Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.257
Filter
Add more filters

Publication year range
1.
Nature ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39169193

ABSTRACT

Although aromatic rings are common elements in pharmaceutically active compounds, the presence of these motifs brings several liabilities with respect to the developability of a drug1. Nonoptimal potency, metabolic stability, solubility and lipophilicity in pharmaceutical compounds can be improved by replacing aromatic rings with non-aromatic isosteric motifs2. Moreover, whereas aromatic rings are planar and lack three-dimensionality, the binding pockets of most pharmaceutical targets are chiral. Thus, the stereochemical configuration of the isosteric replacements may offer an added opportunity to improve the affinity of derived ligands for target receptors. A notable impediment to this approach is the lack of simple and scalable catalytic enantioselective syntheses of candidate isosteres from readily available precursors. Here we present a previously unknown palladium-catalysed reaction that converts hydrocarbon-derived precursors to chiral boron-containing nortricyclanes and we show that the shape of these nortricyclanes makes them plausible isosteres for meta disubstituted aromatic rings. With chiral catalysts, the Pd-catalysed reaction can be accomplished in an enantioselective fashion and subsequent transformation of the boron group provides access to a broad array of structures. We also show that the incorporation of nortricyclanes into pharmaceutical motifs can result in improved biophysical properties along with stereochemistry-dependent activity. We anticipate that these features, coupled with the simple, inexpensive synthesis of the functionalized nortricyclane scaffold, will render this platform a useful foundation for the assembly of new biologically active agents.

2.
N Engl J Med ; 388(22): 2025-2036, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37256974

ABSTRACT

BACKGROUND: The effects of the glycoprotein IIb/IIIa receptor inhibitor tirofiban in patients with acute ischemic stroke but who have no evidence of complete occlusion of large or medium-sized vessels have not been extensively studied. METHODS: In a multicenter trial in China, we enrolled patients with ischemic stroke without occlusion of large or medium-sized vessels and with a National Institutes of Health Stroke Scale score of 5 or more and at least one moderately to severely weak limb. Eligible patients had any of four clinical presentations: ineligible for thrombolysis or thrombectomy and within 24 hours after the patient was last known to be well; progression of stroke symptoms 24 to 96 hours after onset; early neurologic deterioration after thrombolysis; or thrombolysis with no improvement at 4 to 24 hours. Patients were assigned to receive intravenous tirofiban (plus oral placebo) or oral aspirin (100 mg per day, plus intravenous placebo) for 2 days; all patients then received oral aspirin until day 90. The primary efficacy end point was an excellent outcome, defined as a score of 0 or 1 on the modified Rankin scale (range, 0 [no symptoms] to 6 [death]) at 90 days. Secondary end points included functional independence at 90 days and a quality-of-life score. The primary safety end points were death and symptomatic intracranial hemorrhage. RESULTS: A total of 606 patients were assigned to the tirofiban group and 571 to the aspirin group. Most patients had small infarctions that were presumed to be atherosclerotic. The percentage of patients with a score of 0 or 1 on the modified Rankin scale at 90 days was 29.1% with tirofiban and 22.2% with aspirin (adjusted risk ratio, 1.26; 95% confidence interval, 1.04 to 1.53, P = 0.02). Results for secondary end points were generally not consistent with the results of the primary analysis. Mortality was similar in the two groups. The incidence of symptomatic intracranial hemorrhage was 1.0% in the tirofiban group and 0% in the aspirin group. CONCLUSIONS: In this trial involving heterogeneous groups of patients with stroke of recent onset or progression of stroke symptoms and nonoccluded large and medium-sized cerebral vessels, intravenous tirofiban was associated with a greater likelihood of an excellent outcome than low-dose aspirin. Incidences of intracranial hemorrhages were low but slightly higher with tirofiban. (Funded by the National Natural Science Foundation of China; RESCUE BT2 Chinese Clinical Trial Registry number, ChiCTR2000029502.).


Subject(s)
Fibrinolytic Agents , Ischemic Stroke , Tirofiban , Humans , Aspirin/adverse effects , Brain Ischemia/drug therapy , Brain Ischemia/etiology , Fibrinolytic Agents/adverse effects , Fibrinolytic Agents/therapeutic use , Intracranial Hemorrhages/chemically induced , Ischemic Stroke/diagnosis , Ischemic Stroke/drug therapy , Ischemic Stroke/etiology , Platelet Aggregation Inhibitors/adverse effects , Platelet Aggregation Inhibitors/therapeutic use , Tirofiban/adverse effects , Tirofiban/therapeutic use , Treatment Outcome , Cerebral Arterial Diseases/drug therapy , Cerebral Arterial Diseases/etiology
3.
J Immunol ; 210(5): 668-680, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36695776

ABSTRACT

The chicken MHC is known to confer decisive resistance or susceptibility to various economically important pathogens, including the iconic oncogenic herpesvirus that causes Marek's disease (MD). Only one classical class I gene, BF2, is expressed at a high level in chickens, so it was relatively easy to discern a hierarchy from well-expressed thermostable fastidious specialist alleles to promiscuous generalist alleles that are less stable and expressed less on the cell surface. The class I molecule BF2*1901 is better expressed and more thermostable than the closely related BF2*1501, but the peptide motif was not simpler as expected. In this study, we confirm for newly developed chicken lines that the chicken MHC haplotype B15 confers resistance to MD compared with B19. Using gas phase sequencing and immunopeptidomics, we find that BF2*1901 binds a greater variety of amino acids in some anchor positions than does BF2*1501. However, by x-ray crystallography, we find that the peptide-binding groove of BF2*1901 is narrower and shallower. Although the self-peptides that bound to BF2*1901 may appear more various than those of BF2*1501, the structures show that the wider and deeper peptide-binding groove of BF2*1501 allows stronger binding and thus more peptides overall, correlating with the expected hierarchies for expression level, thermostability, and MD resistance. Our study provides a reasonable explanation for greater promiscuity for BF2*1501 compared with BF2*1901, corresponding to the difference in resistance to MD.


Subject(s)
Marek Disease , Animals , Alleles , Amino Acids , Cell Membrane , Chickens , Marek Disease/genetics , Histocompatibility Antigens Class I/immunology
4.
Proc Natl Acad Sci U S A ; 119(34): e2208978119, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35969746

ABSTRACT

Heading is one of the most important agronomic traits for Chinese cabbage crops. During the heading stage, leaf axial growth is an essential process. In the past, most genes predicted to be involved in the heading process have been based on leaf development studies in Arabidopsis. No genes that control leaf axial growth have been mapped and cloned via forward genetics in Chinese cabbage. In this study, we characterize the inward curling mutant ic1 in Brassica rapa ssp. pekinensis and identify a mutation in the OCTOPUS (BrOPS) gene by map-based cloning. OPS is involved in phloem differentiation in Arabidopsis, a functionalization of regulating leaf curvature that is differentiated in Chinese cabbage. In the presence of brassinosteroid (BR) at the early heading stage in ic1, the mutation of BrOPS fails to sequester brassinosteroid insensitive 2 (BrBIN2) from the nucleus, allowing BrBIN2 to phosphorylate and inactivate BrBES1, which in turn relieves the repression of BrAS1 and results in leaf inward curving. Taken together, the results of our findings indicate that BrOPS positively regulates BR signaling by antagonizing BrBIN2 to promote leaf epinastic growth at the early heading stage in Chinese cabbage.


Subject(s)
Brassica , Membrane Proteins/metabolism , Plant Proteins/metabolism , Animals , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Brassica/genetics , Brassica/metabolism , Gene Expression Regulation, Plant , Membrane Proteins/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Protein Kinases/genetics
5.
Genomics ; 116(1): 110768, 2024 01.
Article in English | MEDLINE | ID: mdl-38128703

ABSTRACT

The myometrium, composed of the inner circular muscle (CM) and outer longitudinal muscle (LM), is crucial in establishing and maintaining early pregnancy. However, the molecular mechanisms involved are not well understood. In this study, we identified the transcriptomic features of the CM and LM collected from the mesometrial (M) and anti-mesometrial (AM) sides of the pig uterus on day 18 of pregnancy during the placentation initiation phase. Some genes in the cellular zinc ion level regulatory pathways (MT-1A, MT-1D, MT-2B, SLC30A2, and SLC39A2) were spatially and highly enriched in uterine CM at the mesometrial side. In addition, the histone modification profiles of H3K27ac and H3K4me3 in uterine CM and LM collected from the mesometrial side were characterized. Genomic regions associated with the expression of genes regulating the cellular zinc ion level were detected. Moreover, six highly linked variants in the H3K27ac-enriched region of the pig SLC30A2 gene were identified and found to be significantly associated with the total number born at the second parity (P < 0.05). In conclusion, the genes in the pathways of cellular zinc homeostasis and their regulatory elements identified have implications for pig reproduction trait improvement and warrant further investigations.


Subject(s)
Epigenomics , Myometrium , Pregnancy , Female , Swine , Animals , Myometrium/metabolism , Uterus/metabolism , Homeostasis , Zinc/metabolism
6.
J Am Chem Soc ; 146(28): 18873-18878, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38954635

ABSTRACT

Alkyllithium-activated organoboronic esters are found to undergo stereospecific phosphination with copper chloride and chlorophosphines. They also react with thiolsulfonate electrophiles under copper catalysis. These reactions enable stereospecific phosphination and thiolation of organoboronic esters, which are further applied in preparation of chiral ligands and biologically active molecules.

7.
J Am Chem Soc ; 146(11): 7295-7304, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38364093

ABSTRACT

All-weather operation is considered an ultimate pursuit of the practical development of sodium-ion batteries (SIBs), however, blocked by a lack of suitable electrolytes at present. Herein, by introducing synergistic manipulation mechanisms driven by phosphorus/silicon involvement, the compact electrode/electrolyte interphases are endowed with improved interfacial Na-ion transport kinetics and desirable structural/thermal stability. Therefore, the modified carbonate-based electrolyte successfully enables all-weather adaptability for long-term operation over a wide temperature range. As a verification, the half-cells using the designed electrolyte operate stably over a temperature range of -25 to 75 °C, accompanied by a capacity retention rate exceeding 70% even after 1700 cycles at 60 °C. More importantly, the full cells assembled with Na3V2(PO4)2O2F cathode and hard carbon anode also have excellent cycling stability, exceeding 500 and 1000 cycles at -25 to 50 °C and superb temperature adaptability during all-weather dynamic testing with continuous temperature change. In short, this work proposes an advanced interfacial regulation strategy targeted at the all-climate SIB operation, which is of good practicability and reference significance.

8.
J Am Chem Soc ; 146(7): 4652-4664, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38265705

ABSTRACT

Since sodium-ion batteries (SIBs) have become increasingly commercialized in recent years, Na3V2(PO4)2O2F (NVPOF) offers promising economic potential as a cathode for SIBs because of its high operating voltage and energy density. According to reports, NVPOF performs poorly in normal commercial poly(vinylidene fluoride) (PVDF) binder systems and performs best in combination with aqueous binder. Although in line with the concept of green and sustainable development for future electrode preparation, aqueous binders are challenging to achieve high active material loadings at the electrode level, and their relatively high surface tension tends to cause the active material on the electrode sheet to crack or even peel off from the collector. Herein, a cross-linkable and easily commercial hybrid binder constructed by intermolecular hydrogen bonding (named HPP) has been developed and utilized in an NVPOF system, which enables the generation of a stable cathode electrolyte interphase on the surface of active materials. According to theoretical simulations, the HPP binder enhances electronic/ionic conductivity, which greatly lowers the energy barrier for Na+ migration. Additionally, the strong hydrogen-bond interactions between the HPP binder and NVPOF effectively prevent electrolyte corrosion and transition-metal dissolution, lessen the lattice volume effect, and ensure structural stability during cycling. The HPP-based NVPOF offers considerably improved rate capability and cycling performance, benefiting from these benefits. This comprehensive binder can be extended to the development of next-generation energy storage technologies with superior performance.

9.
Oncologist ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110901

ABSTRACT

Endocervical adenocarcinoma (ECA) is reported increasingly often in young women, and this aggressive disease lacks effective methods of targeted therapy. Since mismatch repair deficiency (dMMR) is an important biomarker for predicting response to immune checkpoint inhibitors, it is important to investigate the clinicopathological features and immune microenvironment of dMMR ECAs. We assessed 617 ECAs from representative tissue microarray sections, gathered clinicopathologic information, reviewed histological characteristics, and performed immunohistochemical staining for MMR, programmed cell death 1 (PD-L1), and other immune markers. Of 617 ECA samples, 20 (3.2%) cases had dMMR. Among them, loss of MMR-related proteins expression was observed in 17/562 (3.0%) human papilloma virus-associated (HPVA) adenocarcinoma and 3/55 (5.5%) non-HPV-associated (NHPVA) adenocarcinoma. In NHPVA cohort, dMMR status was observed in 3 (3/14, 15.0%) patients with clear cells. dMMR ECAs had a higher tendency to have a family history of cancer, larger tumor size, p16 negative, HPV E6/E7 mRNA in situ hybridization (HPV E6/E7 RNAscope) negative, and lower ki-67 index. Among the morphological variables evaluated, poor differentiation, necrosis, stromal tumor-infiltrating lymphocytes, peritumoral lymphocytes, and lymphoid follicles were easily recognized in the dMMR ECAs. In addition, dMMR ECAs had higher CD3+, CD8+, CD38+, CD68+ and PD-1+ immune cells. A relatively high prevalence of PD-L1 expression was observed in dMMR ECAs. dMMR ECAs were significantly more likely to present with a tumor-infiltrating lymphocytes -high/PD-L1-positive status. In conclusion, dMMR ECAs have some specific morphological features and a critical impact on the immune microenvironment, which may provide insights into improving responses to immunotherapy-included comprehensive treatment for ECAs in the future.

10.
J Intern Med ; 296(3): 291-297, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39073192

ABSTRACT

BACKGROUND: Currently, pathophysiological mechanisms of post-acute sequelae of coronavirus disease-19-cardiovascular syndrome (PASC-CVS) remain unknown. METHODS AND RESULTS: Patients with PASC-CVS exhibited significantly higher circulating levels of severe acute respiratory syndrome-coronavirus-2 spike protein S1 than the non-PASC-CVS patients and healthy controls. Moreover, individuals with high plasma spike protein S1 concentrations exhibited elevated heart rates and normalized low frequency, suggesting cardiac ß-adrenergic receptor (ß-AR) hyperactivity. Microscale thermophoresis (MST) assay revealed that the spike protein bound to ß1- and ß2-AR, but not to D1-dopamine receptor. These interactions were blocked by ß1- and ß2-AR blockers. Molecular docking and MST assay of ß-AR mutants revealed that the spike protein interacted with the extracellular loop 2 of both ß-ARs. In cardiomyocytes, spike protein dose-dependently increased the cyclic adenosine monophosphate production with or without epinephrine, indicating its allosteric effects on ß-ARs. CONCLUSION: Severe acute respiratory syndrome-coronavirus-2 spike proteins act as an allosteric ß-AR agonist, leading to cardiac ß-AR hyperactivity, thus contributing to PASC-CVS.


Subject(s)
COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , Spike Glycoprotein, Coronavirus/metabolism , COVID-19/complications , COVID-19/metabolism , Male , Female , Middle Aged , Post-Acute COVID-19 Syndrome , Aged , Molecular Docking Simulation , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Adrenergic beta-Agonists/pharmacology , Adrenergic beta-Agonists/therapeutic use
11.
J Transl Med ; 22(1): 168, 2024 02 17.
Article in English | MEDLINE | ID: mdl-38368334

ABSTRACT

BACKGROUND: MicroRNA (miRNA)-based therapies have shown great potential in myocardial repair following myocardial infarction (MI). MicroRNA-302 (miR302) has been reported to exert a protective effect on MI. However, miRNAs are easily degraded and ineffective in penetrating cells, which limit their clinical applications. Exosomes, which are small bioactive molecules, have been considered as an ideal vehicle for miRNAs delivery due to their cell penetration, low immunogenicity and excellent stability potential. Herein, we explored cardiomyocyte-targeting exosomes as vehicles for delivery of miR302 into cardiomyocyte to potentially treat MI. METHODS: To generate an efficient exosomal delivery system that can target cardiomyocytes, we engineered exosomes with cardiomyocyte specific peptide (CMP, WLSEAGPVVTVRALRGTGSW). Afterwards, the engineered exosomes were characterized and identified using transmission electron microscope (TEM) and Nanoparticle Tracking Analysis (NTA). Later on, the miR302 mimics were loaded into the engineered exosomes via electroporation technique. Subsequently, the effect of the engineered exosomes on myocardial ischemia and reperfusion (I/R) injury was evaluated in vitro and in vivo, including MTT, ELISA, real-time quantitative polymerase chain reaction (PCR), western blot, TUNNEL staining, echocardiogram and hematoxylin and eosin (HE) staining. RESULTS: Results of in vitro experimentation showed that DSPE-PEG-CMP-EXO could be more efficiently internalized by H9C2 cells than unmodified exosomes (blank-exosomes). Importantly, compared with the DSPE-PEG-CMP-EXO group, DSPE-PEG-CMP-miR302-EXO significantly upregulated the expression of miR302, while exosomes loaded with miR302 could enhance proliferation of H9C2 cells. Western blot results showed that the DSPE-PEG-CMP-miR302-EXO significantly increased the protein level of Ki67 and Yap, which suggests that DSPE-PEG-CMP-miR302-EXO enhanced the activity of Yap, the principal downstream effector of Hippo pathway. In vivo, DSPE-PEG-CMP-miR302-EXO improved cardiac function, attenuated myocardial apoptosis and inflammatory response, as well as reduced infarct size significantly. CONCLUSION: In conclusion, our findings suggest that CMP-engineered exosomes loaded with miR302 was internalized by H9C2 cells, an in vitro model for cardiomyocytes coupled with potential enhancement of the therapeutic effects on myocardial I/R injury.


Subject(s)
Exosomes , Mesenchymal Stem Cells , MicroRNAs , Myocardial Infarction , Myocardial Ischemia , Myocardial Reperfusion Injury , Humans , Myocytes, Cardiac/metabolism , Exosomes/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Myocardial Infarction/therapy , Myocardial Infarction/genetics , Myocardial Ischemia/therapy , Myocardial Ischemia/metabolism , Mesenchymal Stem Cells/metabolism , Apoptosis , Reperfusion
12.
J Transl Med ; 22(1): 655, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004706

ABSTRACT

Neoadjuvant chemotherapy (NACT) is a viable therapeutic option for women diagnosed locally advanced cervical cancer (LACC). However, the factors influencing pathological response are still controversial. We collected pair specimens of 185 LACC patients before and after receiving NACT and conducted histological evaluation. 8 fresh tissues pre-treatment were selected from the entire cohort to conducted immune gene expression profiling. A novel pathological grading system was established by comprehensively assessing the percentages of viable tumor, inflammatory stroma, fibrotic stroma, and necrosis in the tumor bed. Then, 185 patients were categorized into either the good pathological response (GPR) group or the poor pathological response (PPR) group post-NACT, with 134 patients (72.4%, 134/185) achieving GPR. Increasing tumor-infiltrating lymphocytes (TILs) and tumor-infiltrating lymphocytes volume (TILV) pre-treatment were correlated with GPR, with TILV emerging as an independent predictive factor for GPR. Additionally, CIBERSORT analysis revealed noteworthy differences in the expression of immune makers between cPR and non-cPR group. Furthermore, a significantly heightened density of CD8 + T cells and a reduced density of FOXP3 + T cells were observed in GPR than PPR. Importantly, patients exhibiting GPR or inflammatory type demonstrated improved overall survival and disease-free survival. Notably, stromal type was an independent prognostic factor in multivariate analysis. Our study indicates the elevated TILV in pre-treatment specimens may predict a favorable response to NACT, while identifying stromal type in post-treatment specimens as an independent prognostic factor. Moreover, we proposed this pathological grading system in NACT patients, which may offer a more comprehensive understanding of treatment response and prognosis.


Subject(s)
Lymphocytes, Tumor-Infiltrating , Neoadjuvant Therapy , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/drug therapy , Middle Aged , Lymphocytes, Tumor-Infiltrating/immunology , Adult , Treatment Outcome , Aged , Disease-Free Survival
13.
J Med Virol ; 96(2): e29466, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38344929

ABSTRACT

Talaromyces marneffei (TM) immune evasion is an important factor leading to the high mortality rate of Penicilliosis marneffei. N6 -methyladenosine (m6 A) plays important roles in host immune response to various pathogen infections, yet its role in TM and HIV/TM coinfection remains largely unexplored. Here we reported genome-wide transcriptional m6 A profiles of TM mono-infection and HIV/TM coinfection. Our finding revealed dynamic alterations in global m6 A levels and upregulation of the m6 A reader YTH N6 -methyladenosine RNA binding protein C2 (YTHDC2) in TM-infected macrophages. Knockdown of YTHDC2 in TM-infected cells showed an elevated expression of TLR2 through m6 A-dependence, along with upregulation of TNF-α and IL1-ß. Overall, we characterized the m6 A profiles of the host and fungus before and after TM infection, and demonstrated that YTHDC2 mediates the key m6 A site of TLR2 to exert its function. These findings provide new insights into the underlying mechanisms and novel therapeutic approaches for TM diseases.


Subject(s)
Coinfection , HIV Infections , Mycoses , Humans , Toll-Like Receptor 2/genetics , RNA Helicases
14.
Microvasc Res ; 152: 104643, 2024 03.
Article in English | MEDLINE | ID: mdl-38081409

ABSTRACT

OBJECTIVE: This research was dedicated to investigating the impact of the SNHG12/microRNA (miR)-15b-5p/MYLK axis on the modulation of vascular smooth muscle cell (VSMC) phenotype and the formation of intracranial aneurysm (IA). METHODS: SNHG12, miR-15b-5p and MYLK expression in IA tissue samples from IA patients were tested by RT-qPCR and western blot. Human aortic vascular smooth muscle cells (VSMCs) were cultivated with H2O2 to mimic IA-like conditions in vitro, and the cell proliferation and apoptosis were measured by MTT assay and Annexin V/PI staining. IA mouse models were established by induction with systemic hypertension combined with elastase injection. The blood pressure in the tail artery of mice in each group was assessed and the pathological changes in arterial tissues were observed by HE staining and TUNEL staining. The expression of TNF-α and IL-1ß, MCP-1, iNOS, caspase-3, and caspase-9 in the arterial tissues were tested by RT-qPCR and ELISA. The relationship among SNHG12, miR-15b-5p and MYLK was verified by bioinformatics, RIP, RNA pull-down, and luciferase reporter assays. RESULTS: The expression levels of MYLK and SNHG12 were down-regulated and that of miR-15b-5p was up-regulated in IA tissues and H2O2-treated human aortic VSMCs. Overexpressed MYLK or SNHG12 mitigated the decrease in proliferation and increase in apoptosis of VSMCs caused by H2O2 induction, and overexpression of miR-15b-5p exacerbated the decrease in proliferation and increase in apoptosis of VSMCs caused by H2O2 induction. Overexpression of miR-15b-5p reversed the H2O2-treated VSMC phenotypic changes caused by SNHG12 up-regulation, and overexpression of MYLK reversed the H2O2-treated VSMC phenotypic changes caused by up-regulation of miR-15b-5p. Overexpression of SNHG12 reduced blood pressure and ameliorated arterial histopathological damage and VSMC apoptosis in IA mice. The mechanical analysis uncovered that SNHG12 acted as an endogenous RNA that competed with miR-15b-5p, thus modulating the suppression of its endogenous target, MYLK. CONCLUSION: Decreased expression of SNHG12 in IA may contribute to the increasing VSMC apoptosis via increasing miR-15b-5p expression and subsequently decreasing MYLK expression. These findings provide potential new strategies for the clinical treatment of IA.


Subject(s)
Intracranial Aneurysm , MicroRNAs , Animals , Humans , Mice , Apoptosis , Calcium-Binding Proteins/genetics , Cell Proliferation , Hydrogen Peroxide/metabolism , Intracranial Aneurysm/genetics , Intracranial Aneurysm/metabolism , Intracranial Aneurysm/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Myosin-Light-Chain Kinase , Phenotype , RNA, Untranslated/genetics
15.
Rev Cardiovasc Med ; 25(1): 8, 2024 Jan.
Article in English | MEDLINE | ID: mdl-39077651

ABSTRACT

Background: Atrial fibrillation (AF) is a common arrhythmia that can result in adverse cardiovascular outcomes but is often difficult to detect. The use of machine learning (ML) algorithms for detecting AF has become increasingly prevalent in recent years. This study aims to systematically evaluate and summarize the overall diagnostic accuracy of the ML algorithms in detecting AF in electrocardiogram (ECG) signals. Methods: The searched databases included PubMed, Web of Science, Embase, and Google Scholar. The selected studies were subjected to a meta-analysis of diagnostic accuracy to synthesize the sensitivity and specificity. Results: A total of 14 studies were included, and the forest plot of the meta-analysis showed that the pooled sensitivity and specificity were 97% (95% confidence interval [CI]: 0.94-0.99) and 97% (95% CI: 0.95-0.99), respectively. Compared to traditional machine learning (TML) algorithms (sensitivity: 91.5%), deep learning (DL) algorithms (sensitivity: 98.1%) showed superior performance. Using multiple datasets and public datasets alone or in combination demonstrated slightly better performance than using a single dataset and proprietary datasets. Conclusions: ML algorithms are effective for detecting AF from ECGs. DL algorithms, particularly those based on convolutional neural networks (CNN), demonstrate superior performance in AF detection compared to TML algorithms. The integration of ML algorithms can help wearable devices diagnose AF earlier.

16.
Respir Res ; 25(1): 16, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38178098

ABSTRACT

BACKGROUND: Growing evidence from observational studies and clinical trials suggests that the gut microbiota is associated with tuberculosis (TB). However, it is unclear whether any causal relationship exists between them and whether causality is bidirectional. METHODS: A bidirectional two-sample Mendelian randomization (MR) analysis was performed. The genome-wide association study (GWAS) summary statistics of gut microbiota were obtained from the MiBioGen consortium, while the GWAS summary statistics of TB and its specific phenotypes [respiratory tuberculosis (RTB) and extrapulmonary tuberculosis (EPTB)] were retrieved from the UK Biobank and the FinnGen consortium. And 195 bacterial taxa from phylum to genus were analyzed. Inverse variance weighted (IVW), MR-Egger regression, maximum likelihood (ML), weighted median, and weighted mode methods were applied to the MR analysis. The robustness of causal estimation was tested using the heterogeneity test, horizontal pleiotropy test, and leave-one-out method. RESULTS: In the UK Biobank database, we found that 11 bacterial taxa had potential causal effects on TB. Three bacterial taxa genus.Akkermansia, family.Verrucomicrobiacea, order.Verrucomicrobiales were validated in the FinnGen database. Based on the results in the FinnGen database, the present study found significant differences in the characteristics of gut microbial distribution between RTB and EPTB. Four bacterial taxa genus.LachnospiraceaeUCG010, genus.Parabacteroides, genus.RuminococcaceaeUCG011, and order.Bacillales were common traits in relation to both RTB and TB, among which order.Bacillales showed a protective effect. Additionally, family.Bacteroidacea and genus.Bacteroides were identified as common traits in relation to both EPTB and TB, positively associating with a higher risk of EPTB. In reverse MR analysis, no causal association was identified. No significant heterogeneity of instrumental variables (IVs) or horizontal pleiotropy was found. CONCLUSION: Our study supports a one-way causal relationship between gut microbiota and TB, with gut microbiota having a causal effect on TB. The identification of characteristic gut microbiota provides scientific insights for the potential application of the gut microbiota as a preventive, diagnostic, and therapeutic tool for TB.


Subject(s)
Gastrointestinal Microbiome , Tuberculosis, Pulmonary , Tuberculosis , Humans , Gastrointestinal Microbiome/genetics , Mendelian Randomization Analysis , Genome-Wide Association Study , Tuberculosis/diagnosis , Tuberculosis/epidemiology , Tuberculosis/genetics
17.
Phys Rev Lett ; 132(22): 221802, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38877918

ABSTRACT

To enhance the scientific discovery power of high-energy collider experiments, we propose and realize the concept of jet-origin identification that categorizes jets into five quark species (b,c,s,u,d), five antiquarks (b[over ¯],c[over ¯],s[over ¯],u[over ¯],d[over ¯]), and the gluon. Using state-of-the-art algorithms and simulated νν[over ¯]H,H→jj events at 240 GeV center-of-mass energy at the electron-positron Higgs factory, the jet-origin identification simultaneously reaches jet flavor tagging efficiencies ranging from 67% to 92% for bottom, charm, and strange quarks and jet charge flip rates of 7%-24% for all quark species. We apply the jet-origin identification to Higgs rare and exotic decay measurements at the nominal luminosity of the Circular Electron Positron Collider and conclude that the upper limits on the branching ratios of H→ss[over ¯],uu[over ¯],dd[over ¯] and H→sb,db,uc,ds can be determined to 2×10^{-4} to 1×10^{-3} at 95% confidence level. The derived upper limit for H→ss[over ¯] decay is approximately 3 times the prediction of the standard model.

18.
Chemistry ; 30(13): e202303755, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38149882

ABSTRACT

A structurally precise hydride-containing Pt-doped Cu-rich nanocluster [PtH2 Cu14 {S2 P(Oi Pr)2 }6 (CCPh)6 ] (1) has been synthesized. It consists of a bicapped icosahedral Cu14 cage that encapsulates a linear PtH2 unit. Upon the addition of two equivalents of CF3 COOH to 1, two hydrido clusters are isolated. These clusters are [PtHCu11 {S2 P(Oi Pr)2 }6 (CCPh)4 ] (2), which is a vertex-missing Cu11 cuboctahedron encaging a PtH moiety, and [PtH2 Cu11 {S2 P(Oi Pr)2 }6 (CCPh)3 ] (3), a distorted 3,3,4,4,4-pentacapped trigonal prismatic Cu11 cage enclosing a PtH2 unit. The electronic structure of 2, analyzed by Density Functional Theory, is a 2e superatom. The electrocatalytic activities of 1-3 for hydrogen evolution reaction (HER) were compared. Notably, Cluster 2 exhibited an exceptionally excellent HER activity within metal nanoclusters, with an onset potential of -0.03 V (at 10 mA cm-2 ), a Tafel slope of 39 mV dec-1 , and consistent HER activity throughout 3000 cycles in 0.5 M H2 SO4 . Our study suggests that the accessible central Pt site plays a crucial role in the remarkable HER activity and may provide valuable insights for establishing correlations between catalyst structure and HER activity.

19.
Pancreatology ; 24(2): 211-219, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38302312

ABSTRACT

BACKGROUND: Fatigue is a debilitating symptom found in various chronic diseases and is associated with more severe symptoms and worse quality of life (QoL). However, this symptom has not been adequately addressed in chronic pancreatitis (CP), and there have been no studies on fatigue in patients with CP. METHODS: This cross-sectional study was conducted at the Changhai Hospital in Shanghai, China. Data on the patients' sociodemographic, disease, and therapeutic characteristics were collected. Fatigue was assessed using the Multidimensional Fatigue Inventory-20. QoL was assessed utilizing the European Organization for the Research and Treatment of Cancer of QoL questionnaire (EORTC-QLQ-C30). Sleep quality, anxiety and depression, and pain was assessed using Pittsburgh Sleep Quality Index, the Hospital Anxiety and Depression Scale, and the Brief Pain Inventory, respectively. RESULTS: The prevalence of fatigue among Chinese patients with CP was 35.51 % (87/245). Multivariate analysis showed that steatorrhea (OR = 2.638, 95 % CI: 1.117-6.234), history of smoking (OR = 4.627, 95 % CI: 1.202-17.802), history of endoscopic treatment (OR = 0.419, 95 % CI: 0.185-0.950), depression (OR = 5.924, 95 % CI: 2.462-14.255), and sleep disorder (OR = 6.184, 95 % CI: 2.543-15.034) were influencing factors for the presence of fatigue. The scores for global health and all functional dimensions in the EORTC-QLQ-C30 significantly decreased, whereas the scores for all symptom dimensions significantly increased in patients with fatigue. CONCLUSIONS: This study indicated that Fatigue is a common symptom and has a negative impact on the QoL of patients with CP. Steatorrhea, smoking history, endoscopic treatment, depression, and sleep disorders were associated with fatigue.


Subject(s)
Pancreatitis, Chronic , Steatorrhea , Humans , Cross-Sectional Studies , Quality of Life , Prevalence , China/epidemiology , Risk Factors , Pancreatitis, Chronic/complications , Pancreatitis, Chronic/epidemiology , Fatigue/epidemiology , Fatigue/etiology , Pain , Surveys and Questionnaires
20.
Virol J ; 21(1): 20, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38238848

ABSTRACT

BACKGROUND: N6-methyladenosine (m6A) methylation has become an active research area in viral infection, while little bibliometric analysis has been performed. In this study, we aim to visualize hotspots and trends using bibliometric analysis to provide a comprehensive and objective overview of the current research dynamics in this field. METHODS: The data related to m6A methylation in viral infection were obtained through the Web of Science Core Collection form 2000 to 2022. To reduce bias, the literature search was conducted on December 1, 2022. Bibliometric and visual analyzes were performed using CiteSpace and Bibliometrix package. After screening, 319 qualified records were retrieved. RESULTS: These publications mainly came from 28 countries led by China and the United States (the US), with the US ranking highest in terms of total link strength.The most common keywords were m6A, COVID-19, epitranscriptomics, METTL3, hepatitis B virus, innate immunity and human immunodeficiency virus 1. The thematic map showed that METTL3, plant viruses, cancer progression and type I interferon (IFN-I) reflected a good development trend and might become a research hotspot in the future, while post-transcriptional modification, as an emerging or declining theme, might not develop well. CONCLUSIONS: In conclusion, m6A methylation in viral infection is an increasingly important topic in articles. METTL3, plant viruses, cancer progression and IFN-I may still be research hotspots and trends in the future.


Subject(s)
Adenine/analogs & derivatives , Interferon Type I , Neoplasms , Virus Diseases , Humans , Bibliometrics , Methylation , Methyltransferases
SELECTION OF CITATIONS
SEARCH DETAIL