Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Prev Med ; 184: 107999, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38735587

ABSTRACT

BACKGROUND: Limited research explores the impact of body mass index (BMI) change on osteoporosis, regarding the role of lipid metabolism. We aimed to cross-sectionally investigate these relationships in 820 Chinese participants aged 55-65 from the Taizhou Imaging Study. METHODS: We used the baseline data collected between 2013 and 2018. T-score was calculated by standardizing bone mineral density and was used for osteoporosis and osteopenia diagnosis. Multinomial logistic regression was used to examine the effect of BMI change on bone health status. Multivariable linear regression was employed to identify the metabolites corrected with BMI change and T-score. Exploratory factor analysis (EFA) and mediation analysis were conducted to ascertain the involvement of the metabolites. RESULTS: BMI increase served as a protective factor against osteoporosis (OR = 0.79[0.71-0.88], P-value<0.001) and osteopenia (OR = 0.88[0.82-0.95], P-value<0.001). Eighteen serum metabolites were associated with both BMI change and T-score. Specifically, high-density lipoprotein (HDL) substructures demonstrated negative correlations (ß = -0.08 to -0.06 and - 0.12 to -0.08, respectively), while very low-density lipoprotein (VLDL) substructions showed positive correlations (ß = 0.09 to 0.10 and 0.10 to 0.11, respectively). The two lipid factors (HDL and VLDL) extracted by EFA acted as mediators between BMI change and T-score (Prop. Mediated = 8.16% and 10.51%, all P-value<0.01). CONCLUSION: BMI gain among Chinese aged 55-65 is beneficial for reducing the risk of osteoporosis. The metabolism of HDL and VLDL partially mediates the effect of BMI change on bone loss. Our research offers novel insights into the prevention of osteoporosis, approached from the perspective of weight management and lipid metabolomics.


Subject(s)
Body Mass Index , Bone Density , Lipid Metabolism , Osteoporosis , Humans , Female , Male , Bone Density/physiology , Middle Aged , Cross-Sectional Studies , China/epidemiology , Aged , Bone Diseases, Metabolic
2.
BMC Geriatr ; 24(1): 531, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898411

ABSTRACT

BACKGROUND: Mild cognitive impairment has received widespread attention as a high-risk population for Alzheimer's disease, and many studies have developed or validated predictive models to assess it. However, the performance of the model development remains unknown. OBJECTIVE: The objective of this review was to provide an overview of prediction models for the risk of Alzheimer's disease dementia in older adults with mild cognitive impairment. METHOD: PubMed, EMBASE, Web of Science, and MEDLINE were systematically searched up to October 19, 2023. We included cohort studies in which risk prediction models for Alzheimer's disease dementia in older adults with mild cognitive impairment were developed or validated. The Predictive Model Risk of Bias Assessment Tool (PROBAST) was employed to assess model bias and applicability. Random-effects models combined model AUCs and calculated (approximate) 95% prediction intervals for estimations. Heterogeneity across studies was evaluated using the I2 statistic, and subgroup analyses were conducted to investigate sources of heterogeneity. Additionally, funnel plot analysis was utilized to identify publication bias. RESULTS: The analysis included 16 studies involving 9290 participants. Frequency analysis of predictors showed that 14 appeared at least twice and more, with age, functional activities questionnaire, and Mini-mental State Examination scores of cognitive functioning being the most common predictors. From the studies, only two models were externally validated. Eleven studies ultimately used machine learning, and four used traditional modelling methods. However, we found that in many of the studies, there were problems with insufficient sample sizes, missing important methodological information, lack of model presentation, and all of the models were rated as having a high or unclear risk of bias. The average AUC of the 15 best-developed predictive models was 0.87 (95% CI: 0.83, 0.90). DISCUSSION: Most published predictive modelling studies are deficient in rigour, resulting in a high risk of bias. Upcoming research should concentrate on enhancing methodological rigour and conducting external validation of models predicting Alzheimer's disease dementia. We also emphasize the importance of following the scientific method and transparent reporting to improve the accuracy, generalizability and reproducibility of study results. REGISTRATION: This systematic review was registered in PROSPERO (Registration ID: CRD42023468780).


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/epidemiology , Cognitive Dysfunction/psychology , Alzheimer Disease/epidemiology , Alzheimer Disease/diagnosis , Alzheimer Disease/psychology , Aged , Risk Assessment/methods
3.
Front Aging Neurosci ; 16: 1332767, 2024.
Article in English | MEDLINE | ID: mdl-38410746

ABSTRACT

Background and aims: Amnestic mild cognitive impairment (aMCI) is the most common subtype of MCI, which carries a significantly high risk of transitioning to Alzheimer's disease. Recently, increasing attention has been given to remnant cholesterol (RC), a non-traditional and previously overlooked risk factor. The aim of this study was to explore the association between plasma RC levels and aMCI. Methods: Data were obtained from Brain Health Cognitive Management Team in Wuhan (https://hbtcm.66nao.com/admin/). A total of 1,007 community-dwelling elders were recruited for this project. Based on ten tools including general demographic data, cognitive screening and some exclusion scales, these participants were divided into the aMCI (n = 401) and normal cognitive groups (n = 606). Physical examinations were conducted on all participants, with clinical indicators such as blood pressure, blood sugar, and blood lipids collected. Results: The aMCI group had significantly higher RC levels compared to the normal cognitive group (0.64 ± 0.431 vs. 0.52 ± 0.447 mmol/L, p < 0.05). Binary logistics regression revealed that occupation (P<0.001, OR = 0.533, 95%CI: 0.423-0.673) and RC (p = 0.014, OR = 1.477, 95% CI:1.081-2.018) were associated factors for aMCI. Partial correlation analysis, after controlling for occupation, showed a significant negative correlation between RC levels and MoCA scores (r = 0.059, p = 0.046), as well as Naming scores (r = 0.070, p = 0.026). ROC curve analysis demonstrated that RC levels had an independent predictive efficacy in predicting aMCI (AUC = 0.580, 95%CI: 0.544 ~ 0.615, P < 0.001). Conclusion: Higher RC levels were identified as an independent indicator for aMCI, particularly in the naming cognitive domain among older individuals. Further longitudinal studies are necessary to validate the predictive efficacy of RC.

4.
Imeta ; 3(2): e169, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882494

ABSTRACT

The infant gut microbiome is increasingly recognized as a reservoir of antibiotic resistance genes, yet the assembly of gut resistome in infants and its influencing factors remain largely unknown. We characterized resistome in 4132 metagenomes from 963 infants in six countries and 4285 resistance genes were observed. The inherent resistome pattern of healthy infants (N = 272) could be distinguished by two stages: a multicompound resistance phase (Months 0-7) and a tetracycline-mupirocin-ß-lactam-dominant phase (Months 8-14). Microbial taxonomy explained 40.7% of the gut resistome of healthy infants, with Escherichia (25.5%) harboring the most resistance genes. In a further analysis with all available infants (N = 963), we found age was the strongest influencer on the resistome and was negatively correlated with the overall resistance during the first 3 years (p < 0.001). Using a random-forest approach, a set of 34 resistance genes could be used to predict age (R 2 = 68.0%). Leveraging microbial host inference analyses, we inferred the age-dependent assembly of infant resistome was a result of shifts in the gut microbiome, primarily driven by changes in taxa that disproportionately harbor resistance genes across taxa (e.g., Escherichia coli more frequently harbored resistance genes than other taxa). We performed metagenomic functional profiling and metagenomic assembled genome analyses whose results indicate that the development of gut resistome was driven by changes in microbial carbohydrate metabolism, with an increasing need for carbohydrate-active enzymes from Bacteroidota and a decreasing need for Pseudomonadota during infancy. Importantly, we observed increased acquired resistance genes over time, which was related to increased horizontal gene transfer in the developing infant gut microbiome. In summary, infant age was negatively correlated with antimicrobial resistance gene levels, reflecting a composition shift in the gut microbiome, likely driven by the changing need for microbial carbohydrate metabolism during early life.

5.
Curr Res Food Sci ; 8: 100687, 2024.
Article in English | MEDLINE | ID: mdl-38318314

ABSTRACT

The potential adverse effects of the plant-based dietary pattern on bone health have received widespread attention. However, the biological mechanisms underlying the adverse effects of plant-based diets on bone health remain incompletely understood. The objective of this study was to identify potential biomarkers between plant-based diets and bone loss utilizing metabolomic techniques in the Taizhou Imaging Study (TIS) (N = 788). Plant-based diet indexes (overall plant-based diet index (PDI), healthy plant-based diet index (hPDI), and unhealthy plant-based diet index (uPDI)) were calculated using the food frequency questionnaire, and bone mineral density (BMD) was measured using dual-energy X-ray absorptiometry. A multinomial logistic regression was used to explore the associations of plant-based diet indexes with bone loss. Furthermore, mediation analysis and exploratory factor analysis (EFA) were performed to explore the mediated effects of metabolites on the association of plant-based diets with BMD T-score. Our results showed that higher hPDI and uPDI were positively associated with bone loss. Moreover, nineteen metabolites were significantly associated with BMD T-score, among them, seven metabolites were associated with uPDI. Except for cholesterol esters in VLDL-1, the remaining six metabolites significantly mediated the negative association between uPDI and BMD T-score. Interestingly, we observed that the same six metabolites mediated the positive association between fresh fruit and BMD T-score. Collectively, our results support the deleterious effects of plant-based diets on bone health and discover the potential mediation effect of metabolites on the association of plant-based diets with bone loss. The findings offer valuable insights that could optimize dietary recommendations and interventions, contributing to alleviate the potential adverse effects associated with plant-based diets.

6.
Colloids Surf B Biointerfaces ; 141: 537-545, 2016 May 01.
Article in English | MEDLINE | ID: mdl-26896661

ABSTRACT

Functionalization of inorganic nanoparticles (NPs) play an important role in biomedical applications. A proper functionalization of NPs can improve biocompatibility, avoid a loss of bioactivity, and further endow NPs with unique performances. Modification with vairous specific binding biomolecules from random biological libraries has been explored. In this work, two 7-mer peptides with sequences of HYIDFRW and TVNFKLY were selected from a phage display random peptide library by using ferromagnetic NPs as targets, and were verified to display strong binding affinity to Fe3O4 NPs. Fourier transform infrared spectrometry, fluorescence microscopy, thermal analysis and X-ray photoelectron spectroscopy confirmed the presence of peptides on the surface of Fe3O4 NPs. Sequence analyses revealed that the probable binding mechanism between the peptide and Fe3O4 NPs might be driven by Pearson hard acid-hard base specific interaction and hydrogen bonds, accompanied with hydrophilic interactions and non-specific electrostatic attractions. The cell viability assay indicated a good cytocompatibility of peptide-bound Fe3O4 NPs. Furthermore, TVNFKLY peptide and an ovarian tumor cell A2780 specific binding peptide (QQTNWSL) were conjugated to afford a liner 14-mer peptide (QQTNWSLTVNFKLY). The binding and targeting studies showed that 14-mer peptide was able to retain both the strong binding ability to Fe3O4 NPs and the specific binding ability to A2780 cells. The results suggested that the Fe3O4-binding peptides would be of great potential in the functionalization of Fe3O4 NPs for the tumor-targeted drug delivery and magnetic hyperthermia.


Subject(s)
Ferric Compounds/chemistry , Magnetite Nanoparticles/chemistry , Peptide Library , Peptides/chemistry , Amino Acid Sequence , Animals , Binding, Competitive , Cell Line , Cell Line, Tumor , Cell Survival/drug effects , Cells, Cultured , Ferric Compounds/metabolism , Ferric Compounds/toxicity , Fibroblasts/cytology , Fibroblasts/drug effects , Humans , Magnetite Nanoparticles/toxicity , Magnetite Nanoparticles/ultrastructure , Mice , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Oligopeptides/chemistry , Oligopeptides/metabolism , Oligopeptides/toxicity , Peptides/metabolism , Peptides/toxicity , Photoelectron Spectroscopy , Protein Binding , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL