Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 706
Filter
Add more filters

Publication year range
1.
Cell ; 187(18): 4905-4925.e24, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38971151

ABSTRACT

Homologous recombination deficiency (HRD) is prevalent in cancer, sensitizing tumor cells to poly (ADP-ribose) polymerase (PARP) inhibition. However, the impact of HRD and related therapies on the tumor microenvironment (TME) remains elusive. Our study generates single-cell gene expression and T cell receptor profiles, along with validatory multimodal datasets from >100 high-grade serous ovarian cancer (HGSOC) samples, primarily from a phase II clinical trial (NCT04507841). Neoadjuvant monotherapy with the PARP inhibitor (PARPi) niraparib achieves impressive 62.5% and 73.6% response rates per RECIST v.1.1 and GCIG CA125, respectively. We identify effector regulatory T cells (eTregs) as key responders to HRD and neoadjuvant therapies, co-occurring with other tumor-reactive T cells, particularly terminally exhausted CD8+ T cells (Tex). TME-wide interferon signaling correlates with cancer cells upregulating MHC class II and co-inhibitory ligands, potentially driving Treg and Tex fates. Depleting eTregs in HRD mouse models, with or without PARP inhibition, significantly suppresses tumor growth without observable toxicities, underscoring the potential of eTreg-focused therapeutics for HGSOC and other HRD-related tumors.


Subject(s)
Neoadjuvant Therapy , Ovarian Neoplasms , Piperidines , Poly(ADP-ribose) Polymerase Inhibitors , T-Lymphocytes, Regulatory , Tumor Microenvironment , Female , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Ovarian Neoplasms/immunology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Humans , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/drug effects , Animals , Mice , Neoadjuvant Therapy/methods , Tumor Microenvironment/drug effects , Piperidines/pharmacology , Piperidines/therapeutic use , Indazoles/therapeutic use , Indazoles/pharmacology , Homologous Recombination , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor
2.
Cell ; 176(1-2): 127-143.e24, 2019 01 10.
Article in English | MEDLINE | ID: mdl-30633903

ABSTRACT

DNA damage provokes mutations and cancer and results from external carcinogens or endogenous cellular processes. However, the intrinsic instigators of endogenous DNA damage are poorly understood. Here, we identify proteins that promote endogenous DNA damage when overproduced: the DNA "damage-up" proteins (DDPs). We discover a large network of DDPs in Escherichia coli and deconvolute them into six function clusters, demonstrating DDP mechanisms in three: reactive oxygen increase by transmembrane transporters, chromosome loss by replisome binding, and replication stalling by transcription factors. Their 284 human homologs are over-represented among known cancer drivers, and their RNAs in tumors predict heavy mutagenesis and a poor prognosis. Half of the tested human homologs promote DNA damage and mutation when overproduced in human cells, with DNA damage-elevating mechanisms like those in E. coli. Our work identifies networks of DDPs that provoke endogenous DNA damage and may reveal DNA damage-associated functions of many human known and newly implicated cancer-promoting proteins.


Subject(s)
DNA Damage/genetics , DNA Damage/physiology , DNA Repair/physiology , Bacterial Proteins/metabolism , Chromosomal Instability/physiology , DNA Replication/physiology , DNA-Binding Proteins/metabolism , Escherichia coli/metabolism , Genomic Instability , Humans , Membrane Transport Proteins/physiology , Mutagenesis , Mutation , Transcription Factors/metabolism
3.
Cell ; 173(2): 386-399.e12, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29625054

ABSTRACT

The role of enhancers, a key class of non-coding regulatory DNA elements, in cancer development has increasingly been appreciated. Here, we present the detection and characterization of a large number of expressed enhancers in a genome-wide analysis of 8928 tumor samples across 33 cancer types using TCGA RNA-seq data. Compared with matched normal tissues, global enhancer activation was observed in most cancers. Across cancer types, global enhancer activity was positively associated with aneuploidy, but not mutation load, suggesting a hypothesis centered on "chromatin-state" to explain their interplay. Integrating eQTL, mRNA co-expression, and Hi-C data analysis, we developed a computational method to infer causal enhancer-gene interactions, revealing enhancers of clinically actionable genes. Having identified an enhancer ∼140 kb downstream of PD-L1, a major immunotherapy target, we validated it experimentally. This study provides a systematic view of enhancer activity in diverse tumor contexts and suggests the clinical implications of enhancers.


Subject(s)
Enhancer Elements, Genetic/genetics , Neoplasms/pathology , Aneuploidy , B7-H1 Antigen/genetics , Chromatin/genetics , Chromatin/metabolism , Databases, Genetic , Gene Expression Regulation, Neoplastic , Humans , Immunotherapy , Neoplasms/genetics , Neoplasms/mortality , Neoplasms/therapy , Sequence Analysis, RNA , Survival Rate
4.
Cell ; 173(2): 321-337.e10, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29625050

ABSTRACT

Genetic alterations in signaling pathways that control cell-cycle progression, apoptosis, and cell growth are common hallmarks of cancer, but the extent, mechanisms, and co-occurrence of alterations in these pathways differ between individual tumors and tumor types. Using mutations, copy-number changes, mRNA expression, gene fusions and DNA methylation in 9,125 tumors profiled by The Cancer Genome Atlas (TCGA), we analyzed the mechanisms and patterns of somatic alterations in ten canonical pathways: cell cycle, Hippo, Myc, Notch, Nrf2, PI-3-Kinase/Akt, RTK-RAS, TGFß signaling, p53 and ß-catenin/Wnt. We charted the detailed landscape of pathway alterations in 33 cancer types, stratified into 64 subtypes, and identified patterns of co-occurrence and mutual exclusivity. Eighty-nine percent of tumors had at least one driver alteration in these pathways, and 57% percent of tumors had at least one alteration potentially targetable by currently available drugs. Thirty percent of tumors had multiple targetable alterations, indicating opportunities for combination therapy.


Subject(s)
Databases, Genetic , Neoplasms/pathology , Signal Transduction/genetics , Genes, Neoplasm , Humans , Neoplasms/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Wnt Proteins/genetics , Wnt Proteins/metabolism
5.
Cell ; 173(2): 371-385.e18, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29625053

ABSTRACT

Identifying molecular cancer drivers is critical for precision oncology. Multiple advanced algorithms to identify drivers now exist, but systematic attempts to combine and optimize them on large datasets are few. We report a PanCancer and PanSoftware analysis spanning 9,423 tumor exomes (comprising all 33 of The Cancer Genome Atlas projects) and using 26 computational tools to catalog driver genes and mutations. We identify 299 driver genes with implications regarding their anatomical sites and cancer/cell types. Sequence- and structure-based analyses identified >3,400 putative missense driver mutations supported by multiple lines of evidence. Experimental validation confirmed 60%-85% of predicted mutations as likely drivers. We found that >300 MSI tumors are associated with high PD-1/PD-L1, and 57% of tumors analyzed harbor putative clinically actionable events. Our study represents the most comprehensive discovery of cancer genes and mutations to date and will serve as a blueprint for future biological and clinical endeavors.


Subject(s)
Neoplasms/pathology , Algorithms , B7-H1 Antigen/genetics , Computational Biology , Databases, Genetic , Entropy , Humans , Microsatellite Instability , Mutation , Neoplasms/genetics , Neoplasms/immunology , Principal Component Analysis , Programmed Cell Death 1 Receptor/genetics
7.
Nature ; 610(7930): 190-198, 2022 10.
Article in English | MEDLINE | ID: mdl-36131018

ABSTRACT

Although melanoma is notorious for its high degree of heterogeneity and plasticity1,2, the origin and magnitude of cell-state diversity remains poorly understood. Equally, it is unclear whether growth and metastatic dissemination are supported by overlapping or distinct melanoma subpopulations. Here, by combining mouse genetics, single-cell and spatial transcriptomics, lineage tracing and quantitative modelling, we provide evidence of a hierarchical model of tumour growth that mirrors the cellular and molecular logic underlying the cell-fate specification and differentiation of the embryonic neural crest. We show that tumorigenic competence is associated with a spatially localized perivascular niche, a phenotype acquired through an intercellular communication pathway established by endothelial cells. Consistent with a model in which only a fraction of cells are fated to fuel growth, temporal single-cell tracing of a population of melanoma cells with a mesenchymal-like state revealed that these cells do not contribute to primary tumour growth but, instead, constitute a pool of metastatic initiating cells that switch cell identity while disseminating to secondary organs. Our data provide a spatially and temporally resolved map of the diversity and trajectories of melanoma cell states and suggest that the ability to support growth and metastasis are limited to distinct pools of cells. The observation that these phenotypic competencies can be dynamically acquired after exposure to specific niche signals warrant the development of therapeutic strategies that interfere with the cancer cell reprogramming activity of such microenvironmental cues.


Subject(s)
Cell Proliferation , Melanoma , Neoplasm Metastasis , Animals , Cell Communication , Cell Differentiation , Cell Lineage , Cell Tracking , Cellular Reprogramming , Endothelial Cells , Melanoma/genetics , Melanoma/pathology , Mesoderm/pathology , Mice , Neoplasm Metastasis/pathology , Neural Crest/embryology , Phenotype , Single-Cell Analysis , Transcriptome , Tumor Microenvironment
8.
Trends Genet ; 39(10): 758-772, 2023 10.
Article in English | MEDLINE | ID: mdl-37658004

ABSTRACT

Cancer treatment strategies have evolved significantly over the years, with chemotherapy, targeted therapy, and immunotherapy as major pillars. Each modality leads to unique treatment outcomes by interacting with the tumor microenvironment (TME), which imposes a fundamental selective pressure on cancer progression. The advent of single-cell profiling technologies has revolutionized our understanding of the intricate and heterogeneous nature of the TME at an unprecedented resolution. This review delves into the commonalities and differential manifestations of how cancer therapies reshape the microenvironment in diverse cancer types. We highlight how groundbreaking immune checkpoint blockade (ICB) strategies alone or in combination with tumor-targeting treatments are endowed with comprehensive mechanistic insights when decoded at the single-cell level, aiming to drive forward future research directions on personalized treatments.


Subject(s)
Neoplasms , Tumor Microenvironment , Technology , Neoplasms/genetics , Neoplasms/therapy
9.
Exp Cell Res ; 438(1): 114038, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38614422

ABSTRACT

Overconsumption of fructose is closely related to cancer. Ketohexokinase (KHK) catalyzes the conversion from fructose to fructose-1-phosphate (F1P), which is the first and committed step of fructose metabolism. Recently, aberrant KHK activation has been identified in multiple malignancies. However, the roles of KHK in gastric cancer (GC) cells are largely unclear. Herein, we reveal that the expression of ketohexokinase-A (KHK-A), one alternatively spliced KHK isoform that possesses low affinity for fructose, was markedly increased in GC cells. Depletion of endogenous KHK-A expression using lentiviruses encoding short hairpin RNAs (shRNAs) or pharmaceutical disruption of KHK-A activity using KHK-IN-1 hydrochloride in GC NCI-N87 and HGC-27 cells inhibited the proliferation in vitro and in vivo. Additionally, the mitochondrial respiration in the GC cells with KHK-A deficiency compared with the control cells was significantly impaired. One commercially-available antibody array was used to explore the effects of KHK-A knockdown on signaling pathways, showing that ß-catenin was remarkably reduced in the KHK-A deficient GC cells compared with the control ones. Pharmaceutical reduction in ß-catenin levels slowed down the proliferation of GC cells. These data uncover that KHK-A promotes the proliferation in GC cells, indicating that this enzyme might be a promising therapeutical target for GC treatment.


Subject(s)
Cell Proliferation , Fructokinases , Stomach Neoplasms , beta Catenin , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Humans , beta Catenin/metabolism , beta Catenin/genetics , Animals , Cell Line, Tumor , Fructokinases/metabolism , Fructokinases/genetics , Mice , Mice, Nude , Gene Expression Regulation, Neoplastic , Mice, Inbred BALB C
10.
Nucleic Acids Res ; 51(6): 2691-2708, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36744476

ABSTRACT

Pseudomonas aeruginosa is capable of causing acute and chronic infections in various host tissues, which depends on its abilities to effectively utilize host-derived nutrients and produce protein virulence factors and toxic compounds. However, the regulatory mechanisms that direct metabolic intermediates towards production of toxic compounds are poorly understood. We previously identified a regulatory protein PvrA that controls genes involved in fatty acid catabolism by binding to palmitoyl-coenzyme A (CoA). In this study, transcriptomic analyses revealed that PvrA activates the Pseudomonas quinolone signal (PQS) synthesis genes, while suppressing genes for production of polyhydroxyalkanoates (PHAs). When palmitic acid was the sole carbon source, mutation of pvrA reduced production of pyocyanin and rhamnolipids due to defective PQS synthesis, but increased PHA production. We further solved the co-crystal structure of PvrA with palmitoyl-CoA and identified palmitoyl-CoA-binding residues. By using pvrA mutants, we verified the roles of the key palmitoyl-CoA-binding residues in gene regulation in response to palmitic acid. Since the PQS signal molecules, rhamnolipids and PHA synthesis pathways are interconnected by common metabolic intermediates, our results revealed a regulatory mechanism that directs carbon flux from carbon/energy storage to virulence factor production, which might be crucial for the pathogenesis.


Subject(s)
Polyhydroxyalkanoates , Pseudomonas aeruginosa , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbon/metabolism , Palmitic Acid/metabolism , Pseudomonas aeruginosa/metabolism , Quorum Sensing/genetics , Virulence Factors/genetics , Virulence Factors/metabolism , Polyhydroxyalkanoates/metabolism
11.
PLoS Genet ; 18(3): e1010130, 2022 03.
Article in English | MEDLINE | ID: mdl-35353808

ABSTRACT

SARS-CoV-2 is a positive-sense, single-stranded RNA virus responsible for the COVID-19 pandemic. It remains unclear whether and to what extent the virus in human host cells undergoes RNA editing, a major RNA modification mechanism. Here we perform a robust bioinformatic analysis of metatranscriptomic data from multiple bronchoalveolar lavage fluid samples of COVID-19 patients, revealing an appreciable number of A-to-I RNA editing candidate sites in SARS-CoV-2. We confirm the enrichment of A-to-I RNA editing signals at these candidate sites through evaluating four characteristics specific to RNA editing: the inferred RNA editing sites exhibit (i) stronger ADAR1 binding affinity predicted by a deep-learning model built from ADAR1 CLIP-seq data, (ii) decreased editing levels in ADAR1-inhibited human lung cells, (iii) local clustering patterns, and (iv) higher RNA secondary structure propensity. Our results have critical implications in understanding the evolution of SARS-CoV-2 as well as in COVID-19 research, such as phylogenetic analysis and vaccine development.


Subject(s)
COVID-19 , SARS-CoV-2 , Adenosine Deaminase/metabolism , COVID-19/genetics , Humans , Nucleotides/metabolism , Pandemics , Phylogeny , RNA/metabolism , RNA Editing/genetics , SARS-CoV-2/genetics
12.
Eur Heart J ; 45(29): 2604-2616, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-38759110

ABSTRACT

BACKGROUND AND AIMS: Patterns of atrial fibrillation (AF) recurrence post-catheter ablation for persistent AF (PsAF) are not well described. This study aimed to describe the pattern of AF recurrence seen following catheter ablation for PsAF and the implications for healthcare utilization and quality of life (QoL). METHODS: This was a post-hoc analysis of the CAPLA study, an international, multicentre study that randomized patients with symptomatic PsAF to pulmonary vein isolation plus posterior wall isolation or pulmonary vein isolation alone. Patients underwent twice daily single lead ECG, implantable device monitoring or three monthly Holter monitoring. RESULTS: 154 of 333 (46.2%) patients (median age 67.3 years, 28% female) experienced AF recurrence at 12-month follow-up. Recurrence was paroxysmal in 97 (63%) patients and persistent in 57 (37%). Recurrence type did not differ between randomization groups (P = .508). Median AF burden was 27.4% in PsAF recurrence and .9% in paroxysmal AF (PAF) recurrence (P < .001). Patients with PsAF recurrence had lower baseline left ventricular ejection fraction (PsAF 50% vs. PAF 60%, P < .001) and larger left atrial volume (PsAF 54.2 ± 19.3 mL/m² vs. PAF 44.8 ± 11.6 mL/m², P = .008). Healthcare utilization was significantly higher in PsAF (45 patients [78.9%]) vs. PAF recurrence (45 patients [46.4%], P < .001) and lowest in those without recurrence (17 patients [9.5%], P < .001). Patients without AF recurrence had greater improvements in QoL as assessed by the Atrial Fibrillation Effect on Quality-of-Life (AFEQT) questionnaire (Δ33.3 ± 25.2 points) compared to those with PAF (Δ24.0 ± 25.0 points, P = .012) or PsAF (Δ13.4 ± 22.9 points, P < .001) recurrence. CONCLUSIONS: AF recurrence is more often paroxysmal after catheter ablation for PsAF irrespective of ablation strategy. Recurrent PsAF was associated with higher AF burden, increased healthcare utilization and antiarrhythmic drug use. The type of AF recurrence and AF burden may be considered important endpoints in clinical trials investigating ablation of PsAF.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Quality of Life , Recurrence , Humans , Atrial Fibrillation/surgery , Female , Male , Catheter Ablation/methods , Aged , Middle Aged , Pulmonary Veins/surgery , Electrocardiography, Ambulatory , Patient Acceptance of Health Care/statistics & numerical data , Treatment Outcome
13.
Nano Lett ; 24(14): 4178-4185, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38552164

ABSTRACT

Elucidating charge transport (CT) through proteins is critical for gaining insights into ubiquitous CT chain reactions in biological systems and developing high-performance bioelectronic devices. While intra-protein CT has been extensively studied, crucial knowledge about inter-protein CT via interfacial amino acids is still absent due to the structural complexity. Herein, by loading cytochrome c (Cyt c) on well-defined peptide self-assembled monolayers to mimic the protein-protein interface, we provide a precisely controlled platform for identifying the roles of interfacial amino acids in solid-state CT via peptide-Cyt c junctions. The terminal amino acid of peptides serves as a fine-tuning factor for both the interfacial interaction between peptides and Cyt c and the immobilized Cyt c orientation, resulting in a nearly 10-fold difference in current through peptide-Cyt c junctions with varied asymmetry. This work provides a valuable platform for studying CT across proteins and contributes to the understanding of fundamental principles governing inter-protein CT.


Subject(s)
Amino Acids , Cytochromes c , Cytochromes c/chemistry , Cytochromes c/metabolism , Peptides/metabolism , Proteins , Electron Transport
14.
Genet Epidemiol ; 47(8): 617-636, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37822029

ABSTRACT

Cancer is a disease driven by a combination of inherited genetic variants and somatic mutations. Recently available large-scale sequencing data of cancer genomes have provided an unprecedented opportunity to study the interactions between them. However, previous studies on this topic have been limited by simple, low statistical power tests such as Fisher's exact test. In this paper, we design data-adaptive and pathway-based tests based on the score statistic for association studies between somatic mutations and germline variations. Previous research has shown that two single-nucleotide polymorphism (SNP)-set-based association tests, adaptive sum of powered score (aSPU) and data-adaptive pathway-based (aSPUpath) tests, increase the power in genome-wide association studies (GWASs) with a single disease trait in a case-control study. We extend aSPU and aSPUpath to multi-traits, that is, somatic mutations of multiple genes in a cohort study, allowing extensive information aggregation at both SNP and gene levels. p $p$ -values from different parameters assuming varying genetic architecture are combined to yield data-adaptive tests for somatic mutations and germline variations. Extensive simulations show that, in comparison with some commonly used methods, our data-adaptive somatic mutations/germline variations tests can be applied to multiple germline SNPs/genes/pathways, and generally have much higher statistical powers while maintaining the appropriate type I error. The proposed tests are applied to a large-scale real-world International Cancer Genome Consortium whole genome sequencing data set of 2583 subjects, detecting more significant and biologically relevant associations compared with the other existing methods on both gene and pathway levels. Our study has systematically identified the associations between various germline variations and somatic mutations across different cancer types, which potentially provides valuable utility for cancer risk prediction, prognosis, and therapeutics.


Subject(s)
Genome-Wide Association Study , Neoplasms , Humans , Genome-Wide Association Study/methods , Case-Control Studies , Cohort Studies , Models, Genetic , Neoplasms/genetics , Mutation , Germ Cells , Polymorphism, Single Nucleotide
15.
J Am Chem Soc ; 146(23): 16222-16228, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38778012

ABSTRACT

The crystal structure of a material is essentially determined by the nature of its chemical bonding. Consequently, the atomic coordination intimately correlates with the degree of ionicity or covalency of the material. Based on this principle, materials with similar chemical compositions can be successfully categorized into different coordination groups. However, counterexamples have recently emerged in complex ternary compounds. For instance, covalent IB-IIIA-VIA2 compounds, such as AgInS2, prefer a tetrahedrally coordinated structure (TCS), while ionic IA-VA-VIA2 compounds, such as NaBiS2, would favor an octahedrally coordinated structure (OCS). One naturally expects that IB-VA-VIA2 compounds with intermediate ionicity or covalency, such as AgBiS2, should then have a mix-coordinated structure (MCS) consisting of covalent AgS4 tetrahedra and ionic BiS6 octahedra. Surprisingly, only the experimental presence of the OCS was observed for AgBiS2. To resolve this puzzle, we perform first-principles studies of the phase stabilities of ternary compounds at finite temperatures. We find that AgBiS2 indeed prefers MCS at the ground state, in agreement with the typical expectation, but under experimental synthesis conditions, disordered OCS becomes energetically more favorable because of its low mixing energy and high configurational entropy. Our work elucidates the critical role of configurational disorder in stabilizing chemically unfavorable coordination, providing a rigorous rationale for the anomalous coordination preference in IB-VA-VIA2 compounds.

16.
J Am Chem Soc ; 146(18): 12864-12876, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38670931

ABSTRACT

Deep-ultraviolet (DUV) light sources are technologically highly important, but DUV light-emitting materials are extremely rare; AlN and its alloys are the only materials known so far, significantly limiting the chemical and structural spaces for materials design. Here, we perform a high-throughput computational search for DUV light emitters based on a set of carefully designed screening criteria relating to the sophisticated electronic structure. In this way, we successfully identify 5 promising material candidates that exhibit comparable or higher radiative recombination coefficients than AlN, including BeGeN2, Mg3NF3, KCaBr3, KHS, and RbHS. Further, we unveil the unique features in the atomic and electronic structures of DUV light emitters and elucidate the fundamental genetic reasons why DUV light emitters are extremely rare. Our study not only guides the design and synthesis of efficient DUV light emitters but also establishes the genetic nature of ultrawide-band-gap semiconductors in general.

17.
Kidney Int ; 106(2): 273-290, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38789038

ABSTRACT

Prolonged warm ischemic is the main cause discarding donated organs after cardiac death. Here, we identified that prolonged warm ischemic time induced disseminated intravascular coagulation and severe capillary vasospasm after cardiac death of rat kidneys. Additionally, we found a significant accumulation of fibrinogen in a hypoxic cell culture of human umbilical vein epithelial cells and in isolated kidneys exposed to prolonged warm ischemic following flushing out of blood. However, pre-flushing the kidney with snake venom plasmin in a 90-minute warm ischemic model maximized removal of micro thrombi and facilitated the delivery of oxygen and therapeutic agents. Application of carbon monoxide-releasing CORM-401 during ex vivo hypothermic oxygenated perfusion achieved multipath protective effects in prolonged warm ischemic kidneys. This led to significant improvements in perfusion parameters, restoration of the microcirculation, amelioration of mitochondrial injury, oxidative stress, and apoptosis. This benefit resulted in significantly prolonged warm ischemic kidney recipient survival rates of 70%, compared with none in those receiving ex vivo hypothermic oxygenated perfusion alone. Significantly, ex vivo hypothermic oxygenated perfusion combined with cytoprotective carbon monoxide releasing CORM-401 treatment meaningfully protected the donated kidney after cardiac death from ischemia-reperfusion injury by reducing inflammation, oxidative stress, apoptosis, and pathological damage. Thus, our study suggests a new combination treatment strategy to potentially expand the donor pool by increasing use of organs after cardiac death and salvaging prolonged warm ischemic kidneys.


Subject(s)
Kidney Transplantation , Kidney , Organ Preservation , Organometallic Compounds , Perfusion , Warm Ischemia , Animals , Warm Ischemia/adverse effects , Kidney/blood supply , Kidney/pathology , Kidney/drug effects , Perfusion/methods , Kidney Transplantation/adverse effects , Kidney Transplantation/methods , Humans , Organ Preservation/methods , Male , Organometallic Compounds/administration & dosage , Organometallic Compounds/pharmacology , Reperfusion Injury/prevention & control , Reperfusion Injury/etiology , Reperfusion Injury/pathology , Rats , Oxygen/metabolism , Oxidative Stress/drug effects , Apoptosis/drug effects , Microcirculation/drug effects , Time Factors , Human Umbilical Vein Endothelial Cells/drug effects
18.
Br J Cancer ; 130(4): 597-612, 2024 03.
Article in English | MEDLINE | ID: mdl-38184692

ABSTRACT

BACKGROUND: The expression of Egl-9 family hypoxia-inducible factor 3 (EGLN3) is notably decreased in various malignancies, including gastric cancer (GC). While the predominant focus has been on the hydroxylase activity of EGLN3 for its antitumour effects, recent findings have suggested nonenzymatic roles for EGLN3. METHODS: This study assessed the clinical significance of EGLN3 expression in GC and explored the connection between EGLN3 DNA promoter methylation and transcriptional silencing. To investigate the effect of EGLN3 on GC cells, a gain-of-function strategy was adopted. RNA sequencing was conducted to identify the key effector molecules and signalling pathways associated with EGLN3. RESULTS: EGLN3 expression was significantly reduced in GC tissues, correlating with poorer patient prognosis. EGLN3 hypermethylation disrupts transcriptional equilibrium, contributing to deeper tumour invasion and lymph node metastasis, thus exacerbating GC progression. Conversely, restoration of EGLN3 expression in GC cells substantially inhibited cell proliferation and metastasis. EGLN3 was also found to impede the malignant progression of GC cells by downregulating Jumonji C domain-containing protein 8-mediated activation of the NF-κB pathway, independent of its hydroxylase activity. CONCLUSIONS: EGLN3 has the potential to hinder the spread of GC cells through a nonenzymatic mechanism, thereby shedding light on the complex nature of GC progression.


Subject(s)
NF-kappa B , Stomach Neoplasms , Humans , NF-kappa B/genetics , NF-kappa B/metabolism , Stomach Neoplasms/pathology , Signal Transduction/genetics , DNA Methylation , Gene Expression Regulation, Neoplastic , Mixed Function Oxygenases/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism
19.
Clin Immunol ; 258: 109874, 2024 01.
Article in English | MEDLINE | ID: mdl-38113962

ABSTRACT

Sle1 and Faslpr are two lupus susceptibility loci that lead to manifestations of systemic lupus erythematosus. To evaluate the dosage effects of Faslpr in determining cellular and serological phenotypes associated with lupus, we developed a new C57BL/6 (B6) congenic lupus strain, B6.Sle1/Sle1.Faslpr/+ (Sle1homo.lprhet) and compared it with B6.Faslpr/lpr (lprhomo), B6.Sle1/Sle1 (Sle1homo), and B6.Sle1/Sle1.Faslpr/lpr (Sle1homo.lprhomo) strains. Whereas Sle1homo.lprhomo mice exhibited profound lymphoproliferation and early mortality, Sle1homo.lprhet mice had a lifespan comparable to B6 mice, with no evidence of splenomegaly or lymphadenopathy. Compared to B6 monogenic lupus strains, Sle1homo.lprhet mice exhibited significantly elevated serum ANA antibodies and increased proteinuria. Additionally, Sle1homo.lprhet T cells had an increased propensity to differentiate into Th1 cells. Gene dose effects of Faslpr were noted in upregulating serum IL-1⍺, IL-2, and IL-27. Taken together, Sle1homo.lprhet strain is a new C57BL/6-based model of lupus, ideal for genetic studies, autoantibody repertoire investigation, and for exploring Th1 effector cell skewing without early-age lymphoproliferative autoimmunity.


Subject(s)
Lupus Erythematosus, Systemic , Mice , Animals , Mice, Inbred C57BL , Lupus Erythematosus, Systemic/genetics , Autoimmunity , Cell Differentiation , Gene Dosage , Mice, Inbred MRL lpr
20.
Ann Surg ; 279(5): 808-817, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38264902

ABSTRACT

OBJECTIVE: To compare the short-term and long-term outcomes between robotic gastrectomy (RG) and laparoscopic gastrectomy (LG) for gastric cancer. BACKGROUND: The clinical outcomes of RG over LG have not yet been effectively demonstrated. METHODS: This retrospective cohort study included 3599 patients with gastric cancer who underwent radical gastrectomy at eight high-volume hospitals in China from January 2015 to June 2019. Propensity score matching was performed between patients who received RG and LG. The primary end point was 3-year disease-free survival (DFS). RESULTS: After 1:1 propensity score matching, 1034 pairs of patients were enrolled in a balanced cohort for further analysis. The 3-year DFS in the RG and LG was 83.7% and 83.1% ( P =0.745), respectively, and the 3-year overall survival was 85.2% and 84.4%, respectively ( P =0.647). During 3 years of follow-up, 154 patients in the RG and LG groups relapsed (cumulative incidence of recurrence: 15.0% vs 15.0%, P =0.988). There was no significant difference in the recurrence sites between the 2 groups (all P >0.05). Sensitivity analysis showed that RG had comparable 3-year DFS (77.4% vs 76.7%, P =0.745) and overall survival (79.7% vs 78.4%, P =0.577) to LG in patients with advanced (pathologic T2-4a) disease, and the recurrence pattern within 3 years was also similar between the 2 groups (all P >0.05). RG had less intraoperative blood loss, lower conversion rate, and shorter hospital stays than LG (all P >0.05). CONCLUSIONS: For resectable gastric cancer, including advanced cases, RG is a safe approach with comparable 3-year oncological outcomes to LG when performed by experienced surgeons.


Subject(s)
Laparoscopy , Robotic Surgical Procedures , Stomach Neoplasms , Humans , Treatment Outcome , Retrospective Studies , Stomach Neoplasms/pathology , Gastrectomy , Propensity Score , Postoperative Complications/epidemiology , Postoperative Complications/surgery
SELECTION OF CITATIONS
SEARCH DETAIL