Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(33): e2203042119, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35939676

ABSTRACT

A common feature of large-scale extreme events, such as pandemics, wildfires, and major storms is that, despite their differences in etiology and duration, they significantly change routine human movement patterns. Such changes, which can be major or minor in size and duration and which differ across contexts, affect both the consequences of the events and the ability of governments to mount effective responses. Based on naturally tracked, anonymized mobility behavior from over 90 million people in the United States, we document these mobility differences in space and over time in six large-scale crises, including wildfires, major tropical storms, winter freeze and pandemics. We introduce a model that effectively captures the high-dimensional heterogeneity in human mobility changes following large-scale extreme events. Across five different metrics and regardless of spatial resolution, the changes in human mobility behavior exhibit a consistent hyperbolic decline, a pattern we characterize as "spatiotemporal decay." When applied to the case of COVID-19, our model also uncovers significant disparities in mobility changes-individuals from wealthy areas not only reduce their mobility at higher rates at the start of the pandemic but also maintain the change longer. Residents from lower-income regions show a faster and greater hyperbolic decay, which we suggest may help account for different COVID-19 rates. Our model represents a powerful tool to understand and forecast mobility patterns post emergency, and thus to help produce more effective responses.


Subject(s)
COVID-19 , Human Migration , Models, Statistical , Natural Disasters , Pandemics , COVID-19/epidemiology , Forecasting , Human Migration/trends , Humans , Income , Seasons , Spatio-Temporal Analysis , United States
2.
J Proteome Res ; 23(1): 95-106, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38054441

ABSTRACT

O-linked ß-N-acetylglucosamine (O-GlcNAc) is a post-translational modification (i.e., O-GlcNAcylation) on serine/threonine residues of proteins, regulating a plethora of physiological and pathological events. As a dynamic process, O-GlcNAc functions in a site-specific manner. However, the experimental identification of the O-GlcNAc sites remains challenging in many scenarios. Herein, by leveraging the recent progress in cataloguing experimentally identified O-GlcNAc sites and advanced deep learning approaches, we establish an ensemble model, O-GlcNAcPRED-DL, a deep learning-based tool, for the prediction of O-GlcNAc sites. In brief, to make a benchmark O-GlcNAc data set, we extracted the information on O-GlcNAc from the recently constructed database O-GlcNAcAtlas, which contains thousands of experimentally identified and curated O-GlcNAc sites on proteins from multiple species. To overcome the imbalance between positive and negative data sets, we selected five groups of negative data sets in humans and mice to construct an ensemble predictor based on connection of a convolutional neural network and bidirectional long short-term memory. By taking into account three types of sequence information, we constructed four network frameworks, with the systematically optimized parameters used for the models. The thorough comparison analysis on two independent data sets of humans and mice and six independent data sets from other species demonstrated remarkably increased sensitivity and accuracy of the O-GlcNAcPRED-DL models, outperforming other existing tools. Moreover, a user-friendly Web server for O-GlcNAcPRED-DL has been constructed, which is freely available at http://oglcnac.org/pred_dl.


Subject(s)
Deep Learning , Humans , Animals , Mice , Proteins/metabolism , Protein Processing, Post-Translational , Acetylglucosamine/chemistry , N-Acetylglucosaminyltransferases/metabolism
3.
J Proteome Res ; 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39302247

ABSTRACT

O-Linked ß-N-acetylglucosamine (O-GlcNAc) modification (i.e., O-GlcNAcylation) on proteins plays critical roles in the regulation of diverse biological processes. However, protein O-GlcNAcylation analysis, especially at a large scale, has been a challenge. So far, a number of enrichment materials and methods have been developed for site-specific O-GlcNAc proteomics in different biological settings. Despite the presence of multiple methods, their performance for the O-GlcNAc proteomics is largely unclear. In this work, by using the lysates of PANC-1 cells (a pancreatic cancer cell line), we provided a head-to-head comparison of three affinity enrichment methods and materials (i.e., antibody, lectin AANL6, and an OGA mutant) for site-specific O-GlcNAc proteomics. The enriched peptides were analyzed by HCD product-dependent EThcD (i.e., HCD-pd-EThcD) mass spectrometry. The resulting data files were processed by three different data analysis packages (i.e., Sequest HT, Byonic, and FragPipe). Our data suggest that each method captures a subpopulation of the O-GlcNAc proteins. Besides the enrichment methods, we also observe complementarity between the different data analysis tools. Thus, combining different approaches holds promise for enhanced coverage of O-GlcNAc proteomics.

4.
Hum Mol Genet ; 31(13): 2279-2293, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35022708

ABSTRACT

Inguinal hernias are some of the most frequently diagnosed conditions in clinical practice and inguinal hernia repair is the most common procedure performed by general surgeons. Studies of inguinal hernias in non-European populations are lacking, though it is expected that such studies could identify novel loci. Further, the cumulative lifetime incidence of inguinal hernia is nine times greater in men than women, however, it is not clear why this difference exists. We conducted a genome-wide association meta-analysis of inguinal hernia risk across 513 120 individuals (35 774 cases and 477 346 controls) of Hispanic/Latino, African, Asian and European descent, with replication in 728 418 participants (33 491 cases and 694 927 controls) from the 23andMe, Inc dataset. We identified 63 genome-wide significant loci (P < 5 × 10-8), including 41 novel. Ancestry-specific analyses identified two loci (LYPLAL1-AS1/SLC30A10 and STXBP6-NOVA1) in African ancestry individuals. Sex-stratified analyses identified two loci (MYO1D and ZBTB7C) that are specific to women, and four (EBF2, EMX2/RAB11FIP2, VCL and FAM9A/FAM9B) that are specific to men. Functional experiments demonstrated that several of the associated regions (EFEMP1 and LYPLAL1-SLC30A10) function as enhancers and show differential activity between risk and reference alleles. Our study highlights the importance of large-scale genomic studies in ancestrally diverse populations for identifying ancestry-specific inguinal hernia susceptibility loci and provides novel biological insights into inguinal hernia etiology.


Subject(s)
Hernia, Inguinal , Asian People , Black People/genetics , Extracellular Matrix Proteins/genetics , Female , Genome , Genome-Wide Association Study , Hernia, Inguinal/genetics , Hernia, Inguinal/surgery , Humans , Intracellular Signaling Peptides and Proteins/genetics , Male
5.
Pharm Res ; 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39322793

ABSTRACT

BACKGROUND: Aflibercept is a biopharmaceutical targeting vascular endothelial growth factor (VEGF) that has shown promise in the treatment of neovascular age-related macular degeneration (nAMD) and diabetic macular edema (DME) in adults. Quality control studies of aflibercept employing non-reduced SDS-PAGE (nrSDS-PAGE) have shown that a significant variant band (IM1) is consistently present below the main band. Considering the quality control strategy of biopharmaceuticals, structural elucidation and functional studies are required. METHODS: In this study, the variant bands in nrSDS-PAGE were collected through electroelution and identified by peptide mass fingerprinting based on liquid chromatography-tandem MS (LC-MS/MS). This variant was expressed using knob-into-hole (KIH) design transient transfection for the detection of ligand affinity, binding activity and biological activity. RESULTS: The variant band was formed by C-terminal truncation at position N99 of one chain in the aflibercept homodimer. Then, this variant was successfully expressed using KIH design transient transfection. The ligand affinity of the IM1 truncated variant was reduced by 18-fold, and neither binding activity nor biological activity were detected. CONCLUSIONS: The efficacy of aflibercept is influenced by the loss of biological activity of the variant. Therefore, this study supports the development of a quality control strategy for aflibercept.

6.
Anal Bioanal Chem ; 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39294469

ABSTRACT

As a post-translational modification, protein glycosylation is critical in health and disease. O-Linked ß-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation), as an intracellular monosaccharide modification on proteins, was discovered 40 years ago. Thanks to technological advances, the physiological and pathological significance of O-GlcNAcylation has been gradually revealed and widely appreciated, especially in recent years. O-GlcNAc informatics has been quickly evolving. Clearly, O-GlcNAc informatics tools have not only facilitated O-GlcNAc functional studies, but also provided us a unique perspective on protein O-GlcNAcylation. In this article, we review O-GlcNAc-focused software tools and servers that have been developed for O-GlcNAc research over the past four decades. Specifically, we will (1) survey bioinformatics tools that have facilitated O-GlcNAc proteomics data analysis, (2) introduce databases/servers for O-GlcNAc proteins/sites that have been experimentally identified by individual research labs, (3) describe software tools that have been developed to predict O-GlcNAc sites, and (4) introduce platforms cataloging proteins that interact with the O-GlcNAc cycling enzymes (i.e., O-GlcNAc transferase and O-GlcNAcase). We hope these resources will provide useful information to both experienced researchers and new incomers to the O-GlcNAc field. We anticipate that this review provides a framework to stimulate the future development of more sophisticated informatic tools for O-GlcNAc research.

7.
Med Mol Morphol ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39122902

ABSTRACT

Oral epithelial dysplasia includes a range of clinical oral mucosal diseases with potentially malignant traits. Dental pulp stem cells (DPSCs) are potential candidates for cell-based therapies targeting various diseases. However, the effect of DPSCs on the progression of oral mucosal precancerous lesions remains unclear. Animal experiments were conducted to assess the effect of human DPSCs (hDPSCs). We measured the proliferation, motility and mitochondrial respiratory function of the human dysplastic oral keratinocyte (DOK) cells cocultured with hDPSCs. Mitochondrial transfer experiments were performed to determine the role mitochondria from hDPSCs in the malignant transformation of DOK cells. hDPSCs injection accelerated carcinogenesis in 4NQO-induced oral epithelial dysplasia in mice. Coculture with hDPSCs increased the proliferation, migration, invasion and mitochondrial respiratory function of DOK cells. Mitochondria from hDPSCs could be transferred to DOK cells, and activated mTOR signaling pathway in DOK cells. Our study demonstrates that hDPSCs activate the mTOR signaling pathway through mitochondrial transfer, promoting the malignant transformation of oral precancerous epithelial lesions.

8.
Article in English | MEDLINE | ID: mdl-37873581

ABSTRACT

BACKGROUND AND AIMS: Lysyl oxidase-like 1 (LOXL1) proteins are amine oxidases that play a crucial role in extracellular matrix remodeling due to their collagen cross-linking and intracellular functions. The role of LOXL1 in cholestatic liver fibrosis remains unexplored. METHODS: We measured LOXL1 expression in two murine models of cholestasis (Mdr2 knockout [Mdr2-/-] and bile duct ligation [BDL]). We used adeno-associated virus (AAV) serotype 6-mediated hepatic delivery against LOXL1 (AAV2/6-shLoxl1) to investigate the therapeutic efficacy of targeting LOXL1 in cholestatic liver fibrosis. NIH-3T3 murine fibroblasts were used to investigate the function and regulatory mechanisms of LOXL1 in vitro. RESULTS: LOXL1 expression was significantly upregulated in Mdr2 -/- and BDL mice compared to their corresponding controls, predominantly in collagen-rich fibrous septa and portal areas. AAV2/6-shLoxl1 significantly reduced LOXL1 levels in Mdr2-/- and BDL mice, mainly located in desmin-positive hepatic stellate cells (HSCs) and fibroblasts. Concomitant with reduced LOXL1 expression, there was reduced ductular reaction, inflammation, and fibrosis in both Mdr2 -/- and BLD mouse models. Additionally, Loxl1 intervention decreased Ki-67 positive cells in the desmin-positive areas in both Mdr2 -/- and BDL mice. Overexpression of LOXL1 significantly promoted fibroblast proliferation by activating the platelet-derived growth factor receptor and extracellular signal-regulated kinase signaling pathways in vitro. CONCLUSION: Our findings demonstrated that selective inhibition of LOXL1 derived from HSCs/fibroblasts attenuated cholestatic liver/biliary fibrosis, inflammation, ductal reaction, and HSC/fibroblast proliferation. Based on our findings LOXL1 could be a potential therapeutic target for cholestatic fibrosis.

9.
Int J Neuropsychopharmacol ; 26(10): 655-668, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37025079

ABSTRACT

BACKGROUND: Although thought of as a multimodal-acting antidepressant targeting the serotonin system, more molecules are being shown to participate in the antidepressant mechanism of vortioxetine. A previous report has shown that vortioxetine administration enhanced the expression of rapamycin complex 1 (mTORC1) in neurons. It has been well demonstrated that mTORC1 participates in not only the pathogenesis of depression but also the pharmacological mechanisms of many antidepressants. Therefore, we speculate that the antidepressant mechanism of vortioxetine may require mTORC1. METHODS: Two mouse models of depression (chronic social defeat stress and chronic unpredictable mild stress) and western blotting were first used together to examine whether vortioxetine administration produced reversal effects against the chronic stress-induced downregulation in the whole mTORC1 signaling cascade in both the hippocampus and medial prefrontal cortex (mPFC). Then, LY294002, U0126, and rapamycin were used together to explore whether the antidepressant effects of vortioxetine in mouse models of depression were attenuated by pharmacological blockade of the mTORC1 system. Furthermore, lentiviral-mTORC1-short hairpin RNA-enhanced green fluorescence protein (LV-mTORC1-shRNA-EGFP) was adopted to examine if genetic blockade of mTORC1 also abolished the antidepressant actions of vortioxetine in mice. RESULTS: Vortioxetine administration produced significant reversal effects against the chronic stress-induced downregulation in the whole mTORC1 signaling cascade in both the hippocampus and mPFC. Both pharmacological and genetic blockade of the mTORC1 system notably attenuated the antidepressant effects of vortioxetine in mice. CONCLUSIONS: Activation of the mTORC1 system in the hippocampus and mPFC is required for the antidepressant actions of vortioxetine in mice.


Subject(s)
Antidepressive Agents , Hippocampus , Mice , Animals , Vortioxetine/pharmacology , Mechanistic Target of Rapamycin Complex 1/metabolism , Antidepressive Agents/pharmacology , Antidepressive Agents/metabolism , Prefrontal Cortex/metabolism , Sirolimus/pharmacology
10.
Int J Neuropsychopharmacol ; 26(10): 680-691, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37603290

ABSTRACT

BACKGROUND: Although depression has been a serious neuropsychiatric disorder worldwide, current antidepressants used in clinical practice have various weaknesses, including delayed onset and low rates of efficacy. Recently, the development of new antidepressants from natural herbal medicine has become one of the important research hotspots. Cucurbitacin B is a natural compound widely distributed in the Cucurbitaceae and Cruciferae families and has many pharmacological activities. The present study aimed to investigate whether cucurbitacin B possess antidepressant-like effects in mice. METHODS: The antidepressant-like effects of cucurbitacin B on mice behaviors were explored using the forced swim test, tail suspension test, open field test, sucrose preference test, and a chronic unpredictable mild stress model of depression together. Then, western blotting and immunofluorescence were used to examine the effects of cucurbitacin B on the brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB) signaling cascade and neurogenesis in the hippocampus of mice. Furthermore, BDNF-short hairpin RNA, K252a, and p-chlorophenylalanine methyl ester were adopted together to determine the antidepressant mechanism of cucurbitacin B. RESULTS: It was found that administration of cucurbitacin B indeed produced notable antidepressant-like effects in mice, which were accompanied with significant promotion in both the hippocampal BDNF-TrkB pathway and neurogenesis. The antidepressant mechanism of cucurbitacin B involves the hippocampal BDNF-TrkB system but not the serotonin system. CONCLUSIONS: Cucurbitacin B has the potential to be a novel antidepressant candidate.


Subject(s)
Antidepressive Agents , Brain-Derived Neurotrophic Factor , Depression , Animals , Humans , Mice , Antidepressive Agents/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Depression/drug therapy , Depression/metabolism , Disease Models, Animal , Hippocampus , Stress, Psychological/drug therapy , Stress, Psychological/metabolism
11.
Mol Psychiatry ; 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36434056

ABSTRACT

Elucidating the molecular mechanism underlying the hyperactivity of the hypothalamic-pituitary-adrenal axis during chronic stress is critical for understanding depression and treating depression. The secretion of corticotropin-releasing hormone (CRH) from neurons in the paraventricular nucleus (PVN) of the hypothalamus is controlled by salt-inducible kinases (SIKs) and CREB-regulated transcription co-activators (CRTCs). We hypothesised that the SIK-CRTC system in the PVN might contribute to the pathogenesis of depression. Thus, the present study employed chronic social defeat stress (CSDS) and chronic unpredictable mild stress (CUMS) models of depression, various behavioural tests, virus-mediated gene transfer, enzyme-linked immunosorbent assay, western blotting, co-immunoprecipitation, quantitative real-time reverse transcription polymerase chain reaction, and immunofluorescence to investigate this connection. Our results revealed that both CSDS and CUMS induced significant changes in SIK1-CRTC1 signalling in PVN neurons. Both genetic knockdown of SIK1 and genetic overexpression of CRTC1 in the PVN simulated chronic stress, producing a depression-like phenotype in naive mice, and the CRTC1-CREB-CRH pathway mediates the pro-depressant actions induced by SIK1 knockdown in the PVN. In contrast, both genetic overexpression of SIK1 and genetic knockdown of CRTC1 in the PVN protected against CSDS and CUMS, leading to antidepressant-like effects in mice. Moreover, stereotactic infusion of TAT-SIK1 into the PVN also produced beneficial effects against chronic stress. Furthermore, the SIK1-CRTC1 system in the PVN played a role in the antidepressant actions of fluoxetine, paroxetine, venlafaxine, and duloxetine. Collectively, SIK1 and CRTC1 in PVN neurons are closely involved in depression neurobiology, and they could be viable targets for novel antidepressants.

12.
J Oral Pathol Med ; 52(8): 727-737, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37433101

ABSTRACT

BACKGROUND: Long non-coding RNA BRAF-activated non-protein coding RNA plays bidirectional roles in human cancers. However, function and molecular mechanism of BRAF-activated non-protein coding RNA in oral squamous cell carcinoma still need to clarify further. METHODS: Long non-coding RNA microarray assay, in situ hybridization staining, clinicopathological data analysis were performed to investigate expression pattern of BRAF-activated non-protein coding RNA in oral squamous cell carcinoma tissue samples. Constructing ectopically expressed BRAF-activated non-protein coding RNA in oral squamous cell carcinoma cells via plasmids or siRNAs, then changeable abilities of proliferation and motility of these cells were observed in vitro and in vivo. RNA-protein pulldown, RNA immunoprecipitation, and bioinformatics analyses were performed to explore potential pathways involved in BRAF-activated non-protein coding RNA-based regulation of malignant progression in oral squamous cell carcinoma. RESULTS: BRAF-activated non-protein coding RNA was identified upregulated in oral squamous cell carcinoma tissue and correlated with nodal metastasis and clinical severity of patients. Overexpressed BRAF-activated non-protein coding RNA increased percentage of 5-ethynyl-2'-deoxyuridine-positive cells, viability, migration, and invasion rates of oral squamous cell carcinoma cells, while silenced BRAF-activated non-protein coding RNA could observe weakened effects in vitro. Xenograft tumor formed by BRAF-activated non-protein coding RNA-overexpressed cells had bigger volume, faster growth rates, higher weight, and more Ki67+ cells. Pulmonary metastasis induced by BRAF-activated non-protein coding RNA-silenced cells had fewer colony nodes, Ki67+ cells, and CD31+ blood vessels. Furthermore, BRAF-activated non-protein coding RNA was mainly localized in nucleus of oral squamous cell carcinoma cells and bound Ras-associated binding 1A. Silencing Ras-associated binding 1A could damage mobile ability and phosphorylation levels of nuclear factor-κB in oral squamous cell carcinoma cells induced by overexpressing BRAF-activated non-protein coding RNA. Opposite trend was also observed. CONCLUSION: Acting as a promoter in oral squamous cell carcinoma metastasis, BRAF-activated non-protein coding RNA promotes oral squamous cell carcinoma cells proliferation and motility by regulating the BRAF-activated non-protein coding RNA/Ras-associated binding 1A complex, which activates nuclear factor-κB signaling pathway.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , RNA, Long Noncoding , Humans , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Proto-Oncogene Proteins B-raf/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , NF-kappa B/metabolism , Ki-67 Antigen/metabolism , Mouth Neoplasms/genetics , Signal Transduction/genetics , Head and Neck Neoplasms/genetics , Cell Proliferation/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Cell Movement/genetics
13.
Eur J Oral Sci ; 131(5-6): e12956, 2023.
Article in English | MEDLINE | ID: mdl-37849216

ABSTRACT

Pulpotomy is an effective treatment for retaining vital pulp after pulp exposure caused by caries removal and/or trauma. The expression of alpha smooth muscle actin (α-SMA) is increased during the wound-healing process, and α-SMA-positive fibroblasts accelerate tissue repair. However, it remains largely unknown whether α-SMA-positive fibroblasts influence pulpal repair. In this study, we established an experimental rat pulpotomy model and found that the expression of α-SMA was increased in dental pulp after pulpotomy relative to that in normal dental pulp. In vitro results showed that the expression of α-SMA was increased during the induction of odontogenic differentiation in dental pulp stem cells (DPSCs) compared with untreated DPSCs. Moreover, α-SMA overexpression promoted the odontogenic differentiation of DPSCs via increasing mitochondrial function. Mechanistically, α-SMA overexpression activated the mammalian target of rapamycin (mTOR) signaling pathway. Inhibition of the mTOR signaling pathway by rapamycin decreased the mitochondrial function in α-SMA-overexpressing DPSCs and suppressed the odontogenic differentiation of DPSCs. Furthermore, we found that α-SMA overexpression increased the secretion of transforming growth factor beta-1 (TGF-ß1). In sum, our present study demonstrates a novel mechanism by which α-SMA promotes odontogenic differentiation of DPSCs by increasing mitochondrial respiratory activity via the mTOR signaling pathway.


Subject(s)
Actins , Dental Pulp , Odontogenesis , Animals , Rats , Actins/metabolism , Actins/pharmacology , Cell Differentiation , Cell Proliferation , Cells, Cultured , Dental Pulp/cytology , Dental Pulp/growth & development , Stem Cells , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/pharmacology , Pulpotomy
14.
Angew Chem Int Ed Engl ; 62(42): e202309947, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37649245

ABSTRACT

A photocatalytic self-(3+2) cycloaddition of vinyldiazo compounds is described, which provides cyclopentene derivatives with conservation of one diazo functional group. Experimental insights and density functional theory indicate that the reaction is triggered by an unusual single electron oxidation of vinyldiazo compounds, while the photolysis for the generation of free carbene species is not involved. The synthetic applications of the resulting cyclopentenyl α-diazo compounds were demonstrated based on the rich chemistry of the diazo functional group.

15.
Am J Hum Genet ; 105(6): 1168-1181, 2019 12 05.
Article in English | MEDLINE | ID: mdl-31735294

ABSTRACT

As a type of severe asthenoteratospermia, multiple morphological abnormalities of the flagella (MMAF) are characterized by the presence of immotile spermatozoa with severe flagellar malformations. MMAF is a genetically heterogeneous disorder, and the known MMAF-associated genes can only account for approximately 60% of human MMAF cases. Here we conducted whole-exome sequencing and identified bi-allelic truncating mutations of the TTC29 (tetratricopeptide repeat domain 29) gene in three (3.8%) unrelated cases from a cohort of 80 MMAF-affected Han Chinese men. TTC29 is preferentially expressed in the testis, and TTC29 protein contains the tetratricopeptide repeat domains that play an important role in cilia- and flagella-associated functions. All of the men harboring TTC29 mutations presented a typical MMAF phenotype and dramatic disorganization in axonemal and/or other peri-axonemal structures. Immunofluorescence assays of spermatozoa from men harboring TTC29 mutations showed deficiency of TTC29 and remarkably reduced staining of intraflagellar-transport-complex-B-associated proteins (TTC30A and IFT52). We also generated a Ttc29-mutated mouse model through the use of CRISPR-Cas9 technology. Remarkably, Ttc29-mutated male mice also presented reduced sperm motility, abnormal flagellar ultrastructure, and male subfertility. Furthermore, intracytoplasmic sperm injections performed for Ttc29-mutated mice and men harboring TTC29 mutations consistently acquired satisfactory outcomes. Collectively, our experimental observations in humans and mice suggest that bi-allelic mutations in TTC29, as an important genetic pathogeny, can induce MMAF-related asthenoteratospermia. Our study also provided effective guidance for clinical diagnosis and assisted reproduction treatments.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Neoplasms/drug therapy , Adult , Aged , Aged, 80 and over , Animals , Biomarkers, Tumor , Case-Control Studies , Combined Modality Therapy , Female , Follow-Up Studies , Gene Expression Regulation, Neoplastic , Humans , Lymphatic Metastasis , Male , Mice , Middle Aged , Neoplasm Invasiveness , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/pathology , Neoplasms/pathology , Prognosis , Retrospective Studies , Survival Rate
16.
Am J Hum Genet ; 104(4): 738-748, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30929735

ABSTRACT

Male infertility is a major concern affecting human reproductive health. Asthenoteratospermia can cause male infertility through reduced motility and abnormal morphology of spermatozoa. Several genes, including DNAH1 and some CFAP family members, are involved in multiple morphological abnormalities of the sperm flagella (MMAF). However, these known genes only account for approximately 60% of human MMAF cases. Here, we conducted further genetic analyses by using whole-exome sequencing in a cohort of 65 Han Chinese men with MMAF. Intriguingly, bi-allelic mutations of TTC21A (tetratricopeptide repeat domain 21A) were identified in three (5%) unrelated, MMAF-affected men, including two with homozygous stop-gain mutations and one with compound heterozygous mutations of TTC21A. Notably, these men consistently presented with MMAF and additional abnormalities of sperm head-tail conjunction. Furthermore, a homozygous TTC21A splicing mutation was identified in two Tunisian cases from an independent MMAF cohort. TTC21A is preferentially expressed in the testis and encodes an intraflagellar transport (IFT)-associated protein that possesses several tetratricopeptide repeat domains that perform functions crucial for ciliary function. To further investigate the potential roles of TTC21A in spermatogenesis, we generated Ttc21a mutant mice by using CRISPR-Cas9 technology and revealed sperm structural defects of the flagella and the connecting piece. Our consistent observations across human populations and in the mouse model strongly support the notion that bi-allelic mutations in TTC21A can induce asthenoteratospermia with defects of the sperm flagella and head-tail conjunction.


Subject(s)
Infertility, Male/genetics , Microtubule-Associated Proteins/genetics , Mutation , Spermatozoa/abnormalities , Alleles , Alternative Splicing , Animals , CRISPR-Cas Systems , China , Exome , Flagella/pathology , Homozygote , Humans , Male , Mice , Phenotype , Sperm Motility , Exome Sequencing
17.
FASEB J ; 35(10): e21918, 2021 10.
Article in English | MEDLINE | ID: mdl-34569648

ABSTRACT

The role of LOXL1 in fibrosis via mediating ECM crosslinking and stabilization is well established; however, the role of hepatic stellate cells (HSCs)-specific LOXL1 in the development of fibrosis remains unknown. We generated HSCs-specific Loxl1-depleted mice (Loxl1Gfap-cre mice) to investigate the HSCs-specific contribution of LOXL1 in the pathogenesis of fibrosis. Loxl1fl/fl mice were used as the control. Furthermore, we used RNA sequencing to explore the underlying changes in the transcriptome. Results of the sirius red staining, type I collagen immunolabeling, and hydroxyproline content analysis, coupled with the reduced expression of profibrogenic genes revealed that Loxl1Gfap-cre mice with CCl4 -induced fibrosis exhibited decreased hepatic fibrosis. In addition, Loxl1Gfap-cre mice exhibited reduced macrophage tissue infiltration by CD68-positive cells and decreased expression of inflammatory genes compared with the controls. RNA sequencing identified integrin α8 (ITGA8) as a key modulator of LOXL1-mediated liver fibrosis. Functional analyses showed that siRNA silencing of Itga8 in cultured fibroblasts led to a decline in the LOXL1 expression and inhibition of fibroblast activation. Mechanistic analyses indicated that LOXL1 activated the FAK/PI3K/AKT/HIF1a signaling pathway, and the addition of inhibitors of FAK or PI3K reversed these results via downregulation of LOXL1. Furthermore, HIF1a directly interacted with LOXL1 and upregulated its expression, indicating that LOXL1 can positively self-regulate by forming a positive feedback loop with the FAK/PI3K/AKT/HIF1a pathway. We demonstrated that HSCs-specific Loxl1 deficiency prevented fibrosis, inflammation and that ITGA8/FAK/PI3K/AKT/HIF1a was essential for the function and expression of LOXL1. Knowledge of this approach can provide novel mechanisms and targets to treat fibrosis in the future.


Subject(s)
Amino Acid Oxidoreductases/deficiency , Hepatic Stellate Cells/metabolism , Liver Cirrhosis/metabolism , 3T3 Cells , Amino Acid Oxidoreductases/biosynthesis , Amino Acid Oxidoreductases/genetics , Animals , Base Sequence , Carbon Tetrachloride/administration & dosage , Carbon Tetrachloride/adverse effects , Female , Fibroblasts/metabolism , Focal Adhesion Kinase 1/metabolism , Hepatic Stellate Cells/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Liver Cirrhosis/pathology , Mice , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Up-Regulation
18.
J Med Genet ; 58(1): 41-47, 2021 01.
Article in English | MEDLINE | ID: mdl-32381727

ABSTRACT

BACKGROUND: Early-onset scoliosis (EOS), defined by an onset age of scoliosis less than 10 years, conveys significant health risk to affected children. Identification of the molecular aetiology underlying patients with EOS could provide valuable information for both clinical management and prenatal screening. METHODS: In this study, we consecutively recruited a cohort of 447 Chinese patients with operative EOS. We performed exome sequencing (ES) screening on these individuals and their available family members (totaling 670 subjects). Another cohort of 13 patients with idiopathic early-onset scoliosis (IEOS) from the USA who underwent ES was also recruited. RESULTS: After ES data processing and variant interpretation, we detected molecular diagnostic variants in 92 out of 447 (20.6%) Chinese patients with EOS, including 8 patients with molecular confirmation of their clinical diagnosis and 84 patients with molecular diagnoses of previously unrecognised diseases underlying scoliosis. One out of 13 patients with IEOS from the US cohort was molecularly diagnosed. The age at presentation, the number of organ systems involved and the Cobb angle were the three top features predictive of a molecular diagnosis. CONCLUSION: ES enabled the molecular diagnosis/classification of patients with EOS. Specific clinical features/feature pairs are able to indicate the likelihood of gaining a molecular diagnosis through ES.


Subject(s)
Genetic Predisposition to Disease , Scoliosis/diagnosis , Scoliosis/genetics , Adolescent , Adult , Age of Onset , Child, Preschool , China/epidemiology , Cohort Studies , Exome/genetics , Female , Humans , Male , Retrospective Studies , Scoliosis/classification , Scoliosis/pathology , Exome Sequencing
19.
Hum Mol Genet ; 28(4): 539-547, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30307510

ABSTRACT

Congenital vertebral malformations (CVMs) are associated with human TBX6 compound inheritance that combines a rare null allele and a common hypomorphic allele at the TBX6 locus. Our previous in vitro evidence suggested that this compound inheritance resulted in a TBX6 gene dosage of less than haploinsufficiency (i.e. <50%) as a potential mechanism of TBX6-associated CVMs. To further investigate this pathogenetic model, we ascertained and collected 108 Chinese CVM cases and found that 10 (9.3%) of them carried TBX6 null mutations in combination with common hypomorphic variants at the second TBX6 allele. For in vivo functional verification and genetic analysis of TBX6 compound inheritance, we generated both null and hypomorphic mutations in mouse Tbx6 using the CRISPR-Cas9 method. These Tbx6 mutants are not identical to the patient variants at the DNA sequence level, but instead functionally mimic disease-associated TBX6 variants. Intriguingly, as anticipated by the compound inheritance model, a high penetrance of CVM phenotype was only observed in the mice with combined null and hypomorphic alleles of Tbx6. These findings are consistent with our experimental observations in humans and supported the dosage effect of TBX6 in CVM etiology. In conclusion, our findings in the newly collected human CVM subjects and Tbx6 mouse models consistently support the contention that TBX6 compound inheritance causes CVMs, potentially via a gene dosage-dependent mechanism. Furthermore, mouse Tbx6 mutants mimicking human CVM-associated variants will be useful models for further mechanistic investigations of CVM pathogenesis in the cases associated with TBX6.


Subject(s)
Congenital Abnormalities/genetics , Scoliosis/genetics , Spine/abnormalities , T-Box Domain Proteins/genetics , Adolescent , Alleles , Animals , CRISPR-Cas Systems/genetics , Child , Child, Preschool , Congenital Abnormalities/diagnostic imaging , Congenital Abnormalities/physiopathology , Disease Models, Animal , Female , Haploinsufficiency , Humans , Infant , Male , Mice , Mutation , Phenotype , Scoliosis/diagnostic imaging , Scoliosis/physiopathology , Spine/diagnostic imaging , Spine/physiopathology
20.
Virol J ; 18(1): 84, 2021 04 21.
Article in English | MEDLINE | ID: mdl-33882964

ABSTRACT

BACKGROUND: Coxsackievirus A16 (CA16) is one of the neurotropic pathogen that has been associated with severe neurological forms of hand, foot, and mouth disease (HFMD), but its pathogenesis is not yet clear. The limited host range of CA16 make the establishment of a suitable animal model that can recapitulate the neurological pathology observed in human HFMD more difficult. Because the human scavenger receptor class B, member 2 (hSCARB2) is a cellular receptor for CA16, we used transgenic mice bearing human SCARB2 and nasally infected them with CA16 to study the pathogenicity of the virus. METHODS: Coxsackievirus A16 was administered by intranasal instillation to groups of hSCARB2 transgenic mice and clinical signs were observed. Sampled at different time-points to document and characterize the mode of viral dissemination, pathological change and immune response of CA16 infection. RESULTS: Weight loss and virus replication in lung and brain were observed in hSCARB2 mice infected with CA16, indicating that these animals could model the neural infection process. Viral antigens were observed in the alveolar epithelia and brainstem cells. The typical histopathology was interstitial pneumonia with infiltration of significant lymphocytes into the alveolar interstitial in lung and diffuse punctate hemorrhages in the capillaries of the brainstem. In addition, we detected the expression levels of inflammatory cytokines and detected high levels of interleukin IL-1ß, IL-6, IL-18, and IFN-γ in nasal mucosa, lungs and brain tissues. CONCLUSIONS: The hSCARB2-transgenic mice can be productively infected with CA16 via respiratory route and exhibited a clear tropism to lung and brain tissues, which can serve as a model to investigate the pathogenesis of CA16 associated respiratory and neurological disease.


Subject(s)
Coxsackievirus Infections , Disease Models, Animal , Enterovirus , Animals , Antigens, Viral , Mice , Mice, Transgenic , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL