Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Osteoarthritis Cartilage ; 32(1): 66-81, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37802465

ABSTRACT

OBJECTIVE: This study aimed to explore the specific function of M2 macrophages in intervertebral disc degeneration (IDD). METHODS: Intervertebral disc (IVD) samples from normal (n = 4) and IDD (n = 6) patients were collected, and the expression of M2-polarized macrophage marker, CD206, was investigated using immunohistochemical staining. Nucleus pulposus cells (NPCs) in a TNF-α environment were obtained, and a mouse caudal IVD puncture model was established. Mice with Rheb deletions, specifically in the myeloid lineage, were generated and subjected to surgery-induced IDD. IDD-induced damage and cell apoptosis were measured using histological scoring, X-ray imaging, immunohistochemical staining, and TdT-mediated dUTP nick end labeling (TUNEL) assay. Finally, mice and NPCs were treated with R-spondin-2 (Rspo2) or anti-Rspo2 to investigate the role of Rspo2 in IDD. RESULTS: Accumulation of CD206 in human and mouse IDD tissues was detected. Rheb deletion in the myeloid lineage (RheBcKO) increased the number of CD206+ M2-like macrophages (mean difference 18.6% [15.7-21.6%], P < 0.001), decreased cell apoptosis (mean difference -15.6% [-8.9 to 22.2%], P = 0.001) and attenuated the IDD process in the mouse IDD model. NPCs treated with Rspo2 displayed increased extracellular matrix catabolism and apoptosis; co-culture with a conditioned medium derived from RheBcKO mice inhibited these changes. Anti-Rspo2 treatment in the mouse caudal IVD puncture model exerted protective effects against IDD. CONCLUSIONS: Promoting CD206+ M2-like macrophages could reduce Rspo2 secretion, thereby alleviating experimental IDD. Rheb deletion may help M2-polarized macrophages accumulate and attenuate experimental IDD partially by inhibiting Rspo2 production. Hence, M2-polarized macrophages and Rspo2 may serve as therapeutic targets for IDD.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Nucleus Pulposus , Humans , Mice , Animals , Intervertebral Disc Degeneration/pathology , Intervertebral Disc/metabolism , Nucleus Pulposus/metabolism , Apoptosis , Disease Models, Animal , Macrophages/metabolism
2.
Langmuir ; 40(21): 10925-10935, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38747875

ABSTRACT

In situ photodeposition presents a powerful approach for integrating noble metal co-catalysts onto semiconductor surfaces. However, achieving precise control over the microstructure of the deposited co-catalyst remains a major challenge. Au nanoparticles (NPs) are deposited onto H-KCNO using HAuCl4 in the presence of various sacrificial agents in this study. Notably, the choice of sacrificial agent decisively influences the exposed crystal facets, loaded content, and particle size of the deposited Au NPs. Importantly, in situ photodeposition under an ethanol solution facilitates the exposure of the highly active (111) and (220) crystal facets of Au. The introduction of Au NPs significantly enhances photocatalytic hydrogen evolution, achieving rates of 4.93, 57.88, and 15.44 µmol/h for H-KCNO/Au-(water, ethanol, and lactic acid), respectively. The observed photocatalytic activity for hydrogen evolution indicates that the exposure of the highly active planes emerges as critical for significant performance enhancement. Photoelectrochemical and photoluminescence measurements suggest that the highly active (111) and (220) crystal facets effectively segregate sites for redox reactions, thereby impeding the recombination of photogenerated electron-hole pairs.

3.
J Fluoresc ; 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38285157

ABSTRACT

A fluorescent turn-on chemosensor (BA) was constructed by attaching bis(pyridin-2-ylmethyl)-amine (DPA) unit to the BODIPY scaffold. It can give a prominent green/yellow fluorescent response selectivity with each of Zn2+/Hg2+/Cd2+/Ca2+/Mn2+/Pb2+/Al3+. The 1:1 stoichiometry of BA and metal ions was drawn from the analysis of Job's plot. The limit detection of BA in recognition of Zn2+/Hg2+/Cd2+/Ca2+/Mn2+/Pb2+/Al3+ is ranged in 50.8-146.6 nM. There exists a linear relationship between the fluorescence intensity and concentration of metal ions (Zn2+: 4-15 µM). The mechanism of fluorescence signal "turn-on" is based on the photo induced transfer (PET) in the excited state of BA. The coordinated metal ions significantly weakened the electron-donating ability nitrogen atom in DPA, thus recovering the emission character of BODIPY. The substituted group at the phenyl ring in meso-position of BODIPY scaffold determines the recognizable list of metal ions.

4.
J Fluoresc ; 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38198012

ABSTRACT

Synthesis-oriented design led us to the construction of a propeller-like dye, containing the triangle terthiophene and triphenylamine units. It reveals typical photochromic properties with alternated UV (390 nm) and visible light (˃ 440 nm) irradiation and the dye solution (in THF) color was also toggled between yellow-green and colorless. A new absorption band was observed in visible region (415-600 nm). Additionally, the photochromic dye was highly emissive with the absolute quantum yield being 0.27. After UV light irradiation, the emission was quenched significantly (Φ = 0.08) at photo-stationary state, and thus establishing a switchable emission "on-off" system by alternated UV/visible light irradiation cycle. Detailed structural analysis was carried out based on the optimized dye structure. Both the antiparallel conformation and the distance of reactive carbon atoms (< 4.2 Å) led to the smoothly photochromic behavior.

5.
Anal Chem ; 95(46): 16976-16986, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37943785

ABSTRACT

Carboxylic acids are central metabolites in bioenergetics, signal transduction, and post-translation protein regulation. However, the quantitative analysis of carboxylic acids as an indispensable part of metabolomics is prohibitively challenging, particularly in trace amounts of biosamples. Here we report a diazo-carboxyl/hydroxylamine-ketone double click derivatization method for the sensitive analysis of hydrophilic, low-molecular-weight carboxylic acids. In general, our method renders a 5- to 2000-fold higher response in mass spectrometry along with improved chromatographic separation. With this method, we presented the near-single-cell analysis of carboxylic acid metabolites in 10 mouse egg cells before and after fertilization. Malate, fumarate, and ß-hydroxybutyrate were found to decrease after fertilization. We also monitored the isotope labeling kinetics of carboxylic acids inside adherent cells cultured in 96-well plates during drug treatment. Finally, we applied this method to plasma or serum samples (5 µL) collected from mice and humans under pathological and physiological conditions. The double click derivatization method paves a way toward single-cell metabolomics and bedside diagnostics.


Subject(s)
Carboxylic Acids , Tandem Mass Spectrometry , Humans , Animals , Mice , Carboxylic Acids/chemistry , Tandem Mass Spectrometry/methods , Metabolomics/methods , Isotope Labeling/methods
6.
J Fluoresc ; 33(5): 1907-1915, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36881208

ABSTRACT

A photochrmic triangle terthiophene dye with 2,4-dimethylthiazole attached was synthesized and shows regular photochromic properties when irradiated with UV/Vis light alternately. It was found that the attaching of 2,4-dimethylthiazole has a significant effect on both the photochromism and fluorescence of triangle terthiophene. During the photocyclizatioin prcess, not only the color but also the fluorescence of the dye in THF can be toggled between ring-open and ring-closed forms of the dye. Additionally, the absolute quantum yields (AQY) of ring-open and ring-closed forms of the dye (0.32/0.58) were greatly larger than the literature report. Along with the 254 nm light irradiation, the fluorescence color changed from deep blue (428 nm) to sky blue (486 nm) in THF. A fluorochromism cycle could be established based on the UV/visible light irradiation cycle, which provides a strategy for the design of new type fluorescent diarylethene derivatives for biological application.

7.
J Fluoresc ; 33(2): 631-637, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36472775

ABSTRACT

A fluorescent turn-on sensor (BOPA) was configured by anchoring bis(pyridin-2-ylmethyl)-amine (DPA) unit to the BODIPY scaffold. It exhibits highly sensitivity and selectivity towards Pb2+, Ba2+, Cr3+, Cd2+, Hg2+, Zn2+ against the competent metal ions. Job's plot analysis supports the 1:1 stoichiometry of BOPA and metal ions. And linear relationship between fluorescence intensity and concentration of Zn2+ (representative metal ion) was observed over the range 0 ~ 20 µM Zn2+. The limit detection of BOPA in recognition of Pb2+, Ba2+, Cr3+, Cd2+, Hg2+, Zn2+ was ranged from 15.99 to 43.57 nM. Photo induced transfer (PET) in the excited state of BOPA determines the emission "off/on". Coordination of metal ions by DPA significantly weakened the electron-donating ability of nitrogen atom and inhibits the PET, recovering emission of BODIPY. In addition, the attachment of anisole at meso-position of BODIPY finely modulated the recognition of metal ions category.

8.
J Fluoresc ; 33(4): 1495-1503, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36763298

ABSTRACT

Dumbbell-like photochromic dyes were constructed by incorporation of double triangle terthiophene with ethyne or 1,3-butadiene bridge. Regular photochromic behavior was investigated with alternated UV (365 nm) and Visible light (˃ 400 nm) irradiation. However, the different bridge group leads to distinct difference in their photochromic wavelength. For the ethyne bridged triangle terthiophene (DT1), the photochromic wavelength was observed around 500-700 nm (peak value: 605 nm) and the solution turned to red with 365 nm light irradiation. However, the photochromic wavelength was blue shift to 418-550 nm and the solution was turned to light yellow for 1,3-butadiene bridged dye (DT2). Both of the colored solution can be bleached via visible light irradiation. Additionally, the two dyes in THF were emissive with absolute quantum yield (QY) of 0.36/0.40. Along with the photo-induced photocyclization process, the emissive solution can be effectively quenched at photo-stationary sate (Φ = 0.05/0.04). And emission "on-off" cycle could be established based on the UV/visible light irradiation cycle.

9.
J Fluoresc ; 33(1): 153-159, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36318417

ABSTRACT

A photochromic dye was constructed by incorporation of a carbon-carbon triple bond spaced triangle terthiophene skeleton and hydroxyphenylbenzothiazole. Regular photochromic behavior was investigated with alternated UV (254 nm) and visible light (≥ 400 nm) irradiation. The color of dye in solution can be cycled between pink and colorless. Additionally, the dye solution strongly fluoresces in THF with the absolute quantum yield (QY) being 0.56. When irradiation with 254 nm light, the emissive solution can be effectively quenched to photo-stationary sate (Φ = 0.05). An emission "on-off" cycle could be established based on the UV/visible light irradiation cycle. The photochromic dye also exhibits good photo- and thermal-stability at room temperature. The emission decay profile indicates typical single component character with the fluorescence lifetime being 6.68 ns. The emission color was determined by the CIE 1931 coordinates of x = 0.14, y = 0.25 in the blue region.

10.
J Fluoresc ; 33(6): 2119-2129, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37040002

ABSTRACT

Two new 3D metal-organic frameworks (MOFs) ZZUT1 and ZZUT2 were prepared through the reaction of tris-(4-carboxylphenyl) phosphineoxide (H3TPO) ligand with nitrate of neodymium and praseodymium by solvothermal method. The structure, fluorescence and photocatalytic properties of ZZUT1 and ZZUT2 were studied. The crystalline structure of two 3D Ln(III)-MOFs both exhibit triclinic system and P-1 space group. The results of fluorescence analysis showed that two 3D Ln(III)-MOFs could selectively recognize acetone molecule through the fluorescence quenching mechanism. Meanwhile, ZZUT1 and ZZUT2 showed good adsorption and degradation ability on organic dye methylene blue (MB) in photocatalytic condition, and the degradation efficiency can reach to more than 90%.

11.
Molecules ; 28(13)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37446906

ABSTRACT

Ammonia decomposition has attracted significant attention in recent years due to its ability to produce hydrogen without emitting carbon dioxide and the ease of ammonia storage. This paper reviews the recent developments in ammonia decomposition technologies for hydrogen production, focusing on the latest advances in catalytic materials and catalyst design, as well as the research progress in the catalytic reaction mechanism. Additionally, the paper discusses the advantages and disadvantages of each method and the importance of finding non-precious metals to reduce costs and improve efficiency. Overall, this paper provides a valuable reference for further research on ammonia decomposition for hydrogen production.


Subject(s)
Ammonia , Metals , Catalysis , Hydrogen
12.
Angew Chem Int Ed Engl ; 61(1): e202113073, 2022 Jan 03.
Article in English | MEDLINE | ID: mdl-34807499

ABSTRACT

Fluorescent single crystals that respond to multiple external stimuli are of great interest in molecular machines, sensors, and displays. The integration of photo- or acid-induced fluorescence enhancement and bending in one organic crystal, however, has not been reported yet. Herein, we report the interesting plastic photomechanical bending and switching on of the fluorescence of an azine crystal in a single-crystal transformation, due to extended π-conjugation and molecular slippage. Moreover, the fluorescent plastic bending driven by multiple volatile acid vapors was firstly observed, and attributed to the synergistic effect of push-pull electronic structure and hydrogen bonding. The single crystal also shows high elasticity under external force. In addition, reversible fluorescence switching can be triggered by grinding and solvent fuming, as well as by the adsorption and desorption of HCl vapor. The integration of plastic, elastic bending and switch-on fluorescence into one single crystal provides a new strategy for next-generation smart materials.

13.
Plant Mol Biol ; 105(6): 685-696, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33543389

ABSTRACT

KEY MESSAGE: This work demonstrates that PpCIPK1, a putative protein kinase, participates in regulating plant salt tolerance in moss Physcomitrella patens. Calcineurin B-Like protein (CBL)-interacting protein kinases (CIPKs) have been reported to be involved in multiple signaling networks and function in plant growth and stress responses, however, their biological functions in non-seed plants have not been well characterized. In this study, we report that PpCIPK1, a putative protein kinase, participates in regulating plant salt tolerance in moss Physcomitrella patens (P. patens). Phylogenetic analysis revealed that PpCIPK1 shared high similarity with its homologs in higher plants. PpCIPK1 transcription level was induced upon salt stress in P. patens. Using homologous recombination, we constructed PpCIPK1 knockout mutant lines (PpCIPK1 KO). Salt sensitivity analysis showed that independent PpCIPK1 KO plants exhibited severe growth inhibition and developmental deficiency of gametophytes under salt stress condition compared to that of wild-type P. patens (WT). Consistently, ionic homeostasis was disrupted in plants due to PpCIPK1 deletion, and high level of H2O2 was accumulated in PpCIPK1 KO than that in WT. Furthermore, PpCIPK1 functions in regulating photosynthetic activity in response to salt stress. Interestingly, we observed that PpCIPK1 could completely rescue the salt-sensitive phenotype of sos2-1 to WT level in Arabidopsis, indicating that AtSOS2 and PpCIPK1 are functionally conserved. In conclusion, our work provides evidence that PpCIPK1 participates in salt tolerance regulation in P. patens.


Subject(s)
Bryopsida/physiology , Plant Proteins/metabolism , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Salt-Tolerant Plants/physiology , Arabidopsis/genetics , Arabidopsis Proteins , Bryopsida/genetics , Gene Expression Regulation, Plant , Gene Knockout Techniques , Genes, Plant , Photosynthesis , Plant Physiological Phenomena , Plant Proteins/genetics , Plants, Genetically Modified , Protein Kinases/genetics , Protein Serine-Threonine Kinases/genetics , Salt-Tolerant Plants/genetics , Sequence Alignment , Stress, Physiological , Transcriptome
14.
J Fluoresc ; 31(6): 1797-1803, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34519935

ABSTRACT

Dipyrrolydiketones BF2 complex was synthesized and characterized by NMR, HRMS, and single crystal diffraction. In non-polar environment, this BF2 containing dye emitted bright blue-green fluorescence. No significant spectra shift was observed both in absorption and emission spectra, which indicates the insensitivity of absorption/emission toward environment. The alkyl substituted pyrrole rings lead to its highly emission character in solid state by enhancing the distance between dye molecules. Absolute quantum yields were determined to be 0.51-0.78/0.36 in selected organic medium and solid state, respectively. The emission dynamics was investigated by fluorescence lifetime and both monoexponential and bi-exponential decay was observed.

15.
Biol Pharm Bull ; 43(3): 526-532, 2020.
Article in English | MEDLINE | ID: mdl-32115511

ABSTRACT

Peroxisome proliferator-activated receptor γ (PPARγ), the molecular target for antidiabetic thiazolidinediones (TZDs), is a master regulator of preadipocyte differentiation and lipid metabolism. The adverse side effects of TZDs, arising from their potent agonistic activity, can be minimized by PPARγ partial agonists or PPARγ non-agonists without loss of insulin sensitization. In this study, we reported that WSF-7, a synthetic chemical derived from natural monoterpene α-pinene, is a partial PPARγ agonist. We found that WSF-7 binds directly to PPARγ. Activation of PPARγ by WSF-7 promotes adipogenesis, adiponectin oligomerization and insulin-induced glucose uptake. WSF-7 also inhibits obesity-mediated PPARγ phosphorylation at serine (Ser)273 and improves insulin sensitivity of 3T3-L1 adipocytes. Our study suggested that WSF-7 activates PPARγ transcription by a mechanism different from that of rosiglitazone or luteolin. Therefore, WSF-7 might be a potential therapeutic drug to treat type 2 diabetes.


Subject(s)
Insulin/metabolism , Monoterpenes/pharmacology , PPAR gamma/agonists , PPAR gamma/metabolism , Phosphorylation/drug effects , 3T3-L1 Cells , Adipocytes/drug effects , Adiponectin/metabolism , Animals , Glucose/metabolism , Mice , Monoterpenes/chemistry , Obesity/metabolism
16.
J Cell Biochem ; 120(8): 13664-13679, 2019 08.
Article in English | MEDLINE | ID: mdl-30938863

ABSTRACT

Nucleus pulposus (NP) mesenchymal stem cells (NPMSCs) are a potential cell source for intervertebral disc (IVD) regeneration; however, little is known about their response to tumor necrosis factor-α (TNF-α), a critical inflammation factor contributing to accelerating IVD degeneration. Accordingly, the aim of this study was to investigate the regulatory effects of TNF-α at high and low concentrations on the biological behaviors of healthy rat NPMSCs, including proliferation, migration, and NP differentiation. In this study, NPMSCs were treated with different concentration of TNF-α (0-200 ng/mL). Then we used annexin V/propidium iodide flow cytometry analysis to detect the apoptosis rate of NPMSCs. Cell Counting Kit-8, Edu assay, and cell cycle test were used to examine the proliferation of NPMSCs. Migration ability of NPMSCs was detected by wound healing assay and transwell migration assay. Pellets method was used to induce NP differentiation of NPMSCs, and immunohistochemical staining, real-time polymerase chain reaction, and Western blot analysis were used to examine the NPC phenotypic genes and proteins. The cells were further treated with the nuclear factor-κB (NF-κB) pathway inhibitor Bay 11-7082 to determine the role of the NF-κB pathway in the mechanism underlying the differentiation process. Results showed that treatment with a high concentration of TNF-α (50-200 ng/mL) could induce apoptosis of NPMSCs, whereas a relatively low TNF-α concentration (0.1-10 ng/mL) promoted the proliferation and migration of NPMSCs, but inhibited their differentiation toward NP cells. Moreover, we identified that the NF-κB signaling pathway is activated during the TNF-α-inhibited differentiation of NPMSCs, and the NF-κB signal inhibitor Bay 11-7082 could partially eliminate the adverse effect of TNF-α on the differentiation of NPMSCs. Therefore, our findings provide important insight into the dynamic biological behavior reactivity of NPMSCs to TNF-α during IVD degeneration process, thus may help us understanding the underlying mechanism of IVD degeneration.


Subject(s)
Mesenchymal Stem Cells/metabolism , NF-kappa B/metabolism , Nucleus Pulposus/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , Animals , Male , Mesenchymal Stem Cells/cytology , Nucleus Pulposus/cytology , Rats , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/pharmacology
17.
Plant Cell Physiol ; 60(8): 1829-1841, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31119292

ABSTRACT

Alternative oxidase (AOX) has been reported to be involved in mitochondrial function and redox homeostasis, thus playing an essential role in plant growth as well as stress responses. However, its biological functions in nonseed plants have not been well characterized. Here, we report that AOX participates in plant salt tolerance regulation in moss Physcomitrella patens (P. patens). AOX is highly conserved and localizes to mitochondria in P. patens. We observed that PpAOX rescued the impaired cyanide (CN)-resistant alternative (Alt) respiratory pathway in Arabidopsis thaliana (Arabidopsis) aox1a mutant. PpAOX transcription and Alt respiration were induced upon salt stress in P. patens. Using homologous recombination, we generated PpAOX-overexpressing lines (PpAOX OX). PpAOX OX plants exhibited higher Alt respiration and lower total reactive oxygen species accumulation under salt stress condition. Strikingly, we observed that PpAOX OX plants displayed decreased salt tolerance. Overexpression of PpAOX disturbed redox homeostasis in chloroplasts. Meanwhile, chloroplast structure was adversely affected in PpAOX OX plants in contrast to wild-type (WT) P. patens. We found that photosynthetic activity in PpAOX OX plants was also lower compared with that in WT. Together, our work revealed that AOX participates in plant salt tolerance in P. patens and there is a functional link between mitochondria and chloroplast under challenging conditions.


Subject(s)
Bryopsida/metabolism , Chloroplasts/metabolism , Mitochondrial Proteins/metabolism , Oxidoreductases/metabolism , Plant Proteins/metabolism , Salt-Tolerant Plants/metabolism , Bryopsida/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Mitochondrial Proteins/genetics , Oxidation-Reduction , Oxidoreductases/genetics , Plant Proteins/genetics , Salt-Tolerant Plants/genetics
18.
Chemistry ; 25(72): 16519-16522, 2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31644833

ABSTRACT

Aggregation-induced emission (AIE) materials have drawn great attention for applications as organic light-emitting diodes (OLED) and probes. The applications are, however, restricted by the complex syntheses and hydrophobic properties. Herein, a one-step synthesis of an AIE material based on imidazole hydrazone is assessed. Protonation of the imidazole-H leads to emission color change from yellow to green in the solid state. The emission color is recovered upon imidazole-H+ deprotonation. Moreover, the emission wavelength shifts from 532 to 572 nm by anion exchange. In addition, an enhanced emission (ΦF up to 22.6 %) was obtained with the Br- anion compared with NTf2 - , SbCl5 - , PF6 - , and OTf- anions. X-ray crystallography studies together with theoretical calculations show that the enhanced emission of hydrazone salts arises from strong hydrogen bonding between the hydrazone proton and the halide ion (Cl- or Br- ).

19.
Sensors (Basel) ; 19(14)2019 Jul 12.
Article in English | MEDLINE | ID: mdl-31336974

ABSTRACT

Deployment of large-scale wind turbines requires sophisticated operation and maintenance strategies to ensure the devices are safe, profitable and cost-effective. Prognostics aims to predict the remaining useful life (RUL) of physical systems based on condition measurements. Analyzing condition monitoring data, implementing diagnostic techniques and using machinery prognostic algorithms will bring about accurate estimation of the remaining life and possible failures that may occur. This paper proposes to combine two supervised machine learning techniques, namely, regression model and multilayer artificial neural network model, to predict the RUL of an operational wind turbine gearbox using vibration measurements. Root Mean Square (RMS), Kurtosis (KU) and Energy Index (EI) were analysed to define the bearing failure stages. The proposed methodology was evaluated through a case study involving vibration measurements of a high-speed shaft bearing used in a wind turbine gearbox.

20.
Sensors (Basel) ; 19(5)2019 Mar 06.
Article in English | MEDLINE | ID: mdl-30845726

ABSTRACT

Autonomous robots that operate in the field can enhance their security and efficiency by accurate terrain classification, which can be realized by means of robot-terrain interaction-generated vibration signals. In this paper, we explore the vibration-based terrain classification (VTC), in particular for a wheeled robot with shock absorbers. Because the vibration sensors are usually mounted on the main body of the robot, the vibration signals are dampened significantly, which results in the vibration signals collected on different terrains being more difficult to discriminate. Hence, the existing VTC methods applied to a robot with shock absorbers may degrade. The contributions are two-fold: (1) Several experiments are conducted to exhibit the performance of the existing feature-engineering and feature-learning classification methods; and (2) According to the long short-term memory (LSTM) network, we propose a one-dimensional convolutional LSTM (1DCL)-based VTC method to learn both spatial and temporal characteristics of the dampened vibration signals. The experiment results demonstrate that: (1) The feature-engineering methods, which are efficient in VTC of the robot without shock absorbers, are not so accurate in our project; meanwhile, the feature-learning methods are better choices; and (2) The 1DCL-based VTC method outperforms the conventional methods with an accuracy of 80.18%, which exceeds the second method (LSTM) by 8.23%.

SELECTION OF CITATIONS
SEARCH DETAIL