Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 208
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Stem Cells ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38804841

ABSTRACT

Cisplatin is widely employed in tumor chemotherapy, but nephrotoxicity is an unavoidable side effect of cisplatin. Several studies have demonstrated that mesenchymal stromal cells (MSCs) ameliorate cisplatin-induced kidney injury, but the underlying mechanisms are unknown. In this study, the cisplatin-induced kidney injury mouse model was established by subjecting a single intraperitoneal injection with cisplatin. One hour before cisplatin injection, the mice received human bone marrow MSCs (hBM-MSCs) with or without siRNA-transfection, recombinant human tumor necrosis factor (TNF)-α-stimulated gene/protein 6 (rhTSG-6), or PBS through tail vein. In addition, cisplatin-stimulated HK-2 cells were treated with hBM-MSCs or rhTSG-6. hBM-MSCs treatment remarkably ameliorated cisplatin-induced acute and chronic kidney injury, as evidenced by significant reductions in serum creatinine (Scr), blood urea nitrogen (BUN), tubular injury, collagen deposition, α-smooth muscle actin accumulation, as well as inflammatory responses, and by remarkable increased anti-inflammatory factor expression and Treg cells infiltration in renal tissues. Furthermore, we found that only a few hBM-MSCs engrafted into damaged kidney and that the level of human TSG-6 in serum of mice increased significantly following hBM-MSCs administration. Moreover, hBM-MSCs significantly increased the viability of damaged HK-2 cells and decreased the levels of inflammatory cytokines in the culture supernatant. However, knockdown of TSG-6 gene in hBM-MSCs significantly attenuated their beneficial effects in vivo and in vitro. On the contrary, treated with rhTSG-6 achieved similar beneficial effects of hBM-MSCs. Our results indicate that systemic administration of hBM-MSCs alleviate cisplatin-induced acute and chronic kidney injury in part by paracrine TSG-6 secretion.

2.
Mol Genet Genomics ; 299(1): 40, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38546894

ABSTRACT

Genomic imprinting is an epigenetic regulation mechanism in mammals resulting in the parentally dependent monoallelic expression of genes. Imprinting disorders in humans are associated with several congenital syndromes and cancers and remain the focus of many medical studies. Cattle is a better model organism for investigating human embryo development than mice. Imprinted genes usually cluster on chromosomes and are regulated by different methylation regions (DMRs) located in imprinting control regions that control gene expression in cis. There is an imprinted locus on human chromosome 16q24.1 associated with congenital lethal developmental lung disease in newborns. However, genomic imprinting on bovine chromosome 18, which is homologous with human chromosome 16 has not been systematically studied. The aim of this study was to analyze the allelic expressions of eight genes (CDH13, ATP2C2, TLDC1, COTL1, CRISPLD2, ZDHHC7, KIAA0513, and GSE1) on bovine chromosome 18 and to search the DMRs associated gene allelic expression. Three transcript variants of the ZDHHC7 gene (X1, X2, and X5) showed maternal imprinting in bovine placentas. In addition, the monoallelic expression of X2 and X5 was tissue-specific. Five transcripts of the KIAA0513 gene showed tissue- and isoform-specific monoallelic expression. The CDH13, ATP2C2, and TLDC1 genes exhibited tissue-specific imprinting, however, COTL1, CRISLPLD2, and GSE1 escaped imprinting. Four DMRs, established after fertilization, were found in this region. Two DMRs were located between the ZDHHC7 and KIAA0513 genes, and two were in exon 1 of the CDH13 and ATP2C2 genes, respectively. The results from this study support future studies on the molecular mechanism to regulate the imprinting of candidate genes on bovine chromosome 18.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Infant, Newborn , Pregnancy , Female , Humans , Cattle/genetics , Animals , Mice , DNA Methylation/genetics , Chromosomes, Human, Pair 18 , Genomic Imprinting/genetics , Chromosomes , Mammals/genetics , Nerve Tissue Proteins/genetics
3.
Mol Carcinog ; 63(7): 1334-1348, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38629424

ABSTRACT

Gastrointestinal stromal tumors (GISTs) are predominately induced by KIT mutants. In this study, we found that four and a half LIM domains 2 (FHL2) was highly expressed in GISTs and KIT signaling dramatically increased FHL2 transcription while FHL2 inhibited KIT transcription. In addition, our results showed that FHL2 associated with KIT and increased the ubiquitination of both wild-type KIT and primary KIT mutants in GISTs, leading to decreased expression and activation of KIT although primary KIT mutants were less inhibited by FHL2 than wild-type KIT. In the animal experiments, loss of FHL2 expression in mice carrying germline KIT/V558A mutation which can develop GISTs resulted in increased tumor growth, but increased sensitivity of GISTs to imatinib treatment which is used as the first-line targeted therapy of GISTs, suggesting that FHL2 plays a role in the response of GISTs to KIT inhibitor. Unlike wild-type KIT and primary KIT mutants, we further found that FHL2 didn't alter the expression and activation of drug-resistant secondary KIT mutants. Taken together, our results indicated that FHL2 acts as the negative feedback of KIT signaling in GISTs while primary KIT mutants are less sensitive and secondary KIT mutants are resistant to the inhibition of FHL2.


Subject(s)
Gastrointestinal Stromal Tumors , LIM-Homeodomain Proteins , Muscle Proteins , Proto-Oncogene Proteins c-kit , Signal Transduction , Transcription Factors , Gastrointestinal Stromal Tumors/genetics , Gastrointestinal Stromal Tumors/pathology , Gastrointestinal Stromal Tumors/metabolism , Animals , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/metabolism , LIM-Homeodomain Proteins/genetics , LIM-Homeodomain Proteins/metabolism , Humans , Muscle Proteins/genetics , Muscle Proteins/metabolism , Mice , Transcription Factors/genetics , Transcription Factors/metabolism , Mutation , Carcinogenesis/genetics , Gene Expression Regulation, Neoplastic , Imatinib Mesylate/pharmacology , Gastrointestinal Neoplasms/genetics , Gastrointestinal Neoplasms/pathology , Gastrointestinal Neoplasms/metabolism , Cell Line, Tumor , Ubiquitination
4.
Cancer Cell Int ; 24(1): 222, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937761

ABSTRACT

Triple negative breast cancer (TNBC) is a type of cancer that lacks receptor expression and has complex molecular mechanisms. Recent evidence shows that the ubiquitin-protease system is closely related to TNBC. In this study, we obtain a key ubiquitination regulatory substrate-ABI2 protein by bioinformatics methods, which is also closely related to the survival and prognosis of TNBC. Further, through a series of experiments, we demonstrated that ABI2 expressed at a low level in TNBC tumors, and it has the ability to control cell cycle and inhibit TNBC cell migration, invasion and proliferation. Molecular mechanism studies proved E3 ligase CBLC could increase the ubiquitination degradation of ABI2 protein. Meanwhile, RNA-seq and IP experiments indicated that ABI2, acting as a crucial factor of tumor suppression, can significantly inhibit PI3K/Akt signaling pathway via the interaction with Rho GTPase RAC1. Finally, based on TNBC drug target ABI2, we screened and found that FDA-approved drug Colistimethate sodium(CS) has significant potential in suppressing the proliferation of TNBC cells and inducing cell apoptosis, making it a promising candidate for impeding the progression of TNBC.

5.
Clin Exp Nephrol ; 28(5): 409-420, 2024 May.
Article in English | MEDLINE | ID: mdl-38240880

ABSTRACT

BACKGROUND: Idiopathic membranous nephropathy (IMN) is a leading cause of end-stage renal disease (ESRD). The purpose of this study was to evaluate whether urinary albumin-to-creatinine ratio (UACR) diurnal variation rate calculated by spot urinary protein test predicts 1-year nephrotic outcomes as a biomarker of proteinuria severity in patients with IMN. METHODS: Patients' baseline demographics, blood and urinary biomarkers, and clinical and pathological characteristics were collected retrospectively. Urine samples were collected at 7:00 (before breakfast) and 19:00 (after dinner) to calculate the UACR diurnal variation rate. A prediction model for no remission (NR) was developed statistically based on differences between prognosis groups. Receiver operating characteristic curve (ROC) analysis was performed to evaluate prediction abilities and determine optimal cut-off points of the model and UACR diurnal variation rate alone. RESULTS: The formula for calculating the probability of NR was exp(L)/(1 + exp(L)), where the linear predictor L = - 22.038 + 0.134 × Age (years) + 0.457 × 24-h urinary protein + 0.511 × blood urea nitrogen (BUN) + 0.014 × serum uric acid (SUA) + 2.411 if glomerular sclerosis + 0.816 × fasting blood glucose (FBG)-0.039 × UACR diurnal variation rate (%). Optimal cut-off points for NR prediction by the final model and UACR diurnal variation rate alone were 0.331 and 58.5%, respectively. Sensitivity and specificity were 0.889 and 0.859 for the final model, and 0.926 and 0.676 for UACR diurnal variation rate alone. CONCLUSION: UACR diurnal variation using spot urinary protein is a simpler way to predict nephrotic outcomes and is a highly sensitive screening tool for identifying patients who should undergo further comprehensive risk assessment.


Subject(s)
Albuminuria , Biomarkers , Circadian Rhythm , Creatinine , Glomerulonephritis, Membranous , Humans , Glomerulonephritis, Membranous/urine , Male , Female , Middle Aged , Creatinine/urine , Creatinine/blood , Retrospective Studies , Adult , Albuminuria/urine , Albuminuria/etiology , Biomarkers/urine , Biomarkers/blood , Prognosis , ROC Curve , Predictive Value of Tests , Aged , Proteinuria/urine , Proteinuria/etiology , Urinalysis
6.
Anim Genet ; 55(3): 452-456, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38594908

ABSTRACT

Genomic imprinting is an epigenetic regulation in mammals in which a small subset of genes is monoallelically expressed dependent on their parental origin. A large imprinted domain, SGCE/PEG10 locus, is located on human chromosome 7q21s and mouse proximal chromosome 6. However, genomic imprinting of bovine SGCE/PEG10 cluster has not been systematically studied. In this study, we investigated allele expression of 14 genes of the SGCE/PEG10 locus in bovine somatic tissues and term placenta using a single nucleotide polymorphism (SNP)-based sequencing method. In addition to SGCE and PEG10, two conserved paternally expressed genes in human and mice, five other genes (TFPI2, GNG11, ASB4, PON1, and PON3) were paternally expressed. Three genes, BET1, COL1A2, and CASD1, exhibited tissue-specific monoallelic expression. CALCR showed monoallelic expression in tissues but biallelic expression in the placenta. Three genes, GNGT1, PPP1R9A, and PON2, showed biallelic expression in cattle. Five differentially methylated regions (DMRs) were found to be associated with the allelic expression of TFPI2, COL1A2, SGCE/PEG10, PON3, and ASB4 genes, respectively. The SGCE/PEG10 DMR is a maternally hypermethylated germline DMR, but TFPI2, COL1A2, PON3, and ASB4 DMRs are secondary DMRs. In summary, we identified five novel bovine imprinted genes (GNG11, BET1, COL1A2, CASD1, and PON1) and four secondary DMRs at the SGCE/PEG10 locus.


Subject(s)
Alleles , DNA Methylation , Genomic Imprinting , Animals , Cattle/genetics , Placenta/metabolism , Female , Polymorphism, Single Nucleotide , Pregnancy
7.
J Liposome Res ; : 1-13, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38712581

ABSTRACT

Liposomes are small spherical vesicles composed of phospholipid bilayers capable of encapsulating a variety of ingredients, including water- and oil-soluble compound, which are one of the most commonly used piggybacking and delivery techniques for many active ingredients and different compounds in biology, medicine and cosmetics. With the increasing number of active cosmetic ingredients, the concomitant challenge is to effectively protect, transport, and utilize these substances in a judicious manner. Many cosmetic ingredients are ineffective both topically and systemically when applied to the skin, thus changing the method of delivery and interaction with the skin of the active ingredients is a crucial step toward improving their effectiveness. Liposomes can improve the delivery of active ingredients to the skin, enhance their stability, and ultimately, improve the efficacy of cosmetics and and pharmaceuticals. In this review, we summarized the basic properties of liposomes and their recent advances of functionalities in cosmetics and and pharmaceuticals. Also, the current state of the art in the field is discussed and the prospects for future research areas are highlighted. We hope that this review will provide ideas and inspiration on the application and development of cosmetics and pharmaceuticals.

8.
Plant Dis ; 108(2): 473-485, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37669175

ABSTRACT

Agaricus bisporus (Lange) Imbach is the most widely cultivated mushroom in the world. A. bisporus wet bubble disease is one of the most severe diseases of white button mushrooms and is caused by the fungal pathogen Hypomyces perniciosus. The pathogen causes a drastic reduction in mushroom yield because of malformation and deterioration of the basidiomes. However, the mechanism of the button mushroom's malformation development after infection with H. perniciosus remains obscure. Therefore, to reveal the mechanism of A. bisporus malformation caused by H. perniciosus, the interaction between the pathogen and host was investigated in this study using histopathological, physiological, and transcriptomic analyses. Results showed that irrespective of the growth stages of A. bisporus basidiomes infected with H. perniciosus, the host's malformed basidiomes and enlarged mycelia and basidia indicated that the earlier the infection with H. perniciosus, the more the malformation of the basidiomes. Analyzing physiological and transcriptomic results in tandem, we concluded that H. perniciosus causes malformation development of A. bisporus mainly by affecting the metabolism level of phytohormones (N6-isopentenyladenosine, cis-zeatin, and N6-[delta 2-isopentenyl]-adenine) of the host's fruiting bodies rather than using toxins. Our findings revealed the mechanism of the button mushroom's malformation development after infection with H. perniciosus, providing a reference for developing realistic approaches to control mushroom diseases. Our results further clarified the interaction between A. bisporus and H. perniciosus and identified the candidate genes for A. bisporus wet bubble disease resistance breeding. Additionally, our work provides a valuable theoretical basis and technical support for studying the interaction between other pathogenic fungi and their fungal hosts.


Subject(s)
Agaricus , Hypocreales , Transcriptome , Plant Breeding , Agaricus/genetics , Agaricus/metabolism , Hypocreales/genetics
9.
Chem Soc Rev ; 52(15): 5088-5134, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37439791

ABSTRACT

Sensors, the underlying technology that supports the Internet of Things, are undergoing multi-disciplinary integration development to constantly improve the efficiency of human production and life. Simultaneously, the application scenarios in emerging fields such as medical diagnosis, environmental monitoring and industrial safety put forward higher requirements for sensing capabilities. Over the last decade, single-atom catalysts (SACs) have attracted tremendous attention in fields such as environment and energy due to their high atom utilization efficiencies, controllable active sites, tailorable coordination environments and structural/chemical stability. These extraordinary characteristics extend the sensitivity and selectivity of sensors beyond their current limitations. Here, we start with the working principles of SAC-based sensors, and summarize the relationship between sensor performance and intrinsic properties of SACs, followed by an overview of the design strategy development. We then review the recent advances in SAC-based sensors in different fields and highlight the future opportunities and challenges in their exciting applications.

10.
BMC Med ; 21(1): 500, 2023 12 18.
Article in English | MEDLINE | ID: mdl-38110931

ABSTRACT

BACKGROUND: More than half of patients with tuberous sclerosis complex (TSC) suffer from drug-resistant epilepsy (DRE), and resection surgery is the most effective way to control intractable epilepsy. Precise preoperative localization of epileptogenic tubers among all cortical tubers determines the surgical outcomes and patient prognosis. Models for preoperatively predicting epileptogenic tubers using 18F-FDG PET images are still lacking, however. We developed noninvasive predictive models for clinicians to predict the epileptogenic tubers and the outcome (seizure freedom or no seizure freedom) of cortical tubers based on 18F-FDG PET images. METHODS: Forty-three consecutive TSC patients with DRE were enrolled, and 235 cortical tubers were selected as the training set. Quantitative indices of cortical tubers on 18F-FDG PET were extracted, and logistic regression analysis was performed to select those with the most important predictive capacity. Machine learning models, including logistic regression (LR), linear discriminant analysis (LDA), and artificial neural network (ANN) models, were established based on the selected predictive indices to identify epileptogenic tubers from multiple cortical tubers. A discriminating nomogram was constructed and found to be clinically practical according to decision curve analysis (DCA) and clinical impact curve (CIC). Furthermore, testing sets were created based on new PET images of 32 tubers from 7 patients, and follow-up outcome data from the cortical tubers were collected 1, 3, and 5 years after the operation to verify the reliability of the predictive model. The predictive performance was determined by using receiver operating characteristic (ROC) analysis. RESULTS: PET quantitative indices including SUVmean, SUVmax, volume, total lesion glycolysis (TLG), third quartile, upper adjacent and standard added metabolism activity (SAM) were associated with the epileptogenic tubers. The SUVmean, SUVmax, volume and TLG values were different between epileptogenic and non-epileptogenic tubers and were associated with the clinical characteristics of epileptogenic tubers. The LR model achieved the better performance in predicting epileptogenic tubers (AUC = 0.7706; 95% CI 0.70-0.83) than the LDA (AUC = 0.7506; 95% CI 0.68-0.82) and ANN models (AUC = 0.7425; 95% CI 0.67-0.82) and also demonstrated good calibration (Hosmer‒Lemeshow goodness-of-fit p value = 0.7). In addition, DCA and CIC confirmed the clinical utility of the nomogram constructed to predict epileptogenic tubers based on quantitative indices. Intriguingly, the LR model exhibited good performance in predicting epileptogenic tubers in the testing set (AUC = 0.8502; 95% CI 0.71-0.99) and the long-term outcomes of cortical tubers (1-year outcomes: AUC = 0.7805, 95% CI 0.71-0.85; 3-year outcomes: AUC = 0.8066, 95% CI 0.74-0.87; 5-year outcomes: AUC = 0.8172, 95% CI 0.75-0.87). CONCLUSIONS: The 18F-FDG PET image-based LR model can be used to noninvasively identify epileptogenic tubers and predict the long-term outcomes of cortical tubers in TSC patients.


Subject(s)
Epilepsy , Tuberous Sclerosis , Humans , Fluorodeoxyglucose F18 , Tuberous Sclerosis/complications , Tuberous Sclerosis/diagnostic imaging , Tuberous Sclerosis/metabolism , Reproducibility of Results , Glycolysis , Retrospective Studies
11.
Opt Express ; 31(5): 7200-7211, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36859856

ABSTRACT

Practical realization of quantum repeaters requires quantum memories with high retrieval efficiency, multi-mode storage capacities, and long lifetimes. Here, we report a high-retrieval-efficiency and temporally multiplexed atom-photon entanglement source. A train of 12 write pulses in time is applied to a cold atomic ensemble along different directions, which generates temporally multiplexed pairs of Stokes photons and spin waves via Duan-Lukin-Cirac-Zoller processes. The two arms of a polarization interferometer are used to encode photonic qubits of 12 Stokes temporal modes. The multiplexed spin-wave qubits, each of which is entangled with one Stokes qubit, are stored in a "clock" coherence. A ring cavity that resonates simultaneously with the two arms of the interferometer is used to enhance retrieval from the spin-wave qubits, with the intrinsic retrieval efficiency reaching 70.4%. The multiplexed source gives rise to a ∼12.1-fold increase in atom-photon entanglement-generation probability compared to the single-mode source. The measured Bell parameter for the multiplexed atom-photon entanglement is 2.21(2), along with a memory lifetime of up to ∼125 µs.

12.
Gastric Cancer ; 26(5): 677-690, 2023 09.
Article in English | MEDLINE | ID: mdl-37222910

ABSTRACT

BACKGROUND: KIT is frequently mutated in gastrointestinal stromal tumors (GISTs), and the treatment of GISTs largely relies on targeting KIT currently. In this study, we aimed to investigate the role of sprouty RTK signaling antagonist 4 (SPRY4) in GISTs and related mechanisms. METHODS: Ba/F3 cells and GIST-T1 cell were used as cell models, and mice carrying germline KIT/V558A mutation were used as animal model. Gene expression was examined by qRT-PCR and western blot. Protein association was examined by immunoprecipitation. RESULTS: Our study revealed that KIT increased the expression of SPRY4 in GISTs. SPRY4 was found to bind to both wild-type KIT and primary KIT mutants in GISTs, and inhibited KIT expression and activation, leading to decreased cell survival and proliferation mediated by KIT. We also observed that inhibition of SPRY4 expression in KITV558A/WT mice led to increased tumorigenesis of GISTs in vivo. Moreover, our results demonstrated that SPRY4 enhanced the inhibitory effect of imatinib on the activation of primary KIT mutants, as well as on cell proliferation and survival mediated by the primary KIT mutants. However, in contrast to this, SPRY4 did not affect the expression and activation of drug-resistant secondary KIT mutants, nor did it affect the sensitivity of secondary KIT mutants to imatinib. These findings suggested that secondary KIT mutants regulate a different downstream signaling cascade than primary KIT mutants. CONCLUSIONS: Our results suggested that SPRY4 acts as negative feedback of primary KIT mutants in GISTs by inhibiting KIT expression and activation. It can increase the sensitivity of primary KIT mutants to imatinib. In contrast, secondary KIT mutants are resistant to the inhibition of SPRY4.


Subject(s)
Antineoplastic Agents , Gastrointestinal Neoplasms , Gastrointestinal Stromal Tumors , Stomach Neoplasms , Animals , Humans , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Benzamides/pharmacology , Drug Resistance, Neoplasm/genetics , Gastrointestinal Neoplasms/drug therapy , Gastrointestinal Neoplasms/genetics , Gastrointestinal Neoplasms/pathology , Gastrointestinal Stromal Tumors/drug therapy , Gastrointestinal Stromal Tumors/genetics , Gastrointestinal Stromal Tumors/pathology , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Mutation , Piperazines/pharmacology , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/metabolism , Pyrimidines/pharmacology , Pyrimidines/therapeutic use
13.
Sens Actuators B Chem ; 377: 133009, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36439054

ABSTRACT

Point of care (POC) diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are particularly significant for preventing transmission of coronavirus disease 2019 (COVID-19) by any user at any given time and place. CRISPR/Cas-assisted SARS-CoV-2 assays are viewed as supplemental to RT-PCR due to simple operation, convenient use and low cost. However, most current CRISPR molecular diagnostics based on fluorescence measurement increased the difficulty of POC test with need of the additional light sources. Some instrument-free visual detection with the naked eye has limitations in probe universality. Herein, we developed a universal, rapid, sensitive and specific SARS-CoV-2 POC test that combines the outstanding DNase activity of Cas12a with universal AuNPs strand-displacement probe. The oligo trigger, which is the switch the AuNPs of the strand-displacement probe, is declined as a result of Cas12a recognition and digestion. The amount of released AuNPs produced color change which can be visual with the naked eye and assessed by UV-Vis spectrometer for quantitative detection. Furthermore, a low-cost hand warmer is used as an incubator for the visual assay, enabling an instrument-free, visual SARS-CoV-2 detection within 20 min. A real coronavirus GX/P2V instead of SARS-CoV-2 were chosen for practical application validation. After rapid virus RNA extraction and RT-PCR amplification, a minimum of 2.7 × 102 copies/mL was obtained successfully. The modular design can be applied to many nucleic acid detection applications, such as viruses, bacteria, species, etc., by simply modifying the crRNA, showing great potential in POC diagnosis.

14.
Nano Lett ; 22(1): 476-484, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34978815

ABSTRACT

A charge density wave (CDW) is a collective quantum phenomenon in metals and features a wavelike modulation of the conduction electron density. A microscopic understanding and experimental control of this many-body electronic state in atomically thin materials remain hot topics in materials physics. By means of material engineering, we realized a dimensionality and Zr intercalation induced semiconductor-metal phase transition in 1T-ZrX2 (X = Se, Te) ultrathin films, accompanied by a commensurate 2 × 2 CDW order. Furthermore, we observed a CDW energy gap of up to 22 meV around the Fermi level. Fourier-transformed scanning tunneling microscopy and angle-resolved photoemission spectroscopy reveal that 1T-ZrX2 films exhibit the simplest Fermi surface among the known CDW materials in TMDCs, consisting only of a Zr 4d derived elliptical electron conduction band at the corners of the Brillouin zone.

15.
Opt Express ; 30(10): 16419-16431, 2022 May 09.
Article in English | MEDLINE | ID: mdl-36221485

ABSTRACT

Accurate remote sensing of the sound velocity profile of the upper-ocean mixed layers is of major important in oceanography, especially in underwater acoustic communication. However, the existing technologies cannot realize fast and real-time detection on sound velocity profile, a cost efficiency, flexibility, and real-time remote sensing technique is still highly urgent. In this paper, we propose a novel approach based on stimulated Brillouin scattering (SBS) LiDAR for retrieving the sound velocity profile. The sound velocity profiles in the upper-ocean mixed layer of South China Sea were retrieved theoretically and experimentally. We simulated the sound velocity profile of the upper-ocean mixed layer in South China Sea by using the Del Grosso algorithm and the data of temperature, salinity, depth selected from the World Ocean Atlas 2018 (WOA18). We designed a special ocean simulation system to measure the sound velocity in seawater with different temperatures, salinities, and pressures through measuring the frequency shift of SBS. Based on the measured sound velocities, we built a retrieval equation to express the sound velocity as a function of temperature, salinity, and pressure. Then, we retrieved the sound velocity profile of the upper-ocean mixed layer of South China Sea by using the retrieval equation. The results show that the retrieved sound velocity profile is good agreement with the theoretical simulation, and the difference between them is approximately 1∼2 m/s. Also, we have analyzed the differences between the theoretical simulation and experimental measurement. This work is essential to future application for remote sensing the sound velocity distribution profiles of the upper-ocean mixed layers by using the Brillouin LiDAR technique.

16.
Opt Express ; 30(2): 2792-2802, 2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35209412

ABSTRACT

Controls of waveforms (pulse durations) of single photons are important tasks for effectively interconnecting disparate atomic memories in hybrid quantum networks. So far, the waveform control of a single photon that is entangled with an atomic memory remains unexplored. Here, we demonstrated control of waveform length of the photon that is entangled with an atomic spin-wave memory by varying light-atom interaction time in cold atoms. The Bell parameter S as a function of the duration of photon pulse is measured, which shows that violations of Bell inequality can be achieved for the photon pulse in the duration range from 40 ns to 50 µs, where, S = 2.64 ± 0.02 and S = 2.26 ± 0.05 for the 40-ns and 50-µs durations, respectively. The measured results show that S parameter decreases with the increase in the pulse duration. We confirm that the increase in photon noise probability per pulse with the pulse-duration is responsible for the S decrease.

17.
Cell Commun Signal ; 20(1): 115, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35902952

ABSTRACT

BACKGROUND: Diabetic nephropathy (DN) involves various structural and functional changes because of chronic glycemic assault and kidney failure. Proteinuria is an early clinical manifestation of DN, but the associated pathogenesis remains elusive. This study aimed to investigate the role of microtubule associated protein 4 (MAP4) phosphorylation (p-MAP4) in proteinuria in DN and its possible mechanisms. METHODS: In this study, the urine samples of diabetic patients and kidney tissues of streptozotocin (STZ)-induced diabetic mice were obtained to detect changes of p-MAP4. A murine model of hyperphosphorylated MAP4 was established to examine the effect of MAP4 phosphorylation in DN. Podocyte was applied to explore changes of kidney phenotypes and potential mechanisms with multiple methods. RESULTS: Our results demonstrated elevated content of p-MAP4 in diabetic patients' urine samples, and increased kidney p-MAP4 in streptozocin (STZ)-induced diabetic mice. Moreover, p-MAP4 triggered proteinuria with aging in mice, and induced epithelial-to-mesenchymal transition (EMT) and apoptosis in podocytes. Additionally, p-MAP4 mice were much more susceptible to STZ treatment and showed robust DN pathology as compared to wild-type mice. In vitro study revealed high glucose (HG) triggered elevation of p-MAP4, rearrangement of microtubules and F-actin filaments with enhanced cell permeability, accompanied with dedifferentiation and apoptosis of podocytes. These effects were significantly reinforced by MAP4 hyperphosphorylation, and were rectified by MAP4 dephosphorylation. Notably, pretreatment of p38/MAPK inhibitor SB203580 reinstated all HG-induced pathological alterations. CONCLUSIONS: The findings indicated a novel role for p-MAP4 in causing proteinuria in DN. Our results indicated the therapeutic potential of MAP4 in protecting against proteinuria and related diseases. Video Abstract.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Podocytes , Animals , Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Epithelial-Mesenchymal Transition , Mice , Microtubule-Associated Proteins , Phosphorylation , Podocytes/pathology , Proteinuria/complications , Streptozocin/pharmacology
18.
Sens Actuators B Chem ; 373: 132746, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36212739

ABSTRACT

The CRISPR/Cas system is widely used for molecular diagnostics after the discovery of trans-cleavage activity, especially now with the COVID-19 outbreak. However, the majority of contemporary trans-cleavage activity-based CRISPR/Cas biosensors exploited standard single-strand DNA (ssDNA) reporters, which were based on the FRET principle from pioneering research. An in-depth comparison and understanding of various fluorescent readout types are essential to facilitate the outstanding analytical performance of CRISPR probes. We investigated various types of fluorescent reporters of Cas12a comprehensively. Results show that trans-cleavage of Cas12a is not limited to ssDNA and dsDNA reporters, but can be extended to molecular beacons (MB). And MB reporters can achieve superior analytical performance compared with ssDNA and ds DNA reporters at the same conditions. Accordingly, we developed a highly-sensitive SARS-CoV-2 detection with the sensitivity as low as 100 fM were successfully achieved without amplification strategy. The model target of ORF1a could robustly identify the current widespread emerging SARS-CoV-2 variants. A real coronavirus GX/P2V instead of SARS-CoV-2 were chosen for practical application validation. And a minimum of 27 copies/mL was achieved successfully. This inspiration can also be applied to other Cas proteins with trans-cleavage activity, which provides new perspectives for simple, highly-sensitive and universal molecular diagnosis in various applications.

19.
BMC Public Health ; 22(1): 767, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35428227

ABSTRACT

BACKGROUND: Previous research suggested an association between maternal exposure to ambient air pollutants and the risk of congenital heart disease (CHD). However, the effect of individual prenatal exposure to indoor air pollutants on CHD occurrence was not reported. METHODS: We performed a hospital-based case-control study to investigate the association between personal air pollution exposure during pregnancy and the risk of CHD in offspring. A total of 44 cases and 75 controls were included from two hospitals in East China. We investigated maternal and residential environmental characteristics using a questionnaire and obtained personal indoor air samples to assess particulate matter (PM) and volatile organic compounds (VOCs) from 22-30 gestational weeks. Formaldehyde, benzene, toluene, xylene, total volatile organic compounds (TVOCs), PM2.5, and PM10 were assessed. Logistic regression was performed to assess associations and interactions between individual indoor air pollutants and CHD after adjusting for confounders. The potential residential environmental factors affecting the risks of indoor air pollutants on CHD were also assessed. RESULTS: Median TVOC (0.400 vs. 0.005 mg/m3, P < 0.001) exposure levels in cases were significantly higher than controls. A logistic regression model adjusted for confounders revealed that exposure to high levels of indoor TVOCs (AOR 7.09, 95% CI 2.10-23.88) during pregnancy was associated with risks for CHD and the occurrence of some major CHD subtype in offspring. These risk effects were enhanced in pregnant women living in a newly renovated house but were mitigated by household use of smoke ventilators when cooking. We observed a positive interaction of maternal exposure to TVOCs and PM2.5 and the risk for CHD. CONCLUSIONS: Maternal exposure to indoor VOCs and PMs may increase the risk of giving birth to foetuses with CHD.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Air Pollution , Heart Defects, Congenital , Volatile Organic Compounds , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/analysis , Case-Control Studies , China/epidemiology , Female , Heart Defects, Congenital/epidemiology , Heart Defects, Congenital/etiology , Humans , Maternal Exposure/adverse effects , Particulate Matter/adverse effects , Particulate Matter/analysis , Pregnancy , Volatile Organic Compounds/adverse effects
20.
Int J Mol Sci ; 23(7)2022 Mar 26.
Article in English | MEDLINE | ID: mdl-35408996

ABSTRACT

Small ubiquitin-like modifier (SUMO)ylation is a reversible post-translational modification that plays a crucial role in numerous aspects of cell physiology, including cell cycle regulation, DNA damage repair, and protein trafficking and turnover, which are of importance for cell homeostasis. Mechanistically, SUMOylation is a sequential multi-enzymatic process where SUMO E3 ligases recruit substrates and accelerate the transfer of SUMO onto targets, modulating their interactions, localization, activity, or stability. Accumulating evidence highlights the critical role of dysregulated SUMO E3 ligases in processes associated with the occurrence and development of cancers. In the present review, we summarize the SUMO E3 ligases, in particular, the novel ones recently identified, and discuss their regulatory roles in cancer pathogenesis.


Subject(s)
Neoplasms , Ubiquitin-Protein Ligases , Humans , Ligases/metabolism , Signal Transduction , Small Ubiquitin-Related Modifier Proteins/metabolism , Sumoylation , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL