian analyses. AtDCS-induced performance enhancement under high levels of attentional-perceptual conflicts is accompanied by an increase in network efficiency. Graph-theoretical measures can serve as a metric to quantify the effects of noninvasive brain stimulation on the separation and integration of information in the brain.NEW & NOTEWORTHY As compared with sham stimulation, application of atDCS enhances θ-oscillation-based network efficiency, but it has no impact on θ-oscillation power. Individual differences in θ-oscillation-based network efficiency correlated with performance efficiency under the sham stimulation.


Subject(s)
Attention/physiology , Auditory Perception/physiology , Cerebral Cortex/physiology , Connectome , Nerve Net/physiology , Theta Rhythm/physiology , Transcranial Direct Current Stimulation , Adult , Female , Humans , Male , Young Adult
12.
Neuroimage ; 199: 217-227, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31129304

ABSTRACT

Successful action control requires the ability to attend to relevant sensory signals in the environment. This, however, can be complicated when different sensory inputs compete for the brain's limited resources. Under such conditions, sensory processes interact with top-down attention to selectively process goal-relevant stimuli, while inhibiting irrelevant or distracting sensory signals. In the current study, we set out to provide causal mechanistic insights for whether and how prefrontal regions are involved in resolving attentional-perceptual conflicts. To this end, we applied atDCS and examined neurophysiological processes of selective auditory perception. To evaluate whether atDCS differentially affects intermingled neurophysiological subprocesses involved during conflict resolution, we decomposed the EEG data using residue iteration decomposition (RIDE). We show that the right prefrontal regions are causally involved in resolving attentional-perceptual conflicts and that atDCS increases the efficacy to do so. The data show that dissociable neurophysiological signals are specifically affected by atDCS. Conflict resolution processes that involve inhibition of competing stimuli and response evaluation and are associated with right middle frontal gyrus (BA46) seem to become intensified by atDCS during the resolution of attentional-perceptual conflicts. After stimulation the early stimulus processing level was also less prone to sensory conflicts, but this alone could not explain the increased behavioral efficacy associated with atDCS. These observed effects likely reflect changes in neuronal gain control mechanisms. Taken together, results of this study may have implications for treating attentional hyperactivity disorder, for which pharmacological intervention is currently the common therapeutic approach.


Subject(s)
Attention/physiology , Auditory Perception/physiology , Brain Mapping , Conflict, Psychological , Prefrontal Cortex/physiology , Transcranial Direct Current Stimulation , Adult , Electroencephalography , Female , Humans , Male , Young Adult
13.
Neuroimage ; 197: 414-424, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31054351

ABSTRACT

Older adults experience difficulties in daily situations that require flexible information selection in the presence of multiple competing sensory inputs, like for instance multi-talker situations. Modulations of rhythmic neural activity in the alpha-beta (8-30 Hz) frequency range in posterior brain areas have been established as a cross-modal neural correlate of selective attention. However, research linking compromised auditory selective attention to changes in rhythmic neural activity in aging is sparse. We tested younger (n = 25; 22-35 years) and older adults (n = 26; 63-76 years) in an attention modulated dichotic listening task. In this, two streams of highly similar auditory input were simultaneously presented to participants' both ears (i.e., dichotically) while attention had to be focused on the input to only one ear (i.e. target) and the other, distracting information had to be ignored. We here demonstrate a link between severely compromised auditory selective attention in aging and a partial reorganization of attention-related rhythmic neural responses. In particular, in old age we observed a shift from a self-initiated, preparatory modulation of lateralized alpha rhythmic activity to an externally driven response in the alpha-beta range. Critically, moment-to-moment fluctuations in the age-specific patterns of self-initiated and externally driven lateralized rhythmic activity were associated with behavioral performance. We conclude that adult age differences in spatial selective attention likely derive from a functional reorganization of rhythmic neural activity within the aging brain.


Subject(s)
Aging/physiology , Alpha Rhythm , Attention/physiology , Auditory Perception/physiology , Functional Laterality/physiology , Acoustic Stimulation , Adult , Aged , Dichotic Listening Tests , Female , Humans , Male , Middle Aged , Young Adult
14.
Nature ; 504(7480): 432-6, 2013 Dec 19.
Article in English | MEDLINE | ID: mdl-24213632

ABSTRACT

Myocardial infarction, a leading cause of death in the Western world, usually occurs when the fibrous cap overlying an atherosclerotic plaque in a coronary artery ruptures. The resulting exposure of blood to the atherosclerotic material then triggers thrombus formation, which occludes the artery. The importance of genetic predisposition to coronary artery disease and myocardial infarction is best documented by the predictive value of a positive family history. Next-generation sequencing in families with several affected individuals has revolutionized mutation identification. Here we report the segregation of two private, heterozygous mutations in two functionally related genes, GUCY1A3 (p.Leu163Phefs*24) and CCT7 (p.Ser525Leu), in an extended myocardial infarction family. GUCY1A3 encodes the α1 subunit of soluble guanylyl cyclase (α1-sGC), and CCT7 encodes CCTη, a member of the tailless complex polypeptide 1 ring complex, which, among other functions, stabilizes soluble guanylyl cyclase. After stimulation with nitric oxide, soluble guanylyl cyclase generates cGMP, which induces vasodilation and inhibits platelet activation. We demonstrate in vitro that mutations in both GUCY1A3 and CCT7 severely reduce α1-sGC as well as ß1-sGC protein content, and impair soluble guanylyl cyclase activity. Moreover, platelets from digenic mutation carriers contained less soluble guanylyl cyclase protein and consequently displayed reduced nitric-oxide-induced cGMP formation. Mice deficient in α1-sGC protein displayed accelerated thrombus formation in the microcirculation after local trauma. Starting with a severely affected family, we have identified a link between impaired soluble-guanylyl-cyclase-dependent nitric oxide signalling and myocardial infarction risk, possibly through accelerated thrombus formation. Reversing this defect may provide a new therapeutic target for reducing the risk of myocardial infarction.


Subject(s)
Disease Susceptibility/metabolism , Myocardial Infarction/metabolism , Nitric Oxide/metabolism , Signal Transduction , Animals , Chaperonin Containing TCP-1/genetics , Chaperonin Containing TCP-1/metabolism , Cyclic GMP/metabolism , Exome/genetics , Female , Genetic Predisposition to Disease , Guanylate Cyclase/deficiency , Guanylate Cyclase/genetics , Guanylate Cyclase/metabolism , HEK293 Cells , Humans , Male , Mice , Mutation/genetics , Myocardial Infarction/genetics , Myocardial Infarction/physiopathology , Pedigree , Platelet Activation , Receptors, Cytoplasmic and Nuclear/deficiency , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Reproducibility of Results , Solubility , Soluble Guanylyl Cyclase , Thrombosis/metabolism , Vasodilation
15.
Cereb Cortex ; 28(11): 3764-3774, 2018 11 01.
Article in English | MEDLINE | ID: mdl-29028956

ABSTRACT

Older decision-makers may capitalize on their greater experiences in financial decisions and by this offset decline in cognitive abilities. However, this pattern of results should reverse in situations that place high demands on cognitive control functions. In this study, we investigated how decision conflict affects the neural mechanisms of intertemporal decision-making in younger and older adults. To individually adjust the level of decision conflict we determined the indifference point (IDP) in intertemporal decision-making for each participant. During functional magnetic resonance imaging, participants performed choice options close to their IDP (high conflict) or far away from the IDP (low conflict). In younger adults, decision conflict leads to reduced delay discounting and lower discount rates are associated with higher working memory (WM) capacity. In older adults, high decision conflict is associated with enhanced discounting, hypoactivation in the ventral striatum as well diminished ventral striatal representations of differences in subjective values. Taken together, our results show that under enhanced decision conflict, younger adults engage in a more reflective decision mode that reflects individual differences in WM capacity. In contrast, older adults get more present-oriented under high demands on cognitive control and this decision bias is associated with changes in striatal value signaling.


Subject(s)
Brain/physiology , Conflict, Psychological , Delay Discounting/physiology , Adult , Age Factors , Aged , Brain Mapping , Female , Humans , Magnetic Resonance Imaging , Male , Memory, Short-Term/physiology , Reward , Young Adult
16.
J Cell Physiol ; 233(9): 7292-7304, 2018 09.
Article in English | MEDLINE | ID: mdl-29663385

ABSTRACT

Odontoblastic differentiation of human dental pulp stem cells (hDPSCs) is essential for the formation of reparative dentin after dental caries or injury. Our previous studies have demonstrated that krüppel-like factor 4 (KLF4) is a critical transcription factor that promotes the odontoblastic differentiation of hDPSCs. Analysis of the microRNA binding sites within the 3'-UTR of KLF4 revealed that QKI, an RNA-binding protein, shared the most microRNAs with KLF4, presumably served as a "competent endogenous RNA (ceRNA)" with KLF4. Thus, we hypothesized QKI could also promote odontoblastic differentiation. In this study, we found QKI was up-regulated during mouse odontoblast differentiation in vivo and hDPSCs odontoblastic differentiation in vitro. Overexpression or knockdown of QKI in hDPSCs led to the increase or decrease of odontoblast marker genes' expressions, indicating its positive role in odontoblastic differentiation. We further validated that QKI served as a key ceRNA of KLF4 via interaction of the shared miRNAs in hDPSCs. Last, we found that, as an RNA binding protein, QKI protein could bind to, and stabilize dentin sialophosphoprotein (DSPP) mRNA, resulting in the augmented accumulation of DSP protein. Taken together, our study indicates that QKI promotes the odontoblastic differentiation of hDPSCs by acting as a ceRNA of KLF4 and as a binding protein of DSPP mRNA to stabilize its level. These two mechanisms of QKI will together positively regulate the downstream pathways and hence potentiate odontoblastic differentiation.


Subject(s)
Cell Differentiation , Dental Pulp/cytology , Odontoblasts/cytology , Odontoblasts/metabolism , RNA-Binding Proteins/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Adolescent , Adult , Animals , Biomarkers/metabolism , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Humans , Incisor/cytology , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Mice , MicroRNAs/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , Sialoglycoproteins/genetics , Sialoglycoproteins/metabolism , Up-Regulation/genetics , Young Adult
17.
Neuroimage ; 167: 384-395, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29191478

ABSTRACT

Adaptive behavior in daily life often requires the ability to acquire and represent sequential contingencies between actions and the associated outcomes. Although accumulating evidence implicates the role of dorsolateral prefrontal cortex (dlPFC) in complex value-based learning and decision-making, direct evidence for involvements of this region in integrating information across sequential decision states is still scarce. Using a 3-stage deterministic Markov decision task, here we applied offline, inhibitory low-frequency 1-Hz repetitive transcranial magnetic stimulation (rTMS) over the left dlPFC in young male adults (n = 31, mean age = 23.8 years, SD = 2.5 years) in a within-subject cross-over design to study the roles of this region in influencing value-based sequential decision-making. In two separate sessions, each participant received 1-Hz rTMS stimulation either over the left dlPFC or over the vertex. The results showed that transiently inhibiting the left dlPFC impaired choice accuracy, particularly in situations in which the acquisition of sequential transitions between decision states and temporally lagged action-outcome contingencies played a greater role. Estimating parameters of a diffusion model from behavioral choices, we found that the diffusion drift rate, which reflects the efficiency of information integration, was attenuated by the stimulation. Moreover, the effects of rTMS interacted with session: individuals who could not efficiently integrate information across sequential states in the first session due to disrupted dlPFC function also could not catch up in performance during the second session with those individuals who could learn sequential transitions with intact dlPFC function in the first session. Taken together, our findings suggest that the left dlPFC is crucially involved in the acquisition of complex sequential relations and in the potential of such learning.


Subject(s)
Choice Behavior/physiology , Learning/physiology , Prefrontal Cortex/physiology , Psychomotor Performance/physiology , Reward , Transcranial Magnetic Stimulation/methods , Adult , Cross-Over Studies , Humans , Male , Neural Inhibition/physiology , Young Adult
18.
Hum Brain Mapp ; 39(12): 5050-5061, 2018 12.
Article in English | MEDLINE | ID: mdl-30133058

ABSTRACT

The ability to selectively perceive and flexibly attend to relevant sensory signals in the environment is essential for action control. Whereas neuromodulation of sensory or attentional processing is often investigated, neuromodulation of interactive effects between perception and attention, that is, high attentional control demand when the relevant sensory information is perceptually less salient than the irrelevant one, is not well understood. To fill this gap, this pharmacological-electroencephalogram (EEG) study applied an intensity-modulated, focused-attention dichotic listening paradigm together with temporal EEG signal decomposition and source localization analyses. We used a double-blind MPH/placebo crossover design to delineate the effects of methylphenidate (MPH)-a dopamine/norepinephrine transporter blocker-on the resolution of perceptual-attentional conflicts, when perceptual saliency and attentional focus favor opposing ears, in healthy young adults. We show that MPH increased behavioral performance specifically in the condition with the most pronounced conflict between perceptual saliency and attentional focus. On the neurophysiological level, MPH effects in line with the behavioral data were observed after accounting for intraindividual variability in the signal. More specifically, MPH did not show an effect on stimulus-related processes but modulated the onset latency of processes between stimulus evaluation and responding. These modulations were further shown to be associated with activation differences in the temporoparietal junction (BA40) and the superior parietal cortex (BA7) and may reflect neuronal gain modulation principles. The findings provide mechanistic insights into the role of modulated dopamine/norepinephrine transmitter systems for the interactions between perception and attention.


Subject(s)
Attention/drug effects , Auditory Perception/drug effects , Cerebral Cortex/drug effects , Conflict, Psychological , Electroencephalography/methods , Evoked Potentials/physiology , Methylphenidate/pharmacology , Neurotransmitter Uptake Inhibitors/pharmacology , Psychomotor Performance/drug effects , Adult , Cross-Over Studies , Dopamine Uptake Inhibitors/pharmacology , Double-Blind Method , Female , Humans , Male , Methylphenidate/administration & dosage , Neurotransmitter Uptake Inhibitors/administration & dosage , Norepinephrine Plasma Membrane Transport Proteins/antagonists & inhibitors , Young Adult
19.
Biochem Biophys Res Commun ; 495(1): 493-498, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29127007

ABSTRACT

Illumination of the molecular mechanisms regulating odontoblastic differentiation of dental papilla cells is of great significance for proper dentinogenesis and dental pulp regeneration. In this study, we discovered that microRNA (miR)-3065-5p is up-regulated during odontoblastic differentiation. Overexpression of miR-3065-5p promoted odontoblastic differentiation in vitro. Dual luciferase report assay verified that miR-3065-5p could bind to the 3'UTR of bone morphogenetic protein receptor type II (BMPR2), which dramatically increased in the beginning of odontoblastic differentiation but decreased in the terminal differentiation stage. Inhibition of Bmpr2 in the early stage retarded odontoblastic differentiation while knockdown of Bmpr2 in the terminal stage enhanced odontoblastic differentiation, resembling the effect of miR-3065-5p. Taken together, our present study suggests that miR-3065-5p positively regulates odontoblastic differentiation by directly binding to Bmpr2 in the terminal differentiation stage.


Subject(s)
Bone Morphogenetic Protein Receptors, Type II/genetics , Gene Expression Regulation , MicroRNAs/genetics , Odontoblasts/cytology , 3' Untranslated Regions , Animals , Bone Morphogenetic Protein Receptors, Type II/metabolism , Cell Differentiation , Cell Line , Mice , MicroRNAs/metabolism , Odontoblasts/metabolism , RNA, Messenger/genetics , Up-Regulation
20.
Int J Neuropsychopharmacol ; 21(7): 649-655, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29618012

ABSTRACT

Background: Perceptual decision making is the process through which available sensory information is gathered and processed to guide our choices. However, the neuropsychopharmacological basis of this important cognitive function is largely elusive. Yet, theoretical considerations suggest that the dopaminergic system may play an important role. Methods: In a double-blind, randomized, placebo-controlled study design, we examined the effect of methylphenidate in 2 dosages (0.25 mg/kg and 0.5 mg/kg body weight) in separate groups of healthy young adults. We used a moving dots task in which the coherency of the direction of moving dots stimuli was manipulated in 3 levels (5%, 15%, and 35%). Drift diffusion modelling was applied to behavioral data to capture subprocesses of perceptual decision making. Results: The findings show that only the drift rate (v), reflecting the efficiency of sensory evidence accumulation, but not the decision criterion threshold (a) or the duration of nondecisional processes (Ter), is affected by methylphenidate vs placebo administration. Compared with placebo, administering 0.25 mg/kg methylphenidate increased v, but only in the 35% coherence condition. Administering 0.5 mg/kg methylphenidate did not induce modulations. Conclusions: The data suggest that dopamine selectively modulates the efficacy of evidence accumulation during perceptual decision making. This modulation depends on 2 factors: (1) the degree to which the dopaminergic system is modulated using methylphenidate (i.e., methylphenidate dosage) and (2) the signal-to-noise ratio of the visual information. Dopamine affects sensory evidence accumulation only when dopamine concentration is not shifted beyond an optimal level and the incoming information is less noisy.


Subject(s)
Decision Making/drug effects , Dopamine Uptake Inhibitors/pharmacology , Methylphenidate/pharmacology , Motion Perception/drug effects , Pattern Recognition, Visual/physiology , Psychomotor Performance/drug effects , Adult , Dopamine Uptake Inhibitors/administration & dosage , Double-Blind Method , Female , Humans , Male , Methylphenidate/administration & dosage , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL