Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Small ; 15(32): e1900772, 2019 08.
Article in English | MEDLINE | ID: mdl-30977981

ABSTRACT

Artificial photosynthesis for solar water splitting and CO2 reduction to produce hydrogen and hydrocarbon fuels has been considered as one of the most promising ways to solve increasingly serious energy and environmental problems. As a well-documented metal-free semiconductor, polymeric carbon nitride (PCN) has been widely used and intensively investigated for photocatalytic water splitting and CO2 reduction, owing to its physicochemical stability, visible-light response, and facile synthesis. However, PCN as a photocatalyst still suffers from the fast recombination of electron-hole pairs and poor water redox reaction kinetics, greatly restricting its activity for artificial photosynthesis. Among the various modification approaches developed so far, decorating PCN with metals in different existences of nanoparticles, single atoms and molecular complexes, has been evidently very effective to overcome these limitations to improve photocatalytic performances. In this Review article, a systematic introduction to the state-of-the-art metal/PCN photocatalyst systems is given, with metals in versatility of nanoparticles, single atoms, and molecular complexes. Then, the recent processes of the metal/PCN photocatalyst systems in the applications of artificial photosynthesis, e.g., water splitting and CO2 reduction, are reviewed. Finally, the remaining challenges and opportunities for the development of high efficiency metal/PCN photocatalyst systems are presented and prospected.

2.
J Virol ; 92(8)2018 04 15.
Article in English | MEDLINE | ID: mdl-29437963

ABSTRACT

A universal hepatitis C virus (HCV) vaccine should elicit multiantigenic, multigenotypic responses, which are more likely to protect against challenge with the range of genotypes and subtypes circulating in the community. A vaccine cocktail and vaccines encoding consensus HCV sequences are attractive approaches to achieve this goal. Consequently, in a series of mouse vaccination studies, we compared the immunogenicity of a DNA vaccine encoding a consensus HCV nonstructural 5B (NS5B) protein to that of a cocktail of DNA plasmids encoding the genotype 1b (Gt1b) and Gt3a NS5B proteins. To complement this study, we assessed responses to a multiantigenic cocktail regimen by comparing a DNA vaccine cocktail encoding Gt1b and Gt3a NS3, NS4, and NS5B proteins to a single-genotype NS3/4/5B DNA vaccine. To thoroughly evaluate in vivo cytotoxic T lymphocyte (CTL) and T helper (Th) cell responses against Gt1b and Gt3a HCV peptide-pulsed target cells, we exploited a novel fluorescent-target array (FTA). FTA and enzyme-linked immunosorbent spot (ELISpot) analyses collectively indicated that the cocktail regimens elicited higher responses to Gt1b and Gt3a NS5B proteins than those with the consensus vaccine, while the multiantigenic DNA cocktail significantly increased the responses to NS3 and NS5B compared to those elicited by the single-genotype vaccines. Thus, a DNA cocktail vaccination regimen is more effective than a consensus vaccine or a monovalent vaccine at increasing the breadth of multigenotypic T cell responses, which has implications for the development of vaccines for communities where multiple HCV genotypes circulate.IMPORTANCE Despite the development of highly effective direct-acting antivirals (DAA), infections with hepatitis C virus (HCV) continue, particularly in countries where the supply of DAA is limited. Furthermore, patients who eliminate the virus as a result of DAA therapy can still be reinfected. Thus, a vaccine for HCV is urgently required, but the heterogeneity of HCV strains makes the development of a universal vaccine difficult. To address this, we developed a novel cytolytic DNA vaccine which elicits robust cell-mediated immunity (CMI) to the nonstructural (NS) proteins in vaccinated animals. We compared the immune responses against genotypes 1 and 3 that were elicited by a consensus DNA vaccine or a DNA vaccine cocktail and showed that the cocktail induced higher levels of CMI to the NS proteins of both genotypes. This study suggests that a universal HCV vaccine can most readily be achieved by use of a DNA vaccine cocktail.


Subject(s)
Genotype , Hepacivirus/immunology , Hepatitis C/immunology , Immunity, Cellular , T-Lymphocytes/immunology , Vaccines, DNA/immunology , Viral Hepatitis Vaccines/immunology , Viral Nonstructural Proteins/immunology , Animals , Cross Reactions/immunology , Female , HEK293 Cells , Hepatitis C/prevention & control , Humans , Mice , Mice, Inbred BALB C , Viral Nonstructural Proteins/genetics
3.
Small ; 14(35): e1801756, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30084542

ABSTRACT

Non-noble metal catalysts for high-active electrocatalytic oxygen evolution reaction (OER) are essential in large-scale application for water splitting. Herein, tricomponent metal phosphides with hollow structures are synthesized from cobalt-contained metal organic frameworks (MOFs), i.e., ZIF-67, by tailoring the feeding ratios of Ni and Fe, followed by a high-temperature reduction and a subsequent phosphidation process. Excellent OER activity and long-time stability are achieved in 1 m NaOH aqueous solution, with an overpotential of 329 mV at 10 mA cm-2 and Tafel slope of 48.2 mV dec-1 , even superior to the noble metal-based catalyst. It is evidenced that the formed (oxyhydr)oxide/phosphate species by in situ electrochemical surface oxidation are responsible for active OER. Accordingly, the simultaneous introduction of external Ni and Fe elements significantly influences the electronic structures of the parent metal phosphides, leading to the in situ electrochemical formation of surface active layer with decreased OER activation energy for greatly improved water oxidation performance. This electronic structure tuning strategy by introducing multicomponent metals demonstrates a versatile method to use MOFs as precursors for synthesizing high-efficient water splitting electrocatalysts.

4.
Small ; 12(12): 1640-8, 2016 Mar 23.
Article in English | MEDLINE | ID: mdl-26833931

ABSTRACT

Utilization of visible and near-infrared light has always been the pursuit of photocatalysis research. In this article, an approach is developed to integrate dual plasmonic nanostructures with TiO2 semiconductor nanosheets for photocatalytic hydrogen production in visible and near-infrared spectral regions. Specifically, the Au nanocubes and nanocages used in this work can harvest visible and near-infrared light, respectively, and generate and inject hot electrons into TiO2 . Meanwhile, Pd nanocubes that can trap the energetic electrons from TiO2 and efficiently participate in the hydrogen evolution reaction are employed as co-catalysts for improved catalytic activity. Enabled by this unique integration design, the hydrogen production rate achieved is dramatically higher than those of its counterpart structures. This work represents a step toward the rational design of semiconductor-metal hybrid structures for broad-spectrum photocatalysis.

5.
J Virol ; 89(15): 7991-8002, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26018154

ABSTRACT

UNLABELLED: There are 3 to 4 million new hepatitis C virus (HCV) infections annually around the world, but no vaccine is available. Robust T-cell mediated responses are necessary for effective clearance of the virus, and DNA vaccines result in a cell-mediated bias. Adjuvants are often required for effective vaccination, but during natural lytic viral infections damage-associated molecular patterns (DAMPs) are released, which act as natural adjuvants. Hence, a vaccine that induces cell necrosis and releases DAMPs will result in cell-mediated immunity (CMI), similar to that resulting from natural lytic viral infection. We have generated a DNA vaccine with the ability to elicit strong CMI against the HCV nonstructural (NS) proteins (3, 4A, 4B, and 5B) by encoding a cytolytic protein, perforin (PRF), and the antigens on a single plasmid. We examined the efficacy of the vaccines in C57BL/6 mice, as determined by gamma interferon enzyme-linked immunosorbent spot assay, cell proliferation studies, and intracellular cytokine production. Initially, we showed that encoding the NS4A protein in a vaccine which encoded only NS3 reduced the immunogenicity of NS3, whereas including PRF increased NS3 immunogenicity. In contrast, the inclusion of NS4A increased the immunogenicity of the NS3, NS4B, andNS5B proteins, when encoded in a DNA vaccine that also encoded PRF. Finally, vaccines that also encoded PRF elicited similar levels of CMI against each protein after vaccination with DNA encoding NS3, NS4A, NS4B, and NS5B compared to mice vaccinated with DNA encoding only NS3 or NS4B/5B. Thus, we have developed a promising "multiantigen" vaccine that elicits robust CMI. IMPORTANCE: Since their development, vaccines have reduced the global burden of disease. One strategy for vaccine development is to use commercially viable DNA technology, which has the potential to generate robust immune responses. Hepatitis C virus causes chronic liver infection and is a leading cause of liver cancer. To date, no vaccine is currently available, and treatment is costly and often results in side effects, limiting the number of patients who are treated. Despite recent advances in treatment, prevention remains the key to efficient control and elimination of this virus. Here, we describe a novel DNA vaccine against hepatitis C virus that is capable of inducing robust cell-mediated immune responses in mice and is a promising vaccine candidate for humans.


Subject(s)
Hepacivirus/immunology , Hepatitis C/immunology , T-Lymphocytes/immunology , Vaccines, DNA/immunology , Viral Hepatitis Vaccines/immunology , Animals , Antibodies, Viral/immunology , Female , Hepacivirus/genetics , Hepatitis C/virology , Humans , Immunity, Cellular , Immunization , Male , Mice , Mice, Inbred C57BL , Vaccines, DNA/administration & dosage , Vaccines, DNA/genetics , Viral Hepatitis Vaccines/administration & dosage , Viral Hepatitis Vaccines/genetics , Viral Nonstructural Proteins/administration & dosage , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/immunology
6.
Eur J Immunol ; 44(7): 1992-2002, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24723366

ABSTRACT

Traditional vaccine strategies are inefficient against challenge with complex pathogens including HIV; therefore, novel vaccine technologies are required. DNA vaccines are attractive as they are relatively cheap and easy to manufacture, but a major limitation has been their lack of immunogenicity in humans, which may be overcome with the incorporation of an adjuvant. HSP70 is a recognised damage-associated molecular pattern, which is a potential adjuvant. We investigated the immunogenicity of a DNA vaccine encoding HIV gag and HSP70; the latter was genetically modified to produce cytoplasmic, secreted or membrane-bound HSP70, the expression of which was controlled by an independent promoter. The DNA was administered to C57BL/6 mice to evaluate gag-specific T-cell responses. Our results demonstrated the ability of membrane-bound and secreted HSP70 to significantly enhance gag-specific T-cell responses and increase the breadth of T-cell responses to include subdominant epitopes. Membrane-bound or secreted HSP70 also significantly improved the multifunctionality of HIV-specific T cells and T-cell proliferation, which is important for maintaining T-cell integrity. Most importantly, the inclusion of membrane-bound HSP70, secreted HSP70 or a combination significantly increased protection in mice challenged with EcoHIV, a chimeric virus that replicates in mouse leukocytes in vivo.


Subject(s)
AIDS Vaccines/immunology , HSP70 Heat-Shock Proteins/immunology , Vaccines, DNA/immunology , Animals , Dendritic Cells/physiology , Female , HEK293 Cells , HSP70 Heat-Shock Proteins/genetics , Humans , Interferon-gamma/biosynthesis , Lymphocyte Activation , Mice , Mice, Inbred C57BL , NIH 3T3 Cells , T-Lymphocytes/immunology , Vaccination , gag Gene Products, Human Immunodeficiency Virus/immunology
7.
Sensors (Basel) ; 15(6): 13670-9, 2015 Jun 11.
Article in English | MEDLINE | ID: mdl-26110400

ABSTRACT

During dental sinus lift surgery, it is important to monitor the thickness of the remaining maxilla to avoid perforating the sinus membrane. Therefore, a sensor should be integrated into ultrasonic dental tools to prevent undesirable damage. This paper presents a piezoelectric (PZT) sensor installed in an ultrasonic transducer to measure the stiffness of high and low materials. Four design types using three PZT ring materials and a split PZT for actuator and sensor ring materials were studied. Three sensor locations were also examined. The voltage signals of the sensor and the displacement of the actuator were analyzed to distinguish the low and high stiffness. Using sensor type T1 made of the PZT-1 material and the front location A1 provided a high sensitivity of 2.47 Vm/kN. The experimental results demonstrated that our design can measure soft and hard stiffness.


Subject(s)
Transducers , Ultrasonography/instrumentation , Elastic Modulus , Equipment Design , Vibration
8.
ACS Omega ; 9(24): 25539-25554, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38911729

ABSTRACT

Data-driven soft sensing modeling is becoming a powerful tool in the ironmaking process due to the rapid development of machine learning and data mining. Although various soft sensing techniques have been successfully used in both the sintering process and blast furnace, they have not been comprehensively reviewed. In this work, we provide an overview of recent advances on soft sensing in the ironmaking process, with a special focus on data-driven techniques. First, we present a general soft sensing development framework of the ironmaking process based on the mechanism analysis and process characteristics. Second, we provide a detailed taxonomy of current soft sensing methods categorized by their predictive tasks (i.e., quality indicators prediction, state parameters prediction, etc.). Finally, we outline several insightful and promising directions, such as self-supervised learning and digital twins in the ironmaking process, for future research.

9.
Polymers (Basel) ; 16(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38891554

ABSTRACT

In this research, an oxidized starch/styrene-butadiene rubber system with high capability of absorbing electromagnetic energy was adopted as the main component, the effect of oxidized starch content on the bonding and mechanical properties of aqueous polymer isocyanate (API) after high-frequency curing was evaluated, and the effect mechanisms were explored by combining thermodynamic tests and material characterization methods. Our findings revealed that the addition of oxidized starch enhanced the mechanical properties of API after high-frequency curing and the increase in the amount of oxidized starch enhanced the improvement effect of high-frequency curing on API bonding and mechanical properties. At 5 wt% oxidized starch, high-frequency curing improved API bonding properties by 18.0% and 17.3% under ambient conditions and after boiling water aging, respectively. An increase in oxidized starch content to 25 wt% increased enhancement to 25.1% and 26.4% for the above conditions, respectively. The enhancement effects of tensile strength and Young's modulus of the API adhesive body were increased from 9.4% and 18.2% to 18.7% and 22.6%, respectively. The potential enhancement mechanism could be that oxidized starch could increase the dielectric loss of API, converting more electromagnetic energy into thermal energy creating more cross-linked structures.

10.
ACS Nano ; 18(10): 7633-7643, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38411092

ABSTRACT

The potential for optimizing ion transport through triply periodic minimal surface (TPMS) structures renders promising electrochemical applications. In this study, as a proof-of-concept, we extend the inherent efficiency and mathematical beauty of TPMS structures to fabricate liquid-crystalline electrolytes with high ionic conductivity and superior structural stability for aqueous rechargeable zinc-ion batteries. The specific topological configuration of the liquid-crystalline electrolytes, featuring a Gyroid geometry, enables the formation of a continuous ion conduction pathway enriched with confined water. This, in turn, promotes the smooth transport of charge carriers and contributes to high ionic conductivity. Meanwhile, the quasi-solid hydrophobic phase assembled by hydrophobic alkyl chains exhibits notable rigidity and toughness, enabling uniform and compact dendrite-free Zn deposition. These merits synergistically enhance the overall performance of the corresponding full batteries. This work highlights the distinctive role of TPMS structures in developing high-performance, liquid-crystalline electrolytes, which can provide a viable route for the rational design of next-generation quasi-solid-state electrolytes.

11.
Article in English | MEDLINE | ID: mdl-38666423

ABSTRACT

Although significant efforts have been made in the past few decades, the development of affordable, durable, and effective electrocatalysts for direct methanol fuel cells (DMFCs) remains a formidable challenge. Herein, we present a facile and efficient phosphorization approach for synthesizing PtP2 intermetallic nanocrystals and utilize them as electrocatalysts in the methanol oxidation reaction (MOR). Impressively, the synthesized PtP2 nanocatalysts exhibit a mass activity of 2.14 mA µg-1 and a specific activity of 6.28 mA cm-2, which are 5.1 and 9.5 times higher than those achieved by the current state-of-the-art commercial Pt/C catalyst, respectively. Moreover, the PtP2 nanocatalysts demonstrate improved stability toward acidic MOR by retaining 92.1% of its initial mass activity after undergoing 5000 potential cycles, far surpassing that of the commercial Pt/C (38%). Further DMFC tests present a 2.7 times higher power density than that of the commercial Pt/C, underscoring their potential for application in methanol fuel cells. Density functional theory calculations suggest that the accelerated MOR kinetics and improved CO tolerance on PtP2 can be attributed to the attenuated binding strength of CO intermediates and the enhanced stability due to strong Pt-P interaction. To our knowledge, this is the first report identifying the MOR performance on PtP2 intermetallic nanocrystals, highlighting their potential as highly active and stable nanocatalysts for DMFCs.

12.
PLoS Genet ; 6(1): e1000795, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20062521

ABSTRACT

miRNAs participate in the regulation of apoptosis. However, it remains largely unknown as to how miRNAs are integrated into the apoptotic program. Mitochondrial fission is involved in the initiation of apoptosis. It is not yet clear whether miRNAs are able to regulate mitochondrial fission. Here we report that miR-30 family members are able to regulate apoptosis by targeting the mitochondrial fission machinery. Our data show that miR-30 family members can inhibit mitochondrial fission and the consequent apoptosis. In exploring the underlying molecular mechanism, we identified that miR-30 family members can suppress p53 expression. In response to the apoptotic stimulation, the expression levels of miR-30 family members were reduced, whereas p53 was upregulated. p53 transcriptionally activated the mitochondrial fission protein, dynamin-related protein-1 (Drp1). The latter conveyed the apoptotic signal of p53 by initiating the mitochondrial fission program. miR-30 family members inhibited mitochondrial fission through suppressing the expression of p53 and its downstream target Drp1. Our data reveal a novel model in which a miRNA can regulate apoptosis through targeting the mitochondrial fission machinery.


Subject(s)
Dynamins/metabolism , MicroRNAs/metabolism , Mitochondria/metabolism , Signal Transduction , Tumor Suppressor Protein p53/metabolism , Animals , Base Sequence , Cells, Cultured , Dynamins/genetics , Fibroblasts/metabolism , Gene Expression Regulation , MicroRNAs/genetics , Mitochondria/genetics , Molecular Sequence Data , Rats , Rats, Wistar , Sequence Homology, Nucleic Acid , Tumor Suppressor Protein p53/genetics
13.
Front Psychol ; 14: 1040162, 2023.
Article in English | MEDLINE | ID: mdl-36755670

ABSTRACT

Second language (L2) speakers with foreign accents are well-known to face disadvantages in terms of language processing; however, recent research has demonstrated possible social benefits for foreign-accented L2 speakers. While previous research has focused on the ways in which first language (L1) speakers of English comprehend L2 speech, the present article contributes to this line of research by exploring the ways in which comprehenders from a different culture and linguistic background perceive L2 speech narratives. This study investigates this issue by exploring how comprehenders with Mandarin Chinese as the first language interpret underinformative utterances containing scalar and ad hoc implicature in L1, accent-free L2, and foreign-accented L2 speech narratives. The sentence judgment task with a guise design used written sentences rather than oral utterances as stimuli in order to isolate the role of intelligibility factors. The results indicate that foreign accent confers social benefits on L2 speakers in that their omission of information in communication is tolerated and they are viewed as more likely to possess positive attributes. More importantly, we find that the bilingual characteristics of Chinese participants, as well as the different linguistic complexity of deriving scalar and ad hoc implicature, affect Chinese participants' explanations of underinformative sentences of L2 speakers. This study contributes to our understanding of L2 language processing.

14.
Polymers (Basel) ; 15(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36679170

ABSTRACT

The curvature feature makes the irradiance and absorptivity change, resulting in an uneven power density distribution, which affects the quality of composite parts. In this study, a theoretical model-based Super-Gaussian profile beam in the laser irradiation area was established to obtain the heat flux distribution on the curved surface. The effect of curvature on the surface scattering reflection, temperature distribution, and surface morphology were investigated and verified the validity of the theoretical model. Furthermore, the influence of the laser intensity distribution, laser inclination and curvature radius on the power density distribution and distribution uniformity were studied. Research indicated that the power density increases as the distance from the origin increase resulting from the variation of the irradiance and absorptance along the circumference. The flatter the intensity distribution of the laser beam in the height direction, the less uniform the power density distribution. Accordingly, the typical Gaussian profile beam significantly ameliorates the power density distribution. This research provides a novel understanding of using heat sources during laser heating thermoplastic tape placement.

15.
EJNMMI Radiopharm Chem ; 8(1): 18, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37578571

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) continues to be a malignancy with an unmet clinical demand. Development of radioimmunoconjugates which target cancer-specific receptors provides an opportunity for radioimmunotherapy of both metastatic and primary PDAC. In this study, we characterised the in vitro behaviour of a novel beta-emitting radioimmunoconjugate [177Lu]Lu-DOTA-C595 as a therapeutic agent against PDAC. [177Lu]Lu-DOTA-C595 is designed to target cancer-specific mucin 1 epitopes (MUC1-CE) overexpressed on most epithelial cancers, including PDAC. RESULTS: A series of in vitro experiments were performed on PDAC cell lines (PANC-1, CAPAN-1, BxPC-3 and AsPC-1) exhibiting strong to weak MUC1-CE expression. [177Lu]Lu-DOTA-C595 bound to all cell lines relative to their expression of MUC1-CE. [177Lu]Lu-DOTA-C595 was also rapidly internalised across all cell lines, with a maximum of 75.4% of activity internalised within the PANC-1 cell line at 48 h. The expression of γH2AX foci and clonogenic survival of PANC-1 and AsPC-1 cell lines after exposure to [177Lu]Lu-DOTA-C595 were used to quantify the in vitro cytotoxicity of [177Lu]Lu-DOTA-C595. At 1 h post treatment, the expression of γH2AX foci exceeded 97% in both cell lines. The expression of γH2AX foci continued to increase in PANC-1 cells at 24 h, although expression reduced in AsPC-1. Clonogenic assays showed a high level of cell kill induced by [177Lu]Lu-DOTA-C595. CONCLUSION: [177Lu]Lu-DOTA-C595 has favourable in vitro characteristics to target and treat MUC1-CE positive PDAC. Further investigations to characterise the in vivo effects and potential value of [177Lu]Lu-DOTA-C595 in other MUC1-CE expressing malignancies such as lung, ovarian and colorectal adenocarcinoma are warranted.

16.
Front Immunol ; 14: 1269409, 2023.
Article in English | MEDLINE | ID: mdl-37790942

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) causes acute watery diarrhea and high mortality in newborn piglets. Activation of intestinal mucosal immunity is crucial to anti-PEDV infection. To develop a vaccine capable of stimulating intestinal mucosal immunity, we prepared a bacterium (Lactococcus lactis)-like particle (BLP) vaccine (S1-BLPs) displaying the S1 protein, a domain of PEDV spike protein (S), based on gram-positive enhancer matrix (GEM) particle display technology. We further compared the effects of different vaccination routes on mucosal immune responses in mice induced by S1-BLPs. The specific IgG titer in serum of intramuscularly immunized mice with S1-BLPs was significantly higher than that of the intranasally administered. The specific IgA antibody was found in the serum and intestinal lavage fluid of mice vaccinated intranasally, but not intramuscularly. Moreover, the intranasally inoculated S1-BLPs induced higher levels of IFN-γ and IL-4 in serum than the intramuscularly inoculated. In addition, the ratio of serum IgG2a/IgG1 of mice inoculated intramuscularly was significantly higher with S1-BLPs compared to that of with S1 protein, suggesting that the immune responses induced by S1-BLPs was characterized by helper T (Th) cell type 1 immunity. The results indicated that S1-BLPs induced systemic and local immunity, and the immunization routes significantly affected the specific antibody classes and Th immune response types. The intranasally administered S1-BLPs could effectively stimulate intestinal mucosal specific secretory IgA response. S1-BLPs have the potential to be developed as PEDV mucosal vaccine.


Subject(s)
Porcine epidemic diarrhea virus , Vaccines , Animals , Mice , Swine , Immunity, Mucosal , Immunization , Immunoglobulin A, Secretory
17.
ChemSusChem ; 16(14): e202300285, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37010877

ABSTRACT

Despite their intrinsic safety and environmental friendliness, typical aqueous Zn-ion rechargeable batteries have been struggling with poor reversibility and electrochemical stability. Hydrated eutectic electrolytes (HEEs) have been attracting extensive attention due to their appealing features of high designability and superior performances over typical aqueous electrolytes. However, an in-depth understanding of unique microstructure in HEEs and the ensuing superior performances remains obscure, limiting the development of enhanced electrolytes. Herein, we demonstrate a distinct evolution path of Zn-ion species from aqueous to superior hydrated eutectic electrolytes, which experience a special transition state enriched with H-bonds between eutectic molecules. Complementary with the well-studied reorganized solvation structure induced by short-ranged salt-solvent interaction, long-range solvent-solvent interactions arising from the H-bond reorganizes the extended electrolyte microstructure, which in turn influences the cation diffusion mechanisms and interfacial reaction kinetics. Overall, we highlight the importance of ion species microstructural evolution in the rational design of superior aqueous electrolytes.

18.
Opt Express ; 20(13): 14564-72, 2012 Jun 18.
Article in English | MEDLINE | ID: mdl-22714518

ABSTRACT

Tandem organic light emitting diodes (OLEDs) are ideal for lighting applications due to their low working current density at high brightness. In this work, we have studied an efficient electron transporting layer of KBH(4) doped 9,10-bis(3-(pyridin-3-yl)phenyl)anthracene (DPyPA) which is located adjacent to charge generation layer of MoO(3)/NPB. The excellent transporting property of the DPyPA:KBH(4) layer helps the tandem OLED to achieve a lower voltage than the tandem device with the widely used tris-(8-hydroxyquinoline)aluminum:Li. For the tandem white OLED with a fluorescent blue unit and a phosphorescent yellow unit, we've achieved a high current efficiency of 75 cd/A, which can be further improved to 120 cd/A by attaching a diffuser layer.


Subject(s)
Anthracenes/chemistry , Lighting/instrumentation , Organic Chemicals/chemistry , Semiconductors , Equipment Design , Equipment Failure Analysis , Static Electricity
19.
Cancer Rep (Hoboken) ; 5(8): e1543, 2022 08.
Article in English | MEDLINE | ID: mdl-34636174

ABSTRACT

BACKGROUND: Platinum-based chemotherapy and radiotherapy are standard treatments for non-small cell lung cancer, which is the commonest, most lethal cancer worldwide. As a marker of treatment-induced cancer cell death, we have developed a radiodiagnostic imaging antibody, which binds to La/SSB. La/SSB is an essential, ubiquitous ribonuclear protein, which is over expressed in cancer and plays a role in resistance to cancer therapies. AIM: In this study, we examined radiation-induced DNA double strand breaks (DSB) in lung cancer cell lines and examined whether La/SSB associated with these DSB. METHOD: Three lung cancer lines (A549, H460 and LL2) were irradiated with different X-ray doses or X-radiated with a 5 Gy dose and examined at different time-points post-irradiation for DNA DSB in the form of γ-H2AX and Rad51 foci. Using fluorescence microscopy, we examined whether La/SSB and γ-H2AX co-localise and performed proximity ligation assay (PLA) and co-immunoprecipitation to confirm the interaction of these proteins. RESULTS: We found that the radio-resistant A549 cell line compared to the radio-sensitive H460 cell line showed faster resolution of radiation-induced γ-H2AX foci over time. Conversely, we found more co-localised γ-H2AX and La/SSB foci by PLA in irradiated A549 cells. CONCLUSION: The co-localisation of La/SSB with radiation-induced DNA breaks suggests a role of La/SSB in DNA repair, however further experimentation is required to validate this.


Subject(s)
Autoantigens , Carcinoma, Non-Small-Cell Lung , DNA Breaks, Double-Stranded , Lung Neoplasms , Ribonucleoproteins , Autoantigens/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/radiotherapy , Cell Line, Tumor , DNA/radiation effects , DNA Breaks, Double-Stranded/radiation effects , Humans , Lung Neoplasms/genetics , Lung Neoplasms/radiotherapy , RNA-Binding Proteins , Ribonucleoproteins/genetics , SS-B Antigen
20.
Front Endocrinol (Lausanne) ; 13: 877518, 2022.
Article in English | MEDLINE | ID: mdl-36093079

ABSTRACT

Introduction: Infertility is a worldwide problem. To evaluate the outcome of in vitro fertilization (IVF) treatment for infertility, many indicators need to be considered and the relation among indicators need to be studied. Objectives: To construct an IVF predicting model by a robust decision tree method and find important factors and their interrelation. Methods: IVF and intracytoplasmic sperm injection (ICSI) cycles between January 2010 and December 2020 in a women's hospital were collected. Comprehensive evaluation and examination of patients, specific therapy strategy and the outcome of treatment were recorded. Variables were selected through the significance of 1-way analysis between the clinical pregnant group and the nonpregnant group and then were discretized. Then, gradient boosting decision tree (GBDT) was used to construct the model to compute the score for predicting the rate of clinical pregnancy. Result: Thirty-eight variables with significant difference were selected for binning and thirty of them in which the pregnancy rate varied in different categories were chosen to construct the model. The final score computed by model predicted the clinical pregnancy rate well with the Area Under Curve (AUC) value achieving 0.704 and the consistency reaching 98.1%. Number of two-pronuclear embryo (2PN), age of women, AMH level, number of oocytes retrieved and endometrial thickness were important factors related to IVF outcome. Moreover, some interrelations among factors were found from model, which may assist clinicians in making decisions. Conclusion: This study constructed a model predicting the outcome of IVF cycles through a robust decision tree method and achieved satisfactory prediction performance. Important factors related to IVF outcome and some interrelations among factors were found.


Subject(s)
Embryo Transfer , Infertility , Decision Trees , Female , Fertilization in Vitro/methods , Humans , Male , Pregnancy , Semen
SELECTION OF CITATIONS
SEARCH DETAIL