Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 335
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 608(7924): 766-777, 2022 08.
Article in English | MEDLINE | ID: mdl-35948637

ABSTRACT

Myocardial infarction is a leading cause of death worldwide1. Although advances have been made in acute treatment, an incomplete understanding of remodelling processes has limited the effectiveness of therapies to reduce late-stage mortality2. Here we generate an integrative high-resolution map of human cardiac remodelling after myocardial infarction using single-cell gene expression, chromatin accessibility and spatial transcriptomic profiling of multiple physiological zones at distinct time points in myocardium from patients with myocardial infarction and controls. Multi-modal data integration enabled us to evaluate cardiac cell-type compositions at increased resolution, yielding insights into changes of the cardiac transcriptome and epigenome through the identification of distinct tissue structures of injury, repair and remodelling. We identified and validated disease-specific cardiac cell states of major cell types and analysed them in their spatial context, evaluating their dependency on other cell types. Our data elucidate the molecular principles of human myocardial tissue organization, recapitulating a gradual cardiomyocyte and myeloid continuum following ischaemic injury. In sum, our study provides an integrative molecular map of human myocardial infarction, represents an essential reference for the field and paves the way for advanced mechanistic and therapeutic studies of cardiac disease.


Subject(s)
Atrial Remodeling , Chromatin Assembly and Disassembly , Gene Expression Profiling , Myocardial Infarction , Single-Cell Analysis , Ventricular Remodeling , Atrial Remodeling/genetics , Case-Control Studies , Chromatin/genetics , Epigenome , Humans , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Time Factors , Ventricular Remodeling/genetics
2.
Proc Natl Acad Sci U S A ; 120(20): e2302191120, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37155869

ABSTRACT

Circular RNAs (circRNAs) are a class of RNAs commonly found across eukaryotes and viruses, characterized by their resistance to exonuclease-mediated degradation. Their superior stability compared to linear RNAs, combined with previous work showing that engineered circRNAs serve as efficient protein translation templates, make circRNA a promising candidate for RNA medicine. Here, we systematically examine the adjuvant activity, route of administration, and antigen-specific immunity of circRNA vaccination in mice. Potent circRNA adjuvant activity is associated with RNA uptake and activation of myeloid cells in the draining lymph nodes and transient cytokine release. Immunization of mice with engineered circRNA encoding a protein antigen delivered by a charge-altering releasable transporter induced innate activation of dendritic cells, robust antigen-specific CD8 T cell responses in lymph nodes and tissues, and strong antitumor efficacy as a therapeutic cancer vaccine. These results highlight the potential utility of circRNA vaccines for stimulating potent innate and T cell responses in tissues.


Subject(s)
Immunization , RNA, Circular , Mice , Animals , RNA, Circular/genetics , RNA, Circular/metabolism , Immunization/methods , CD8-Positive T-Lymphocytes , Vaccination/methods , Adjuvants, Immunologic , RNA/genetics , RNA/metabolism , Antigens/metabolism , Mice, Inbred C57BL
3.
Nat Methods ; 19(10): 1250-1261, 2022 10.
Article in English | MEDLINE | ID: mdl-36192463

ABSTRACT

Biological networks constructed from varied data can be used to map cellular function, but each data type has limitations. Network integration promises to address these limitations by combining and automatically weighting input information to obtain a more accurate and comprehensive representation of the underlying biology. We developed a deep learning-based network integration algorithm that incorporates a graph convolutional network framework. Our method, BIONIC (Biological Network Integration using Convolutions), learns features that contain substantially more functional information compared to existing approaches. BIONIC has unsupervised and semisupervised learning modes, making use of available gene function annotations. BIONIC is scalable in both size and quantity of the input networks, making it feasible to integrate numerous networks on the scale of the human genome. To demonstrate the use of BIONIC in identifying new biology, we predicted and experimentally validated essential gene chemical-genetic interactions from nonessential gene profiles in yeast.


Subject(s)
Algorithms , Bionics , Genome, Human , Humans , Molecular Sequence Annotation
4.
Cell Mol Life Sci ; 81(1): 56, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38270638

ABSTRACT

BACKGROUND: Until now, there has been no particularly effective treatment for chronic kidney disease (CKD). Fibrosis is a common pathological change that exist in CKD. METHODS: To better understand the transcriptional dynamics in fibrotic kidney, we make use of single-nucleus assay for transposase-accessible chromatin sequencing (snATAC-seq) and single-cell RNA sequencing (scRNA-seq) from GEO datasets and perform scRNA-seq of human biopsy to seek possible transcription factors (TFs) regulating target genes in the progress of kidney fibrosis across mouse and human kidneys. RESULTS: Our analysis has displayed chromatin accessibility, gene expression pattern and cell-cell communications at single-cell level in kidneys suffering from unilateral ureteral obstruction (UUO) or chronic interstitial nephritis (CIN). Using multimodal data, there exists epigenetic regulation producing less Sod1 and Sod2 mRNA within the proximal tubule which is hard to withstand oxidative stress during fibrosis. Meanwhile, a transcription factor Nfix promoting the apoptosis-related gene Ifi27 expression found by multimodal data was validated by an in vitro study. And the gene Ifi27 upregulated by in situ AAV injection within the kidney cortex aggravates kidney fibrosis. CONCLUSIONS: In conclusion, as we know oxidation and apoptosis are traumatic factors during fibrosis, thus enhancing antioxidation and inhibiting the Nfix-Ifi27 pathway to inhibit apoptosis could be a potential treatment for kidney fibrosis.


Subject(s)
Antioxidants , Renal Insufficiency, Chronic , Humans , Animals , Mice , Epigenesis, Genetic/genetics , Multiomics , Kidney , Apoptosis/genetics , Chromatin , Fibrosis , NFI Transcription Factors
5.
Nano Lett ; 24(5): 1563-1569, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38262051

ABSTRACT

Ferromagnetic (FM) states with high Curie temperatures (Tc) and strong spin-orbit coupling (SOC) are indispensable for the long-sought room-temperature quantum anomalous Hall (QAH) effects. Here, we propose a two-dimensional (2D) iron-based monolayer MgFeP that exhibits a notably high FM Tc (about 1525 K) along with exceptional structural stabilities. The unique multiorbital nature in MgFeP, where localized dx2-y2 and dxz/yz orbitals coexist with itinerant dxy and dz2 orbitals, renders the monolayer a Hund's metal and in an orbital-selective Mott phase (OSMP). This OSMP triggers an FM double exchange mechanism, rationalizing the high Tc in the Hund's metal. This material transitions to a QAH insulator upon consideration of the SOC effect. By leveraging orbital selectivity, the QAH band gap can be enlarged by more than two times (to 137 meV). Our findings showcase Hund's metals as a promising material platform for realizing high-performance quantum topological electronic devices.

6.
J Am Chem Soc ; 146(21): 14785-14798, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38743019

ABSTRACT

Selective RNA delivery is required for the broad implementation of RNA clinical applications, including prophylactic and therapeutic vaccinations, immunotherapies for cancer, and genome editing. Current polyanion delivery relies heavily on cationic amines, while cationic guanidinium systems have received limited attention due in part to their strong polyanion association, which impedes intracellular polyanion release. Here, we disclose a general solution to this problem in which cationic guanidinium groups are used to form stable RNA complexes upon formulation but at physiological pH undergo a novel charge-neutralization process, resulting in RNA release. This new delivery system consists of guanidinylated serinol moieties incorporated into a charge-altering releasable transporter (GSer-CARTs). Significantly, systematic variations in structure and formulation resulted in GSer-CARTs that exhibit highly selective mRNA delivery to the lung (∼97%) and spleen (∼98%) without targeting ligands. Illustrative of their breadth and translational potential, GSer-CARTs deliver circRNA, providing the basis for a cancer vaccination strategy, which in a murine model resulted in antigen-specific immune responses and effective suppression of established tumors.


Subject(s)
Guanidine , RNA, Messenger , Animals , Mice , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Messenger/chemistry , Guanidine/chemistry , Humans , Serine/chemistry
7.
Small ; 20(13): e2306545, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37972279

ABSTRACT

With the rapid development of industry and technology, high-efficiency extraction of uranium from seawater is a research hotspot from the aspect of nuclear energy development. Herein, a new amidoximated metal-organic framework (UiO-66-DAMN-AO) constructed through a novel organic ligand of 2-diaminomaleonitrile-terephthalic acid (BDC-DAMN) is designed via one-step post-synthetic methods (PSM), which possess the merit of abundant multiaffinity sites, large specific surface area, and unique porous structure for efficient uranium extraction. Adopting one-step PSM can alleviate the destruction of structural stability and the reduction of the conversion rate of amidoxime groups. Meanwhile, introducing the BDC-DAMN ligand with abundant multiaffinity sites endow UiO-66-DAMN-AO with excellent adsorption ability (Qm = 426.3 mg g-1) and selectivity. Interestingly, the UiO-66-DAMN-AO has both micropores and mesopores, which may be attributed to the partial etching of UiO-66-DAMN-AO during the amidoximation. The presence of mesopores improves the mass transfer rate of UiO-66-DAMN-AO and provides more exposed active sites, favoring the adsorption of uranium on UiO-66-DAMN-AO. Thus, this study provides a feasible strategy for modifying metal-organic framework (MOFs) with plentiful amidoxime groups and the promising prospect for MOF-based materials to adsorb uranium from ocean.

8.
Small ; : e2312256, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030979

ABSTRACT

Polysulfide shuttle and sluggish sulfur redox kinetics remain key challenges in lithium-sulfur batteries. Previous researches have shown that introducing oxygen into transition metal sulfides helps to capture polysulfides and enhance their conversion kinetics. Based on this, further investigations are conducted to explore the impact of oxygen doping levels on the physical-chemical properties and electrocatalytic performance of MoS2. The findings reveal that MoS2 doped with high-content oxygen exhibits enhanced conductivity and polysulfides conversion kinetics compared to MoS2 with low-content oxygen doping, which can be attributed to the alteration of crystal structure from 2H-phase to the 1T-phase, the introduction of increased Li-O interactions, and the effect of defects resulting from high-oxygen doping. Consequently, the lithium-sulfur batteries using high-oxygen doped MoS2 as a catalyst deliver a high discharge capacity of 1015 mAh g-1 at 0.25C and maintain 78.5% capacity after 300 more cycles. Specifically, lithium-sulfur batteries employing paper-based electrodedemonstrate an areal capacity of 3.91 mAh cm-2 at 0.15C, even with sulfur loading of 4.1 mg cm-2 and electrolyte of 6.7 µL mg-1. These results indicate that oxygen doping levels can modify the properties of MoS2, and high-oxygen doped MoS2 shows promise as an efficient catalyst for lithium-sulfur batteries.

9.
Biomacromolecules ; 25(7): 4305-4316, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38814265

ABSTRACT

The delivery of oligonucleotides across biological barriers is a challenge of unsurpassed significance at the interface of materials science and medicine, with emerging clinical utility in prophylactic and therapeutic vaccinations, immunotherapies, genome editing, and cell rejuvenation. Here, we address the role of readily available branched lipids in the design, synthesis, and evaluation of isoprenoid charge-altering releasable transporters (CARTs), a pH-responsive oligomeric nanoparticle delivery system for RNA. Systematic variation of the lipid block reveals an emergent relationship between the lipid block and the neutralization kinetics of the polycationic block. Unexpectedly, iA21A11, a CART with the smallest lipid side chain, isoamyl-, was identified as the lead isoprenoid CART for the in vitro transfection of immortalized lymphoblastic cell lines. When administered intramuscularly in a murine model, iA21A11-mRNA complexes induce higher protein expression levels than our previous lead CART, ONA. Isoprenoid CARTs represent a new delivery platform for RNA vaccines and other polyanion-based therapeutics.


Subject(s)
Lipids , RNA, Messenger , Animals , Mice , RNA, Messenger/genetics , Lipids/chemistry , Humans , Terpenes/chemistry , Archaea/genetics , Archaea/chemistry , Nanoparticles/chemistry
10.
Scand J Gastroenterol ; 59(2): 239-245, 2024.
Article in English | MEDLINE | ID: mdl-37865826

ABSTRACT

OBJECTIVES: This study aimed to evaluate the clinical and prognostic characteristics of primary gastric gastrointestinal stromal tumors (GIST). METHODS: Patients who underwent resection for primary gastric GIST between January 2002 and December 2017 were included. Recurrence-free survival (RFS) was calculated by Kaplan-Meier analysis, and Cox proportional hazards model was used to identify independent prognostic factors. RESULTS: Altogether, 653 patients were enrolled. The median patient age was 59 years (range 15-86 years). Open, laparoscopic, and endoscopic resections were performed in 394 (60.3%), 105 (16.1%), and 154 (23.6%) patients, respectively. According to the modified NIH consensus classification, 132 (20.2%), 245 (37.5%), 166 (25.4%), and 88 (13.5%) patients were categorized into very low-, low-, intermediate-, and high-risk, respectively. A total of 136 (20.8%) patients received adjuvant imatinib treatment. The median follow-up time was 78 months (range 4-219 months), and the estimated 5-year RFS rate was 93.0%. In all patients, tumor size and rupture, mitotic counts, and adjuvant imatinib treatment were independent prognostic factors. The prognosis of gastric GIST treated with endoscopic resection was not significantly different from that of laparoscopic or open resection after adjusting for covariates using propensity score matching (log-rank p = .558). Adjuvant imatinib treatment (HR = 0.151, 95%CI 0.055-0.417, p < .001) was a favorable prognostic factor for high-risk patients, but was not associated with prognosis in intermediate-risk patients. CONCLUSION: Patients with small gastric GISTs who successfully underwent endoscopic resection may have a favorable prognosis. Adjuvant imatinib treatment improve the prognosis of high-risk gastric GISTs, however, its use in intermediate-risk patients remains controversial.


Subject(s)
Antineoplastic Agents , Gastrointestinal Stromal Tumors , Stomach Neoplasms , Humans , Adolescent , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Imatinib Mesylate/therapeutic use , Gastrointestinal Stromal Tumors/surgery , Gastrointestinal Stromal Tumors/drug therapy , Antineoplastic Agents/therapeutic use , Retrospective Studies , Prognosis , Stomach Neoplasms/surgery
11.
Br J Anaesth ; 133(2): 296-304, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38839471

ABSTRACT

BACKGROUND: The comparative effectiveness of volatile anaesthesia and total intravenous anaesthesia (TIVA) in terms of patient outcomes after cardiac surgery remains a topic of debate. METHODS: Multicentre randomised trial in 16 tertiary hospitals in China. Adult patients undergoing elective cardiac surgery were randomised in a 1:1 ratio to receive volatile anaesthesia (sevoflurane or desflurane) or propofol-based TIVA. The primary outcome was a composite of predefined major complications during hospitalisation and mortality 30 days after surgery. RESULTS: Of the 3123 randomised patients, 3083 (98.7%; mean age 55 yr; 1419 [46.0%] women) were included in the modified intention-to-treat analysis. The composite primary outcome was met by a similar number of patients in both groups (volatile group: 517 of 1531 (33.8%) patients vs TIVA group: 515 of 1552 (33.2%) patients; relative risk 1.02 [0.92-1.12]; P=0.76; adjusted odds ratio 1.05 [0.90-1.22]; P=0.57). Secondary outcomes including 6-month and 1-yr mortality, duration of mechanical ventilation, length of ICU and hospital stay, and healthcare costs, were also similar for the two groups. CONCLUSIONS: Among adults undergoing cardiac surgery, we found no difference in the clinical effectiveness of volatile anaesthesia and propofol-based TIVA. CLINICAL TRIAL REGISTRATION: Chinese Clinical Trial Registry (ChiCTR-IOR-17013578).


Subject(s)
Anesthetics, Inhalation , Anesthetics, Intravenous , Cardiac Surgical Procedures , Desflurane , Postoperative Complications , Propofol , Humans , Propofol/adverse effects , Female , Male , Middle Aged , Cardiac Surgical Procedures/adverse effects , Cardiac Surgical Procedures/mortality , Anesthetics, Intravenous/adverse effects , Anesthetics, Inhalation/adverse effects , Aged , Postoperative Complications/mortality , Postoperative Complications/prevention & control , Adult , Sevoflurane/adverse effects , Anesthesia, Intravenous/methods , China/epidemiology , Length of Stay/statistics & numerical data , Anesthesia, Inhalation/methods , Anesthesia, Inhalation/adverse effects , Treatment Outcome
12.
Nucleic Acids Res ; 50(16): 9470-9489, 2022 09 09.
Article in English | MEDLINE | ID: mdl-35947700

ABSTRACT

The HAV nonstructural protein 2C is essential for virus replication; however, its precise function remains elusive. Although HAV 2C shares 24-27% sequence identity with other 2Cs, key motifs are conserved. Here, we demonstrate that HAV 2C is an ATPase but lacking helicase activity. We identified an ATPase-independent nuclease activity of HAV 2C with a preference for polyuridylic single-stranded RNAs. We determined the crystal structure of an HAV 2C fragment to 2.2 Å resolution, containing an ATPase domain, a region equivalent to enterovirus 2C zinc-finger (ZFER) and a C-terminal amphipathic helix (PBD). The PBD of HAV 2C occupies a hydrophobic pocket (Pocket) in the adjacent 2C, and we show the PBD-Pocket interaction is vital for 2C functions. We identified acidic residues that are essential for the ribonuclease activity and demonstrated mutations at these sites abrogate virus replication. We built a hexameric-ring model of HAV 2C, revealing the ribonuclease-essential residues clustering around the central pore of the ring, whereas the ATPase active sites line up at the gaps between adjacent 2Cs. Finally, we show the ribonuclease activity is shared by other picornavirus 2Cs. Our findings identified a previously unfound activity of picornavirus 2C, providing novel insights into the mechanisms of virus replication.


Subject(s)
Hepatitis A virus , Picornaviridae , Viral Nonstructural Proteins/metabolism , Hepatitis A virus/genetics , Hepatitis A virus/metabolism , Virus Replication/genetics , RNA , Picornaviridae/genetics , Adenosine Triphosphatases/genetics , Ribonucleases , RNA, Viral/genetics , RNA, Viral/metabolism
13.
J Appl Toxicol ; 44(6): 919-932, 2024 06.
Article in English | MEDLINE | ID: mdl-38400677

ABSTRACT

Isobavachalcone (IBC) is a flavonoid component derived from Psoraleae Fructus that can increase skin pigmentation and treat vitiligo. However, IBC has been reported to be hepatotoxic. Current studies on IBC hepatotoxicity are mostly on normal organisms but lack studies on hepatotoxicity in patients. This study established the depigmented zebrafish model by using phenylthiourea (PTU) and investigated the difference in hepatotoxicity between normal and depigmented zebrafish caused by IBC and the underlying mechanism. Morphological, histological, and ultrastructural examination and RT-qPCR verification were used to evaluate the effects of IBC on the livers of zebrafish larvae. IBC significantly decreased liver volume, altered lipid metabolism, and induced pathological and ultrastructural changes in the livers of zebrafish with depigmentation compared with normal zebrafish. The RNA-sequencing and RT-qPCR results showed that the difference in hepatotoxicity between normal and depigmented zebrafish caused by IBC was closely related to the calcium signaling pathway, lipid decomposition and metabolism, and oxidative stress. This work delved into the mechanism of the enhanced IBC-induced hepatotoxicity in depigmented zebrafish and provided a new insight into the hepatotoxicity of IBC.


Subject(s)
Calcium Signaling , Chalcones , Chemical and Drug Induced Liver Injury , Zebrafish , Animals , Chalcones/toxicity , Calcium Signaling/drug effects , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Lipid Metabolism Disorders/chemically induced , Lipid Metabolism Disorders/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Lipid Metabolism/drug effects , Oxidative Stress/drug effects
14.
J Sci Food Agric ; 104(10): 6149-6156, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38445560

ABSTRACT

BACKGROUND: Whole wheat steamed bread has been recommended for its potential nutritional benefits to human health. Given the positive role of both organic acid and alkali in improving dough development and product quality, the present study investigated the effects of neutralization by addition of alkali (Na2CO3) after dough acidification with traditional Jiaozi starter on the properties of whole wheat dough. RESULTS: The population of yeast and lactic acid bacteria and the acidification level of the dough increased significantly after fermentation with Jiaozi. Incorporation of alkali greatly improved the leavening capacity of the remixed dough and the quality of steamed bread. Jiaozi fermentation and alkali addition changed the water distribution patterns (T2) and affected the secondary structures of gluten protein, starch crystallinity and pasting properties. The storage modulus (G') of the dough increased significantly with the alkali addition, which could be attributed to the promoted cross-linking of the gluten structure and the altered hydration state of the macromolecules. CONCLUSION: The results of the present study indicate that a combination of Jiaozi fermentation and alkali addition could improve the technological properties of whole wheat dough and the quality of steamed bread. The results will help us to further explore the potential application of moderate acidification and alkali addition in the production of leavened whole wheat products. © 2024 Society of Chemical Industry.


Subject(s)
Bread , Fermentation , Flour , Glutens , Triticum , Triticum/chemistry , Bread/analysis , Flour/analysis , Hydrogen-Ion Concentration , Glutens/chemistry , Food Handling/methods , Lactobacillales/metabolism , Lactobacillales/chemistry , Alkalies/chemistry , Yeasts/chemistry , Yeasts/metabolism , Carbonates
15.
BMC Bioinformatics ; 24(1): 79, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36879236

ABSTRACT

BACKGROUND: Massive amounts of data are produced by combining next-generation sequencing with complex biochemistry techniques to characterize regulatory genomics profiles, such as protein-DNA interaction and chromatin accessibility. Interpretation of such high-throughput data typically requires different computation methods. However, existing tools are usually developed for a specific task, which makes it challenging to analyze the data in an integrative manner. RESULTS: We here describe the Regulatory Genomics Toolbox (RGT), a computational library for the integrative analysis of regulatory genomics data. RGT provides different functionalities to handle genomic signals and regions. Based on that, we developed several tools to perform distinct downstream analyses, including the prediction of transcription factor binding sites using ATAC-seq data, identification of differential peaks from ChIP-seq data, and detection of triple helix mediated RNA and DNA interactions, visualization, and finding an association between distinct regulatory factors. CONCLUSION: We present here RGT; a framework to facilitate the customization of computational methods to analyze genomic data for specific regulatory genomics problems. RGT is a comprehensive and flexible Python package for analyzing high throughput regulatory genomics data and is available at: https://github.com/CostaLab/reg-gen . The documentation is available at: https://reg-gen.readthedocs.io.


Subject(s)
Chromatin , Genomics , Chromatin Immunoprecipitation Sequencing , Documentation , Gene Library
16.
Mol Cancer ; 22(1): 131, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37563723

ABSTRACT

BACKGROUND: Chimeric antigen receptor (CAR) -T cell therapy is an efficient therapeutic strategy for specific hematologic malignancies. However, positive outcomes of this novel therapy in treating solid tumors are curtailed by the immunosuppressive tumor microenvironment (TME), wherein signaling of the checkpoint programmed death-1 (PD-1)/PD-L1 directly inhibits T-cell responses. Although checkpoint-targeted immunotherapy succeeds in increasing the number of T cells produced to control tumor growth, the desired effect is mitigated by the action of myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) in the TME. Previous studies have confirmed that targeting triggering-receptor-expressed on myeloid cells 2 (TREM2) on TAMs and MDSCs enhances the outcomes of anti-PD-1 immunotherapy. METHODS: We constructed carcinoembryonic antigen (CEA)-specific CAR-T cells for colorectal cancer (CRC)-specific antigens with an autocrine PD-1-TREM2 single-chain variable fragment (scFv) to target the PD-1/PD-L1 pathway, MDSCs and TAMs. RESULTS: We found that the PD-1-TREM2-targeting scFv inhibited the activation of the PD-1/PD-L1 pathway. In addition, these secreted scFvs blocked the binding of ligands to TREM2 receptors present on MDSCs and TAMs, reduced the proportion of MDSCs and TAMs, and enhanced T-cell effector function, thereby mitigating immune resistance in the TME. PD-1-TREM2 scFv-secreting CAR-T cells resulted in highly effective elimination of tumors compared to that achieved with PD-1 scFv-secreting CAR-T therapy in a subcutaneous CRC mouse model. Moreover, the PD-1-TREM2 scFv secreted by CAR-T cells remained localized within tumors and exhibited an extended half-life. CONCLUSIONS: Together, these results indicate that PD-1-TREM2 scFv-secreting CAR-T cells have strong potential as an effective therapy for CRC.


Subject(s)
Colorectal Neoplasms , Immunotherapy, Adoptive , Single-Chain Antibodies , Animals , Mice , B7-H1 Antigen/metabolism , Cell Line, Tumor , Colorectal Neoplasms/therapy , Colorectal Neoplasms/metabolism , Single-Chain Antibodies/genetics , Single-Chain Antibodies/metabolism , T-Lymphocytes , Tumor Microenvironment
17.
Bioinformatics ; 38(Suppl 1): i282-i289, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35758807

ABSTRACT

MOTIVATION: The advent of multi-modal single-cell sequencing techniques have shed new light on molecular mechanisms by simultaneously inspecting transcriptomes, epigenomes and proteomes of the same cell. However, to date, the existing computational approaches for integration of multimodal single-cell data are either computationally expensive, require the delineation of parameters or can only be applied to particular modalities. RESULTS: Here we present a single-cell multi-modal integration method, named Multi-mOdal Joint IntegraTion of cOmpOnents (MOJITOO). MOJITOO uses canonical correlation analysis for a fast and parameter free detection of a shared representation of cells from multimodal single-cell data. Moreover, estimated canonical components can be used for interpretation, i.e. association of modality-specific molecular features with the latent space. We evaluate MOJITOO using bi- and tri-modal single-cell datasets and show that MOJITOO outperforms existing methods regarding computational requirements, preservation of original latent spaces and clustering. AVAILABILITY AND IMPLEMENTATION: The software, code and data for benchmarking are available at https://github.com/CostaLab/MOJITOO and https://doi.org/10.5281/zenodo.6348128. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Software , Transcriptome , Benchmarking , Cluster Analysis , Proteome
18.
J Transl Med ; 21(1): 383, 2023 06 12.
Article in English | MEDLINE | ID: mdl-37308954

ABSTRACT

BACKGROUND: Non-small cell lung cancer (NSCLC) is a worldwide health threat with high annual morbidity and mortality. Chemotherapeutic drugs such as paclitaxel (PTX) have been widely applied clinically. However, systemic toxicity due to the non-specific circulation of PTX often leads to multi-organ damage, including to the liver and kidney. Thus, it is necessary to develop a novel strategy to enhance the targeted antitumor effects of PTX. METHODS: Here, we engineered exosomes derived from T cells expressing the chimeric antigen receptor (CAR-Exos), which targeted mesothelin (MSLN)-expressing Lewis lung cancer (MSLN-LLC) through the anti-MSLN single-chain variable fragment (scFv) of CAR-Exos. PTX was encapsulated into CAR-Exos (PTX@CAR-Exos) and administered via inhalation to an orthotopic lung cancer mouse model. RESULTS: Inhaled PTX@CAR-Exos accumulated within the tumor area, reduced tumor size, and prolonged survival with little toxicity. In addition, PTX@CAR-Exos reprogrammed the tumor microenvironment and reversed the immunosuppression, which was attributed to infiltrating CD8+ T cells and elevated IFN-γ and TNF-α levels. CONCLUSIONS: Our study provides a nanovesicle-based delivery platform to promote the efficacy of chemotherapeutic drugs with fewer side effects. This novel strategy may ameliorate the present obstacles to the clinical treatment of lung cancer.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Exosomes , Lung Neoplasms , Animals , Mice , Paclitaxel , CD8-Positive T-Lymphocytes , Tumor Microenvironment
19.
Opt Express ; 31(14): 23579-23588, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37475438

ABSTRACT

Scaling up superconducting nanowire single-photon detectors (SNSPDs) into a large array for imaging applications is the current pursuit. Although various readout architectures have been proposed, they cannot resolve multiple-photon detections (MPDs) currently, which limits the operation of the SNSPD arrays at high photon flux. In this study, we focused on the readout ambiguity of a superconducting nanowire single-photon imager applying time-of-flight multiplexing readout. The results showed that image distortion depended on both the incident photon flux and the imaging object. By extracting multiple-photon detections on idle pixels, which were virtual because of the incorrect mapping from the ambiguous readout, a correction method was proposed. An improvement factor of 1.3~9.3 at a photon flux of µ = 5 photon/pulse was obtained, which indicated that joint development of the pixel design and restoration algorithm could compensate for the readout ambiguity and increase the dynamic range.

20.
Eur J Nucl Med Mol Imaging ; 50(7): 2100-2113, 2023 06.
Article in English | MEDLINE | ID: mdl-36807768

ABSTRACT

PURPOSE: Extradomain B of fibronectin (EDB-FN) is a promising diagnostic and therapeutic biomarker for thyroid cancer (TC). Here, we identified a high-affinity EDB-FN targeted peptide named EDBp (AVRTSAD) and developed three EDBp-based probes, Cy5-PEG4-EDBp(Cy5-EDBp), [18F]-NOTA-PEG4-EDBp([18F]-EDBp), and [177Lu]-DOTA-PEG4-EDBp ([177Lu]-EDBp), for the surgical navigation, radionuclide imaging, and therapy of TC. METHODS: Based on the previously identified EDB-FN targeted peptide ZD2, the optimized EDB-FN targeted peptide EDBp was identified by using the alanine scan strategy. Three EDBp-based probes, Cy5-EDBp, [18F]-EDBp, and [177Lu]-EDBp, were developed for fluorescence imaging, positron emission tomography (PET) imaging, and radiotherapy in TC tumor-bearing mice, respectively. Additionally, [18F]-EDBp was evaluated in two TC patients. RESULTS: The binding affinity of EDBp to the EDB fragment protein (Kd = 14.4 ± 1.4 nM, n = 3) was approximately 336-fold greater than that of the ZD2 (Kd = 4839.7 ± 361.7 nM, n = 3). Fluorescence imaging with Cy5-EDBp facilitated the complete removal of TC tumors. [18F]-EDBp PET imaging clearly delineated TC tumors, with high tumor uptake (16.43 ± 1.008%ID/g, n = 6, at 1-h postinjection). Radiotherapy with [177Lu]-EDBp inhibited tumor growth and prolonged survival in TC tumor-bearing mice (survival time of different treatment groups: saline vs. EDBp vs. ABRAXANE vs. [177Lu]-EDBp = 8.00 d vs. 8.00 d vs. 11.67 d vs. 22.33 d, ***p < 0.001). Importantly, the first-in-human evaluation of [18F]-EDBp demonstrated that it had specific targeting properties (SUVmax value of 3.6) and safety. CONCLUSION: Cy5-EDBp, [18F]-EDBp, and [177Lu]-EDBp are promising candidates for the surgical navigation, radionuclide imaging, and radionuclide therapy of TC, respectively.


Subject(s)
Surgery, Computer-Assisted , Thyroid Neoplasms , Humans , Animals , Mice , Fibronectins/metabolism , Positron-Emission Tomography , Peptides , Thyroid Neoplasms/diagnostic imaging , Thyroid Neoplasms/therapy , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL