Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Opt Express ; 27(21): 29639-29648, 2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31684221

ABSTRACT

Realization of the highly efficient hybrid atom-photon gates is vital to the quantum interface that integrates atoms and superconducting resonators. Here we propose a scheme to realize the hybrid state transfer and controlled-PHASE gate based on Raman chirped shortcut to adiabatic passage. The scheme is fast to protect the quantum state from the decoherence effects in the hybrid interface, as well as is robust due to the geometric phase. We show that this two-qubit gate is more resilient than the Raman pulse and Raman chirped adiabatic passage against the variations in the vacuum coupling strength and two-photon detuning. Its fast and robust features make it especially suitable for long-term storage and optical readout of superconducting qubits, and moreover, entanglement swapping between two disparate components.

2.
Opt Lett ; 44(19): 4801-4804, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31568446

ABSTRACT

We propose a controlled-PHASE gate for neutral atoms in which one of the qubit state components adiabatically evolves along the multiple-atom eigenstate formed by the chirped laser pulse coupling to Rydberg states and intrinsic dipole-dipole exchange interactions and, consequently, accumulates an interaction-induced geometric phase. The geometric Rydberg gate is not limited by an adiabatic condition, which is sped up by shortcuts to adiabaticity (STA). Analyses show that an STA scheme is more robust than a non-adiabatic case against the variations of control parameters and faster than an adiabatic case, which protects from the decay of Rydberg states. Furthermore, an intermediate value of dipole-dipole interaction strength is enough for our scheme.

3.
Sci Rep ; 6: 26519, 2016 05 31.
Article in English | MEDLINE | ID: mdl-27241283

ABSTRACT

Quantum states are the key mathematical objects in quantum theory; however, there is still much debate concerning what a quantum state truly represents. One such century-old debate is whether a quantum state is ontic or epistemic. Recently, a no-go theorem was proposed, stating that the continuous ψ-epistemic models cannot reproduce the measurement statistic of quantum states. Here we experimentally test this theorem with high-dimensional single photon quantum states without additional assumptions except for the fair-sampling assumption. Our experimental results reproduce the prediction of quantum theory and support the no-go theorem.

SELECTION OF CITATIONS
SEARCH DETAIL