Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Main subject
Language
Journal subject
Affiliation country
Publication year range
1.
Sensors (Basel) ; 16(6)2016 Jun 22.
Article in English | MEDLINE | ID: mdl-27338417

ABSTRACT

Target tracking is a critical wireless sensor application, which involves signal and information processing technologies. In conventional target position estimation methods, an estimate is usually demonstrated by an average target position. In contrast, this work proposes a distributed information compression method to describe the measurement uncertainty of tracking problems in cluster-based wireless sensor networks. The leader-based information processing scheme is applied to perform target positioning and energy conservation. A two-level hierarchical network topology is adopted for energy-efficient target tracking with information compression. A Level 1 network architecture is a cluster-based network topology for managing network operations. A Level 2 network architecture is an event-based and leader-based topology, utilizing the concept of information compression to process the estimates of sensor nodes. The simulation results show that compared to conventional schemes, the proposed data processing scheme has a balanced system performance in terms of tracking accuracy, data size for transmission and energy consumption.

2.
IEEE Trans Nanobioscience ; 22(3): 603-613, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36350858

ABSTRACT

DNA computing has efficient computational power, but requires high requirements on the DNA sequences used for coding, and reliable DNA sequences can effectively improve the quality of DNA encoding. And designing reliable DNA sequences is an NP problem, because it requires finding DNA sequences that satisfy multiple sets of conflicting constraints from a large solution space. To better solve the DNA sequence design problem, we propose an improved bare bones particle swarm optimization algorithm (IBPSO). The algorithm uses dynamic lensing opposition-based learning to initialize the population to improve population diversity and enhance the ability of the algorithm to jump out of local optima; An evolutionary strategy based on signal-to-noise ratio(SNR) distance is designed to balance the exploration and exploitation of the algorithm; Then an invasive weed optimization algorithm with niche crowding(NCIWO) is used to eliminate low-quality solutions and improve the search efficiency of the algorithm. In addition, we introduce the triplet-bases unpaired constraint to further improve the quality of DNA sequences. Finally, the effectiveness of the improved strategy is demonstrated by ablation experiments; and the DNA sequences designed by our algorithm are of higher quality compared with those generated by the six advanced algorithms.


Subject(s)
Algorithms , Base Sequence
SELECTION OF CITATIONS
SEARCH DETAIL