Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 421
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 25(5): 834-846, 2024 May.
Article in English | MEDLINE | ID: mdl-38561495

ABSTRACT

Cancer remains one of the leading causes of mortality worldwide, leading to increased interest in utilizing immunotherapy strategies for better cancer treatments. In the past decade, CD103+ T cells have been associated with better clinical prognosis in patients with cancer. However, the specific immune mechanisms contributing toward CD103-mediated protective immunity remain unclear. Here, we show an unexpected and transient CD61 expression, which is paired with CD103 at the synaptic microclusters of T cells. CD61 colocalization with the T cell antigen receptor further modulates downstream T cell antigen receptor signaling, improving antitumor cytotoxicity and promoting physiological control of tumor growth. Clinically, the presence of CD61+ tumor-infiltrating T lymphocytes is associated with improved clinical outcomes, mediated through enhanced effector functions and phenotype with limited evidence of cellular exhaustion. In conclusion, this study identified an unconventional and transient CD61 expression and pairing with CD103 on human immune cells, which potentiates a new target for immune-based cellular therapies.


Subject(s)
Antigens, CD , Apyrase , Integrin alpha Chains , Receptors, Antigen, T-Cell , Signal Transduction , Animals , Humans , Mice , Antigens, CD/metabolism , Antigens, CD/immunology , Cell Line, Tumor , Cytotoxicity, Immunologic , Integrin alpha Chains/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Neoplasms/immunology , Neoplasms/therapy , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , Signal Transduction/immunology , T-Lymphocytes, Cytotoxic/immunology
2.
Biochem Soc Trans ; 52(3): 1085-1098, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38716888

ABSTRACT

In vivo, muscle and neuronal cells are post-mitotic, and their function is predominantly regulated by proteostasis, a multilayer molecular process that maintains a delicate balance of protein homeostasis. The ubiquitin-proteasome system (UPS) is a key regulator of proteostasis. A dysfunctional UPS is a hallmark of muscle ageing and is often impacted in neuromuscular disorders (NMDs). Malfunction of the UPS often results in aberrant protein accumulation which can lead to protein aggregation and/or mis-localization affecting its function. Deubiquitinating enzymes (DUBs) are key players in the UPS, controlling protein turnover and maintaining the free ubiquitin pool. Several mutations in DUB encoding genes are linked to human NMDs, such as ATXN3, OTUD7A, UCHL1 and USP14, whilst other NMDs are associated with dysregulation of DUB expression. USP5, USP9X and USP14 are implicated in synaptic transmission and remodeling at the neuromuscular junction. Mice lacking USP19 show increased maintenance of lean muscle mass. In this review, we highlight the involvement of DUBs in muscle physiology and NMDs, particularly in processes affecting muscle regeneration, degeneration and inflammation following muscle injury. DUBs have recently garnered much respect as promising drug targets, and their roles in muscle maturation, regeneration and degeneration may provide the framework for novel therapeutics to treat muscular disorders including NMDs, sarcopenia and cachexia.


Subject(s)
Deubiquitinating Enzymes , Humans , Animals , Deubiquitinating Enzymes/metabolism , Muscle, Skeletal/metabolism , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/metabolism , Neuromuscular Diseases/metabolism , Neuromuscular Diseases/genetics , Neuromuscular Diseases/physiopathology , Neuromuscular Diseases/enzymology , Muscular Diseases/metabolism , Muscular Diseases/genetics , Mice , Proteostasis
3.
Opt Lett ; 49(10): 2749-2752, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748152

ABSTRACT

Cavity optomagnonics has received considerable research interest in recent years, due to the coherent magnetic Brillioun light scattering in the ferromagnetic material. Here, we theoretically propose and numerically verify a feasible scheme for the full polarization tomography on photon statistics in an optomagnonic whispering-gallery-mode microresonator system in the weak-coupling regime. By performing the polarization pre- and post-selections to manipulate the polarization states of the input and output photons, we find that the rich sub- and super-Poissonian photon statistics can be selectively generated, thanks to quantum interferences. In the parameter space of phase delay, the evolution from photon bunching to antibunching indicates the change from phase to amplitude squeezing. Our obtained result has potential applications in tunable quantum polarized light sources based on the cavity optomagnonic platform in micro-nano scale. It also offers a deeper understanding for full quantum cavity optomagnonics.

4.
Acta Pharmacol Sin ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719954

ABSTRACT

Hypertensive cerebrovascular remodeling involves the enlargement of vascular smooth muscle cells (VSMCs), which activates volume-regulated Cl- channels (VRCCs). The leucine-rich repeat-containing family 8 A (LRRC8A) has been shown to be the molecular identity of VRCCs. However, its role in vascular remodeling during hypertension is unclear. In this study, we used vascular smooth muscle-specific LRRC8A knockout (CKO) mice and an angiotensin II (Ang II)-induced hypertension model. The results showed that cerebrovascular remodeling during hypertension was ameliorated in CKO mice, and extracellular matrix (ECM) deposition was reduced. Based on the RNA-sequencing analysis of aortic tissues, the level of matrix metalloproteinases (MMPs), such as MMP-9 and MMP-14, were reduced in CKO mice with hypertension, which was further verified in vivo by qPCR and immunofluorescence analysis. Knockdown of LRRC8A in VSMCs inhibited the Ang II-induced upregulation of collagen I, fibronectin, and matrix metalloproteinases (MMPs), and overexpression of LRRC8A had the opposite effect. Further experiments revealed an interaction between with-no-lysine (K)-1 (WNK1), which is a "Cl--sensitive kinase", and Forkhead transcription factor O3a (FOXO3a), which is a transcription factor that regulates MMP expression. Ang II induced the phosphorylation of WNK1 and downstream FOXO3a, which then increased the expression of MMP-2 and MMP-9. This process was inhibited or potentiated when LRRC8A was knocked down or overexpressed, respectively. Overall, these results demonstrate that LRRC8A knockout in vascular smooth muscle protects against cerebrovascular remodeling during hypertension by reducing ECM deposition and inhibiting the WNK1/FOXO3a/MMP signaling pathway, demonstrating that LRRC8A is a potential therapeutic target for vascular remodeling-associated diseases such as stroke.

5.
J Gambl Stud ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38592612

ABSTRACT

Overconfidence, a widely observed cognitive bias, has been linked to increased gambling motivations and behaviors. However, previous studies have largely overlooked overconfidence under a social comparison context, known as overplacement, i.e., the tendency of individuals to believe that they are better than their similar peers. In the present study, we tested the effect of overplacement on gambling motivations and behaviors though a Pilot Survey of Chinese college students (N = 129) and a Field Survey of Chinese Macao casino gamblers (N = 733). Our results revealed a double-edged sword effect of overplacement: Serving as a risk factor, evaluating one self's earning ability as higher than others was linked to more gambling motivations (ß = 0.18, p = .005) and frequency (ß = 0.18, p = .004); Serving as a protective factor, evaluating oneself as happier than others was linked to less gambling motivations (ß = - 0.32, p < .001) and problem behaviors (ß = - 0.26, p < .001). These findings expand the relationship between overconfidence and gambling from a cognitive bias perspective to a social comparison perspective. Our study not only revealed a typical profile of gambling motivations and behaviors among different demographic groups in Chinese casino gamblers, but also highlighted the importance of considering social factors in the study of the psychological mechanisms of gambling.

6.
J Environ Manage ; 364: 121432, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38878573

ABSTRACT

The physical and chemical characteristics of fly ash has changed significantly under ultra-low emission system and the current leaching system is no longer suitable for high alkalinity fly ash. This work investigated the pH values and evolution of physical and chemical characteristics of fly ash from 24 typical municipal solid waste incineration plants in China. The pH value of the leaching solution obtained by HJ/T 300-2007 presented two different acid and alkali characteristics, where high and low alkalinity fly ash accounted for 54.17% and 45.83%, respectively. The alkali content in fly ash increased significantly after ultra-low emission standard, increasing by 18.24% compared with before the implementation of GB 18485-2014. The leaching behavior of high alkalinity fly ash showed the illusion that they could enter the landfill only by the addition of a small amount of chelating agent or even without stabilization treatment, and its long-term landfill risk is significant. The phase change of high alkalinity fly ash and pH value change of the leaching solution after carbonation were the key factors for the leaching concentration change of heavy metals. Therefore, it is recommended to improve the existing leaching system or conduct accelerated carbonization experiments to scientifically evaluate the long-term leaching characteristics of high alkalinity fly ash, and to reduce the risk of heavy metal release from high alkalinity FA after entering the landfill site.


Subject(s)
Coal Ash , Incineration , Solid Waste , Coal Ash/analysis , Coal Ash/chemistry , Solid Waste/analysis , China , Metals, Heavy/analysis , Hydrogen-Ion Concentration , Refuse Disposal
7.
J Transl Med ; 21(1): 371, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37291585

ABSTRACT

The transcription factor family activator protein 2 (TFAP2) is vital for regulating both embryonic and oncogenic development. The TFAP2 family consists of five DNA-binding proteins, including TFAP2A, TFAP2B, TFAP2C, TFAP2D and TFAP2E. The importance of TFAP2 in tumor biology is becoming more widely recognized. While TFAP2D is not well studied, here, we mainly focus on the other four TFAP2 members. As a transcription factor, TFAP2 regulates the downstream targets directly by binding to their regulatory region. In addition, the regulation of downstream targets by epigenetic modification, posttranslational regulation, and interaction with noncoding RNA have also been identified. According to the pathways in which the downstream targets are involved in, the regulatory effects of TFAP2 on tumorigenesis are generally summarized as follows: stemness and EMT, interaction between TFAP2 and tumor microenvironment, cell cycle and DNA damage repair, ER- and ERBB2-related signaling pathway, ferroptosis and therapeutic response. Moreover, the factors that affect TFAP2 expression in oncogenesis are also summarized. Here, we review and discuss the most recent studies on TFAP2 and its effects on carcinogenesis and regulatory mechanisms.


Subject(s)
Neoplasms , Transcription Factors , Humans , Transcription Factors/metabolism , Gene Expression Regulation, Developmental , Neoplasms/genetics , Epithelial-Mesenchymal Transition , Tumor Microenvironment , Transcription Factor AP-2/genetics , Transcription Factor AP-2/metabolism
8.
J Org Chem ; 88(1): 585-593, 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36538655

ABSTRACT

An efficient, tandem one-pot approach to synthesize multisubstituted 2-acylpyrroles from readily prepared N-tosyl triazoles and 2-hydroxymethylallyl carbonates is reported. The reaction proceeds via Rh(II)-catalyzed O-H insertion, [3,3]-sigmatropic rearrangement, Pd(0)-catalyzed oxidative addition, intramolecular cyclization, DBU-promoted E1cB elimination, double bond isomerization, and aromatization, enabling the disconnection and formation of multiple bonds in one reactor. The approach represents a highly regioselective way to access di-, tri-, and tetra-substituted NH pyrroles with high efficiency.

9.
J Chem Phys ; 158(13): 134715, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37031143

ABSTRACT

Solvent extraction of trivalent rare earth metal ions by organophosphorus extractants proceeds via binding of phosphoric acid headgroups to the metal ion. Water molecules in the tightly bound first hydration shell of the metal ions must be displaced by oxygen atoms from phosphoric acid headgroups. Here, we use classical molecular dynamics simulations to explore the event in which a fully hydrated Er3+ binds to its first phosphoric acid headgroup. Approach of the headgroup into the region between the first and second hydration shells leads to a fast ejection of a water molecule that is accompanied by reordering of the hydration water molecules, including discretization of their angular positions and collective rotation about the metal ion. The water molecule ejected from the first shell is located diametrically opposite from the binding oxygen. Headgroup binding places a headgroup oxygen closer to Er3+ than its first hydration shell and creates a loosely bound water that subsequently exchanges between the first shell and its environment. This second exchange of water also occurs at discrete angular positions. This geometrical aspect of binding may be of relevance to understanding the binding and transport of ion-extractant complexes that are expected to occur at the organic-aqueous liquid-liquid interface used in solvent extraction processes.

10.
Appl Opt ; 62(21): 5696-5706, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37707186

ABSTRACT

Vibration rejection is one of the key techniques to stabilize the line of sight (LOS) for phased array telescope systems. Conventionally, feedback control based on image sensors is mainly used to correct the tip/tilt errors caused by disturbances and to keep the LOS stable. However, it is restricted by the sampling rate and time delay of image sensors, leading to a limited closed-loop bandwidth. Disturbances in the middle and high frequencies are hard to suppress. In this paper, disturbance-propagation-characteristics-based feedforward control is proposed to overcome these problems. A theoretical imaging model of the phased array telescope is developed to analyze the LOS disruption caused by disturbance. In addition, to improve the disturbance suppression bandwidth and correction accuracy of the system, the disturbance propagation characteristics of the phased array telescope system are analyzed. Combined with the disturbance feedforward, targeted compensation is achieved for the sub-apertures. Finally, a comparative experiment is carried out based on the self-developed Fizeau phased array telescope system to verify the superiority of the proposed method.

11.
J Cell Mol Med ; 26(14): 3965-3976, 2022 07.
Article in English | MEDLINE | ID: mdl-35689386

ABSTRACT

Bone is the preferential site of metastasis for breast cancer. Invasion of cancer cells induces the destruction of bone tissue and damnification of peripheral nerves and consequently induced central sensitization which contributes to severe pain. Herein, cancer induced bone pain (CIBP) rats exhibited destruction of tibia, mechanical allodynia and spinal inflammation. Inflammatory response mainly mediated by astrocyte and microglia in central nervous system. Our immunofluorescence analysis revealed activation of spinal astrocytes and microglia in CIBP rats. Transmission electron microscopy (TEM) observations of mitochondrial outer membrane disruption and cristae damage in spinal mitochondria of CIBP rats. Proteomics analysis identified abnormal expression of proteins related to mitochondrial organization and function. Intrathecally, injection of GSK-3ß activity inhibitor TDZD-8 significantly attenuated Drp1-mediated mitochondrial fission and recovered mitochondrial function. Inhibition of GSK-3ß activity also suppressed NLRP3 inflammasome cascade and consequently decreased mechanical pain sensitivity of CIBP rats. For cell research, TDZD-8 treatment significantly reversed TNF-α induced mitochondrial membrane potential (MMP) deficiency and high mitochondrial reactive oxygen species level. Taken together, GSK-3ß inhibition by TDZD-8 decreases spinal inflammation and relieves cancer induced bone pain via reducing Drp1-mediated mitochondrial damage.


Subject(s)
Inflammation , Neoplasms , Animals , Bone and Bones , Glycogen Synthase Kinase 3 beta , Pain , Rats , Rats, Sprague-Dawley
12.
Hum Reprod ; 37(9): 2054-2062, 2022 08 25.
Article in English | MEDLINE | ID: mdl-35876815

ABSTRACT

STUDY QUESTION: Do inactivated coronavirus disease-2019 (COVID-19) vaccines affect IVF outcomes among the vaccine recipients? SUMMARY ANSWER: The receipt of inactivated COVID-19 vaccines before ovarian stimulation has little effect on the outcomes of IVF, including ovarian stimulation outcomes, embryo development and pregnancy rates. WHAT IS KNOWN ALREADY: Limited studies have reported that COVID-19 vaccines do not affect ovarian function, embryo development or pregnancy outcomes. STUDY DESIGN, SIZE, DURATION: This was a retrospective cohort study performed at the Third Affiliated Hospital of Guangzhou Medical University on 240 women vaccinated with either CoronaVac or Sinopharm COVID-19 before ovarian stimulation in the exposed group and 1343 unvaccinated women before ovarian stimulation in the unexposed group. All participants received fresh embryo transfers between 1 March 2021 and 15 September 2021. The included women were followed up until 12 weeks of gestation. PARTICIPANTS/MATERIALS, SETTING, METHODS: Vaccination information of all subjects was followed up by a nurse, and the IVF data were obtained from the IVF data system. The following aspects were compared between the vaccinated and the unvaccinated groups: parameters of ovarian stimulation, embryo development and pregnancy rates. Regression analyses were performed to control for confounders of embryo development and pregnancy rates. Propensity score matching (PSM) was performed to balance the baseline parameters of the two groups. The primary outcome was the ongoing pregnancy rate. MAIN RESULTS AND THE ROLE OF CHANCE: Liner regression analysis revealed that the number of oocytes retrieved (regression coefficient (B) = -0.299, P = 0.264), embryos suitable for transfer (B = -0.203, P = 0.127) and blastocysts (B = -0.250, P = 0.105) were not associated with the status of vaccination before ovarian stimulation, after adjusting for the confounders. The ongoing pregnancy rate in the women of the vaccinated group was not significantly lower than that in the unvaccinated group (36.3% vs 40.7%, P = 0.199) (adjust odd ratio = 0.91, 95% CI = 0.68-1.22, P = 0.52). After PSM, the rates of ongoing pregnancy (36.0% vs 39.9%, P = 0.272), implantation (35.4% vs 38.3%, P = 0.325), biochemical pregnancy (47.3% vs 51.6%, P = 0.232), clinical pregnancy (44.4% vs 47.4%, P = 0.398) and early miscarriage (15.0% vs 12.1%, P = 0.399) were not significantly different between the vaccinated and the unvaccinated groups. LIMITATIONS, REASONS FOR CAUTION: This is a retrospective study of women with infertility. The results from the present study warrant confirmation by prospective studies with a larger cohort. WIDER IMPLICATIONS OF THE FINDINGS: This is the first study with a large sample size on the effect of inactivated COVID-19 vaccines on ongoing pregnancy rates of women undergoing IVF. The present results showed that vaccination has no detrimental effect on IVF outcomes. Therefore, women are recommended to receive COVID-19 vaccines before undergoing their IVF treatment. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by the National Key Research and Development Program of China (No. 2018YFC1003803 to J.L.), the Guangzhou Science and Technology Plan Project (No. 202102010076 to H.L.) and the Medical Key Discipline of Guangzhou (2021-2023), as well as the Sino-German Center for Research Promotion Rapid Response Funding Call for Bilateral Collaborative Proposals between China and Germany in COVID-19 Related Research (No. C-0032 to Xingfei Pan). The authors declare no conflicts of interest. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
COVID-19 Vaccines , COVID-19 , COVID-19/prevention & control , Female , Fertilization in Vitro/methods , Humans , Ovulation Induction/methods , Pregnancy , Pregnancy Rate , Prospective Studies , Retrospective Studies , Vaccination
13.
Hum Reprod ; 37(12): 2942-2951, 2022 11 24.
Article in English | MEDLINE | ID: mdl-36200874

ABSTRACT

STUDY QUESTION: Does inoculation with inactivated vaccines against coronavirus disease 2019 (Covid-19) before frozen-thawed embryo transfer (FET) affect live birth and neonatal outcomes? SUMMARY ANSWER: Inactivated Covid-19 vaccines did not undermine live birth and neonatal outcomes of women planning for FET. WHAT IS KNOWN ALREADY: Accumulating reports are now available indicating the safe use of mRNA vaccines against Covid-19 in pregnant and lactating women, and a few reports indicate that they are not associated with adverse effects on ovarian stimulation or early pregnancy outcomes following IVF. Evidence about the safety of inactivated Covid-19 vaccines is very limited. STUDY DESIGN, SIZE, DURATION: This is a retrospective cohort analysis from Reproductive Medical Center of a tertiary teaching hospital. Clinical records and vaccination record of 2574 couples with embryos transferred between 1 March 2021 and 30 September 2021 were screened for eligibility of this study. PARTICIPANTS/MATERIALS, SETTING, METHODS: Clinical and vaccination data of infertile couples planning for FET were screened for eligibility of the study. The reproductive and neonatal outcomes of FET women inoculated with inactivated Covid-19 vaccines or not were compared. The primary outcomes were live birth rate per embryo transfer cycle and newborns' birth height and weight. Secondary outcomes included rates of ongoing pregnancy, clinical pregnancy, biochemical pregnancy and spontaneous miscarriage. Multivariate logistical regression and propensity score matching (PSM) analyses were performed to minimize the influence of confounding factors. Subgroup analyses, including single dose versus double dose of the vaccines and the time intervals between the first vaccination and embryo transfer, were also performed. MAIN RESULTS AND THE ROLE OF CHANCE: Vaccinated women have comparable live birth rates (43.6% versus 45.0% before PSM, P = 0.590; and 42.9% versus 43.9% after PSM, P = 0.688), ongoing pregnancy rates (48.2% versus 48.1% before PSM, P = 0.980; and 52.2% versus 52.7% after PSM, P = 0.875) and clinical pregnancy rate (55.0% versus 54.8% before PSM, P = 0.928; and 54.7% versus 54.2% after PSM, P = 0.868) when compared with unvaccinated counterparts. The newborns' birth length (50.0 ± 1.6 versus 49.0 ± 2.9 cm before PSM, P = 0.116; and 49.9 ± 1.7 versus 49.3 ± 2.6 cm after PSM, P = 0.141) and birth weight (3111.2 ± 349.9 versus 3030.3 ± 588.5 g before PSM, P = 0.544; and 3053.8 ± 372.5 versus 3039.2 ± 496.8 g after PSM, P = 0.347) were all similar between the two groups. Neither single dose nor double dose of vaccines, as well as different intervals between vaccination and embryo transfer showed any significant impacts on reproductive and neonatal outcomes. LIMITATIONS, REASONS FOR CAUTION: The main findings might be limited by retrospective design. Besides, inoculations of triple dose of Covid-19 vaccines were not available by the time of data collection, thus the results cannot reflect the safe use of triple dose of inactivated Covid-19 vaccines. Finally, history of Covid-19 infection was based on patients' self-report rather than objective laboratory tests. WIDER IMPLICATIONS OF THE FINDINGS: Eligible individuals of inactivated vaccines against Covid-19 should not postpone vaccination plan because of their embryo transfer schedule, or vice versa. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by the Medical Key Discipline of Guangzhou (2021-2023). All authors had nothing to disclose. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
COVID-19 , Live Birth , Pregnancy , Humans , Infant, Newborn , Female , COVID-19 Vaccines/adverse effects , Retrospective Studies , COVID-19/prevention & control , Lactation , Embryo Transfer/methods , Pregnancy Rate , Birth Rate , Vaccines, Inactivated , Fertilization in Vitro/methods
14.
Cancer Cell Int ; 22(1): 292, 2022 Sep 24.
Article in English | MEDLINE | ID: mdl-36153508

ABSTRACT

BACKGROUND: Lung adenocarcinoma (LUAD) is a leading cause of cancer-related death worldwide. Ferroptosis, a form of cell death characterized by iron-dependent lipid peroxidation. However, the involvement of ferroptosis in the regulation of immune cell infiltration and its immunotherapeutic efficacy in LUAD remain unclear. METHODS: The Cancer Genome Atlas (TCGA) LUAD cohort was used to assess the survival prognosis of FRGs and construct a seven-gene risk signature. Correlation tests, difference tests, and a cluster analysis were performed to explore the role of FRGs in the immune microenvironment and their immunotherapeutic efficacy in LUAD. The effects of FRGs on LUAD cells were assessed by Western blot, iron assay, and lipid peroxidation assay. RESULTS: The seven-gene risk signatures of patients with LUAD were established and validated. FRG clustering based on 70 differentially expressed FRGs was associated with the immune microenvironment and indicated potential immune subtypes of LUAD. The seven-gene risk signature was an independent prognostic factor for LUAD and was used to divide the LUAD cohort into a high-risk and a low-risk group. Immunocyte infiltration levels, immune checkpoints, and immunotherapy response rates were significantly different between the two groups. Patients with high risk scores had lower overall levels of immunocyte infiltration but higher immunotherapy response rates. The key gene ribonucleotide reductase subunit M2 (RRM2) was associated with LUAD prognosis, which may be related to its ability to regulate the infiltration levels of activated mast cells and activated CD4 memory T cells. In addition, RRM2 was involved in ferroptosis, and its expression was up regulated in lung cancer tissues and the LUAD cell lines. Silencing RRM2 can inhibit the proliferation and induce ferroptosis of H1975 cells suggesting that silencing RRM2 could promote ferroptosis in H1975 cells. CONCLUSION: Our results revealed RRM2 as a promising biomarker and therapeutic target associated with tumor immune infiltration in patients with LUAD.

15.
Eur Arch Psychiatry Clin Neurosci ; 272(8): 1595-1602, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35091796

ABSTRACT

Substance use disorder (SUD) is characterized by continued drug use despite adverse consequences. Methcathinone is a new type of psychoactive substance that is associated with high excitement and impulsive behaviors. However, it is unclear if individuals with methcathinone use disorders (MCUD) are with impaired decision-making ability. We analyzed the task performance in 45 male MCUD subjects and 35 male matched healthy controls (HC) with intertemporal decision-making task. Constant sensitivity discounting model was used to estimate potential changes in both discounting rate and time sensitivity. The results showed that MCUD individuals exhibited a higher delay discounting rate (p = 0.003, Cohen's d = 0.683) and reduced sensitivity to time (p < 0.001, Cohen's d = 1.662). The delay discounting rate was correlated to the first age for drug use (r = - 0.41, p = 0.004), and the time sensitivity was negatively correlated with the duration of abstinence (r = - 0.31, p = 0.036). We conclude that MCUD individuals are with impaired decision-making ability and time perception disturbances.


Subject(s)
Delay Discounting , Substance-Related Disorders , Humans , Male , Impulsive Behavior , Task Performance and Analysis , Reward , Decision Making
16.
Proc Natl Acad Sci U S A ; 116(37): 18227-18232, 2019 09 10.
Article in English | MEDLINE | ID: mdl-29531034

ABSTRACT

During solvent extraction, amphiphilic extractants assist the transport of metal ions across the liquid-liquid interface between an aqueous ionic solution and an organic solvent. Investigations of the role of the interface in ion transport challenge our ability to probe fast molecular processes at liquid-liquid interfaces on nanometer-length scales. Recent development of a thermal switch for solvent extraction has addressed this challenge, which has led to the characterization by X-ray surface scattering of interfacial intermediate states in the extraction process. Here, we review and extend these earlier results. We find that trivalent rare earth ions, Y(III) and Er(III), combine with bis(hexadecyl) phosphoric acid (DHDP) extractants to form inverted bilayer structures at the interface; these appear to be condensed phases of small ion-extractant complexes. The stability of this unconventional interfacial structure is verified by molecular dynamics simulations. The ion-extractant complexes at the interface are an intermediate state in the extraction process, characterizing the moment at which ions have been transported across the aqueous-organic interface, but have not yet been dispersed in the organic phase. In contrast, divalent Sr(II) forms an ion-extractant complex with DHDP that leaves it exposed to the water phase; this result implies that a second process that transports Sr(II) across the interface has yet to be observed. Calculations demonstrate that the budding of reverse micelles formed from interfacial Sr(II) ion-extractant complexes could transport Sr(II) across the interface. Our results suggest a connection between the observed interfacial structures and the extraction mechanism, which ultimately affects the extraction selectivity and kinetics.

18.
Cell Commun Signal ; 19(1): 23, 2021 02 24.
Article in English | MEDLINE | ID: mdl-33627128

ABSTRACT

Controlling the activation of the NLRP3 inflammasome by post-translational modifications (PTMs) of critical protein subunits has emerged as a key determinant in inflammatory processes as well as in pathophysiology. In this review, we put into context the kinases, ubiquitin processing and other PTM enzymes that modify NLRP3, ASC/PYCARD and caspase-1, leading to inflammasome regulation, activation and signal termination. Potential target therapeutic entry points for a number of inflammatory diseases focussed on PTM enzyme readers, writers and erasers, leading to the regulation of inflammasome function, are discussed. Video Abstract.


Subject(s)
Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Protein Processing, Post-Translational , Animals , Humans
19.
Mol Cell Biochem ; 476(8): 3141-3148, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33860868

ABSTRACT

The aim of the study is to investigate the potential of using three-dimensional (3D) in vitro neuroblastoma models to mimic the neuroblastoma microenvironment by testing a potential therapeutic compound-the natural extract epigallocatechin-3-gallate (EGCG), and to further elucidate the roles of DYRK1A in the growth and differentiation of neuroblastoma tissue. In vitro models based on a classic neuroblastoma cell line SH-SY5Y were employed, including 3D models with extracellular matrix and co-cultured with vascular endothelial cells. Cell viability was tested using AlamarBlue and Resazurin assay. The growth and differentiation of in vitro models of SH-SY5Y were analysed based on microscopy images obtained from immunofluorescence or real-time imaging. Protein expression level was investigated using immunoblotting analysis. The two-dimensional (2D) in vitro model implies the cytotoxicity and DYRK1A inhibition effect of EGCG and shows the induction of neuronal differentiation marker TuJ1. 3D in vitro models suggest that EGCG treatment compromised the growth of SH-SY5Y multicellular 3D spheroids and the viability of SH-SY5Y cultured in 3D Matrigel matrix. In addition, co-culture of SH-SY5Y with human vascular umbilical vein endothelial cells implied the inhibitory effects by EGCG in a vascularised microenvironment. In this study, novel 3D in vitro models of neuroblastoma were established in the application of testing a potential anti-cancer candidate compound EGCG. In pursuit of the goals of the 3Rs (replacement, reduction and refinement), the usage of these 3D in vitro models has the potential to reduce and eventually replace current animal models used in neuroblastoma research. The DYRK1A inhibiting nature of EGCG, together with the facts that EGCG inhibits the growth and induces the differentiation of neuroblastoma in vitro models, suggests an oncogene role of DRYK1A.


Subject(s)
Anticarcinogenic Agents/pharmacology , Catechin/analogs & derivatives , Neuroblastoma/drug therapy , Apoptosis , Catechin/pharmacology , Cell Culture Techniques , Cell Proliferation , Coculture Techniques , Human Umbilical Vein Endothelial Cells , Humans , Neuroblastoma/pathology , Tumor Cells, Cultured
20.
J Med Internet Res ; 23(12): e29167, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34878992

ABSTRACT

BACKGROUND: Walking is a simple but beneficial form of physical activity (PA). Self-monitoring and providing information about social norms are the 2 most widely used "mobile health (mHealth)" strategies to promote walking behavior. However, previous studies have failed to discriminate the effect of self-monitoring from the combination of the 2 strategies, and provide practical evidence within Chinese culture. Some essential moderators, such as gender and group identity, were also overlooked. OBJECTIVE: We aimed to investigate the effectiveness of social norm and self-monitoring interventions for walking behavior and assess the moderating effects of gender and group identity, which could guide optimal mHealth intervention projects in China. METHODS: In 2 longitudinal tracking studies (study 1, 22 days; study 2, 31 days), Chinese college students wore trackers for at least 8 hours per day (MASAI 3D Pedometer and Xiaomi Wristband 2) to record their daily step counts in baseline, intervention, and follow-up stages. In each study, participants (study 1: n=117, 54% female, mean age 25.60 years; study 2: n=180, 51% female, mean age 22.60 years) were randomly allocated to 1 of the following 3 groups: a self-monitoring group and 2 social norm intervention groups. In the 2 intervention groups and during the intervention stage, participants received different social norm information regarding group member step rankings corresponding to their grouping type of social norm information. In study 1, participants were grouped by within-group member PA levels (PA consistent vs PA inconsistent), and in study 2, participants were grouped by their received gender-specific social norm information (gender consistent vs gender inconsistent). Piece-wise linear mixed models were used to compare the difference in walking steps between groups. RESULTS: In study 1, for males in the self-monitoring group, walking steps significantly decreased from the baseline stage to the intervention stage (change in slope=-1422.16; P=.02). However, additional social norm information regardless of group consistency kept their walking unchanged. For females, social norm information did not provide any extra benefit beyond self-monitoring. Females exposed to PA-inconsistent social norm information even walked less (slope during the intervention=-122.18; P=.03). In study 2, for males, a similar pattern was observed, with a decrease in walking steps in the self-monitoring group (change in slope=-151.33; P=.08), but there was no decrease in the 2 social norm intervention groups. However, for females, gender-consistent social norm information decreased walking steps (slope during the intervention=-143.68; P=.03). CONCLUSIONS: Both gender and group identity moderated the effect of social norm information on walking. Among females, social norm information showed no benefit for walking behavior and may have exerted a backfire effect. Among males, while walking behavior decreased with self-monitoring only, the inclusion of social norm information held the level of walking behavior steady.


Subject(s)
Social Norms , Walking , Adult , China , Exercise , Female , Humans , Male , Students , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL