Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 157
Filter
Add more filters

Publication year range
1.
Hum Hered ; 89(1): 8-31, 2024.
Article in English | MEDLINE | ID: mdl-38198765

ABSTRACT

INTRODUCTION: Joint linkage and association (JLA) analysis combines two disease gene mapping strategies: linkage information contained in families and association information contained in populations. Such a JLA analysis can increase mapping power, especially when the evidence for both linkage and association is low to moderate. Similarly, an association analysis based on haplotypes instead of single markers can increase mapping power when the association pattern is complex. METHODS: In this paper, we present an extension to the GENEHUNTER-MODSCORE software package that enables a JLA analysis based on haplotypes and uses information from arbitrary pedigree types and unrelated individuals. Our new JLA method is an extension of the MOD score approach for linkage analysis, which allows the estimation of trait-model and linkage disequilibrium (LD) parameters, i.e., penetrance, disease-allele frequency, and haplotype frequencies. LD is modeled between alleles at a single diallelic disease locus and up to three diallelic test markers. Linkage information is contributed by additional multi-allelic flanking markers. We investigated the statistical properties of our JLA implementation using extensive simulations, and we compared our approach to another commonly used single-marker JLA test. To demonstrate the applicability of our new method in practice, we analyzed pedigree data from the German National Case Collection for Familial Pancreatic Cancer (FaPaCa). RESULTS: Based on the simulated data, we demonstrated the validity of our JLA-MOD score analysis implementation and identified scenarios in which haplotype-based tests outperformed the single-marker test. The estimated trait-model and LD parameters were in good accordance with the simulated values. Our method outperformed another commonly used JLA single-marker test when the LD pattern was complex. The exploratory analysis of the FaPaCa families led to the identification of a promising genetic region on chromosome 22q13.33, which can serve as a starting point for future mutation analysis and molecular research in pancreatic cancer. CONCLUSION: Our newly proposed JLA-MOD score method proves to be a valuable gene mapping and characterization tool, especially when either linkage or association information alone provide insufficient power to identify the disease-causing genetic variants.


Subject(s)
Carcinoma , Genetic Linkage , Haplotypes , Linkage Disequilibrium , Pancreatic Neoplasms , Software , Humans , Pancreatic Neoplasms/genetics , Haplotypes/genetics , Pedigree , Models, Genetic , Female , Male , Genetic Predisposition to Disease , Computer Simulation , Gene Frequency/genetics , Polymorphism, Single Nucleotide/genetics , Chromosome Mapping/methods
2.
Hum Mol Genet ; 31(19): 3367-3376, 2022 09 29.
Article in English | MEDLINE | ID: mdl-34718574

ABSTRACT

In the era of personalized medicine with more and more patient-specific targeted therapies being used, we need reliable, dynamic, faster and sensitive biomarkers both to track the causes of disease and to develop and evolve therapies during the course of treatment. Metabolomics recently has shown substantial evidence to support its emerging role in disease diagnosis and prognosis. Aside from biomarkers and development of therapies, it is also an important goal to understand the involvement of mitochondrial DNA (mtDNA) in metabolic regulation, aging and disease development. Somatic mutations of the mitochondrial genome are also heavily implicated in age-related disease and aging. The general hypothesis is that an alteration in the concentration of metabolite profiles (possibly conveyed by lifestyle and environmental factors) influences the increase of mutation rate in the mtDNA and thereby contributes to a range of pathophysiological alterations observed in complex diseases. We performed an inverted mitochondrial genome-wide association analysis between mitochondrial nucleotide variants (mtSNVs) and concentration of metabolites. We used 151 metabolites and the whole sequenced mitochondrial genome from 2718 individuals to identify the genetic variants associated with metabolite profiles. Because of the high coverage, next-generation sequencing-based analysis of the mitochondrial genome allows for an accurate detection of mitochondrial heteroplasmy and for the identification of variants associated with the metabolome. The strongest association was found for mt715G > A located in the MT-12SrRNA with the metabolite ratio of C2/C10:1 (P-value = 6.82*10-09, ß = 0.909). The second most significant mtSNV was found for mt3714A > G located in the MT-ND1 with the metabolite ratio of phosphatidylcholine (PC) ae C42:5/PC ae C44:5 (P-value = 1.02*10-08, ß = 3.631). A large number of significant metabolite ratios were observed involving PC aa C36:6 and the variant mt10689G > A, located in the MT-ND4L gene. These results show an important interconnection between mitochondria and metabolite concentrations. Considering that some of the significant metabolites found in this study have been previously related to complex diseases, such as neurological disorders and metabolic conditions, these associations found here might play a crucial role for further investigations of such complex diseases. Understanding the mechanisms that control human health and disease, in particular, the role of genetic predispositions and their interaction with environmental factors is a prerequisite for the development of safe and efficient therapies for complex disorders.


Subject(s)
Genome-Wide Association Study , Metabolomics , Biomarkers/metabolism , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Humans , Metabolomics/methods , Mitochondria/genetics , Mitochondria/metabolism , Nucleotides/metabolism , Phosphatidylcholines/metabolism
3.
Am J Hum Genet ; 106(2): 246-255, 2020 02 06.
Article in English | MEDLINE | ID: mdl-32004447

ABSTRACT

Ral (Ras-like) GTPases play an important role in the control of cell migration and have been implicated in Ras-mediated tumorigenicity. Recently, variants in RALA were also described as a cause of intellectual disability and developmental delay, indicating the relevance of this pathway to neuropediatric diseases. Here, we report the identification of bi-allelic variants in RALGAPA1 (encoding Ral GTPase activating protein catalytic alpha subunit 1) in four unrelated individuals with profound neurodevelopmental disability, muscular hypotonia, feeding abnormalities, recurrent fever episodes, and infantile spasms . Dysplasia of corpus callosum with focal thinning of the posterior part and characteristic facial features appeared to be unifying findings. RalGAPA1 was absent in the fibroblasts derived from two affected individuals suggesting a loss-of-function effect of the RALGAPA1 variants. Consequently, RalA activity was increased in these cell lines, which is in keeping with the idea that RalGAPA1 deficiency causes a constitutive activation of RalA. Additionally, levels of RalGAPB, a scaffolding subunit of the RalGAP complex, were dramatically reduced, indicating a dysfunctional RalGAP complex. Moreover, RalGAPA1 deficiency clearly increased cell-surface levels of lipid raft components in detached fibroblasts, which might indicate that anchorage-dependence of cell growth signaling is disturbed. Our findings indicate that the dysregulation of the RalA pathway has an important impact on neuronal function and brain development. In light of the partially overlapping phenotype between RALA- and RALGAPA1-associated diseases, it appears likely that dysregulation of the RalA signaling pathway leads to a distinct group of genetic syndromes that we suggest could be named RALopathies.


Subject(s)
Feeding and Eating Disorders/etiology , GTPase-Activating Proteins/genetics , Muscle Hypotonia/etiology , Mutation , Nerve Tissue Proteins/genetics , Neurodevelopmental Disorders/etiology , Spasms, Infantile/etiology , Alleles , Cell Movement , Cell Proliferation , Child, Preschool , Family , Feeding and Eating Disorders/pathology , Female , Humans , Infant , Male , Muscle Hypotonia/pathology , Neurodevelopmental Disorders/pathology , Phenotype , Spasms, Infantile/pathology
4.
Mamm Genome ; 34(2): 285-297, 2023 06.
Article in English | MEDLINE | ID: mdl-36867212

ABSTRACT

Systemic-to-pulmonary shunt malfunction contributes to morbidity in children with complex congenital heart disease after palliative procedure. Neointimal hyperplasia might play a role in the pathogenesis increasing risk for shunt obstruction. The aim was to evaluate the role of epidermal growth factor receptor (EGFR) and matrix-metalloproteinase 9 (MMP-9) in the formation of neointimal within shunts. Immunohistochemistry was performed with anti-EGFR and anti-MMP-9 on shunts removed at follow-up palliative or corrective procedure. Whole-genome single-nucleotide polymorphisms genotyping was performed on DNA extracted from patients´ blood samples and allele frequencies were compared between the group of patients with shunts displaying severe stenosis (≥ 40% of lumen) and the remaining group. Immunohistochemistry detected EGFR and MMP-9 in 24 of 31 shunts, located mainly in the luminal area. Cross-sectional area of EGFR and MMP-9 measured in median 0.19 mm2 (IQR 0.1-0.3 mm2) and 0.04 mm2 (IQR 0.03-0.09 mm2), respectively, and correlated positively with the area of neointimal measured on histology (r = 0.729, p < 0.001 and r = 0.0479, p = 0.018, respectively). There was a trend of inverse correlation between the dose of acetylsalicylic acid and the degree of EGFR, but not MMP-9, expression within neointima. Certain alleles in epidermal growth factor (EGF) and tissue inhibitor of metalloproteinases 1 (TIMP-1) were associated with increased stenosis and neointimal hyperplasia within shunts. EGFR and MMP-9 contribute to neointimal proliferation in SP shunts of children with complex cyanotic heart disease. SP shunts from patients carrying certain risk alleles in the genes encoding for EGF and TIMP-1 displayed increased neointima.


Subject(s)
Heart Diseases , Neointima , Humans , Child , Neointima/pathology , Tissue Inhibitor of Metalloproteinase-1/genetics , Tissue Inhibitor of Metalloproteinase-1/metabolism , Hyperplasia/genetics , Epidermal Growth Factor , Constriction, Pathologic , ErbB Receptors/genetics
5.
Mov Disord ; 38(4): 604-615, 2023 04.
Article in English | MEDLINE | ID: mdl-36788297

ABSTRACT

BACKGROUND: Epidemiological studies that examined the association between Parkinson's disease (PD) and cancers led to inconsistent results, but they face a number of methodological difficulties. OBJECTIVE: We used results from genome-wide association studies (GWASs) to study the genetic correlation between PD and different cancers to identify common genetic risk factors. METHODS: We used individual data for participants of European ancestry from the Courage-PD (Comprehensive Unbiased Risk Factor Assessment for Genetics and Environment in Parkinson's Disease; PD, N = 16,519) and EPITHYR (differentiated thyroid cancer, N = 3527) consortia and summary statistics of GWASs from iPDGC (International Parkinson Disease Genomics Consortium; PD, N = 482,730), Melanoma Meta-Analysis Consortium (MMAC), Breast Cancer Association Consortium (breast cancer), the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome (prostate cancer), International Lung Cancer Consortium (lung cancer), and Ovarian Cancer Association Consortium (ovarian cancer) (N comprised between 36,017 and 228,951 for cancer GWASs). We estimated the genetic correlation between PD and cancers using linkage disequilibrium score regression. We studied the association between PD and polymorphisms associated with cancers, and vice versa, using cross-phenotypes polygenic risk score (PRS) analyses. RESULTS: We confirmed a previously reported positive genetic correlation of PD with melanoma (Gcorr = 0.16 [0.04; 0.28]) and reported an additional significant positive correlation of PD with prostate cancer (Gcorr = 0.11 [0.03; 0.19]). There was a significant inverse association between the PRS for ovarian cancer and PD (odds ratio [OR] = 0.89 [0.84; 0.94]). Conversely, the PRS of PD was positively associated with breast cancer (OR = 1.08 [1.06; 1.10]) and inversely associated with ovarian cancer (OR = 0.95 [0.91; 0.99]). The association between PD and ovarian cancer was mostly driven by rs183211 located in an intron of the NSF gene (17q21.31). CONCLUSIONS: We show evidence in favor of a contribution of pleiotropic genes to the association between PD and specific cancers. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Subject(s)
Lung Neoplasms , Melanoma , Ovarian Neoplasms , Parkinson Disease , Prostatic Neoplasms , Humans , Male , Female , Parkinson Disease/epidemiology , Parkinson Disease/genetics , Genome-Wide Association Study , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide/genetics , Melanoma/epidemiology , Melanoma/genetics , Risk Factors
6.
Environ Sci Technol ; 57(1): 255-265, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36525634

ABSTRACT

We investigated the aqueous solubility and thermodynamic properties of two meta-autunite group uranyl arsenate solids (UAs). The measured solubility products (log Ksp) obtained in dissolution and precipitation experiments at equilibrium pH 2 and 3 for NaUAs and KUAs ranged from -23.50 to -22.96 and -23.87 to -23.38, respectively. The secondary phases (UO2)(H2AsO4)2(H2O)(s) and trögerite, (UO2)3(AsO4)2·12H2O(s), were identified by powder X-ray diffraction in the reacted solids of KUA precipitation experiments (pH 2) and NaUAs dissolution and precipitation experiments (pH 3), respectively. The identification of these secondary phases in reacted solids suggest that H3O+ co-occurring with Na or K in the interlayer region can influence the solubilities of uranyl arsenate solids. The standard-state enthalpy of formation from the elements (ΔHf-el) of NaUAs is -3025 ± 22 kJ mol-1 and for KUAs is -3000 ± 28 kJ mol-1 derived from measurements by drop solution calorimetry, consistent with values reported in other studies for uranyl phosphate solids. This work provides novel thermodynamic information for reactive transport models to interpret and predict the influence of uranyl arsenate solids on soluble concentrations of U and As in contaminated waters affected by mining legacy and other anthropogenic activities.


Subject(s)
Arsenates , Solubility , Thermodynamics
7.
Environ Sci Technol ; 57(49): 20881-20892, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38019567

ABSTRACT

The co-occurrence of uranyl and arsenate in contaminated water caused by natural processes and mining is a concern for impacted communities, including in Native American lands in the U.S. Southwest. We investigated the simultaneous removal of aqueous uranyl and arsenate after the reaction with limestone and precipitated hydroxyapatite (HAp, Ca10(PO4)6(OH)2). In benchtop experiments with an initial pH of 3.0 and initial concentrations of 1 mM U and As, uranyl and arsenate coprecipitated in the presence of 1 g L-1 limestone. However, related experiments initiated under circumneutral pH conditions showed that uranyl and arsenate remained soluble. Upon addition of 1 mM PO43- and 3 mM Ca2+ in solution (initial concentration of 0.05 mM U and As) resulted in the rapid removal of over 97% of U via Ca-U-P precipitation. In experiments with 2 mM PO43- and 10 mM Ca2+ at pH rising from 7.0 to 11.0, aqueous concentrations of As decreased (between 30 and 98%) circa pH 9. HAp precipitation in solids was confirmed by powder X-ray diffraction and scanning electron microscopy/energy dispersive X-ray. Electron microprobe analysis indicated U was coprecipitated with Ca and P, while As was mainly immobilized through HAp adsorption. The results indicate that natural materials, such as HAp and limestone, can effectively remove uranyl and arsenate mixtures.


Subject(s)
Arsenates , Uranium , Calcium Carbonate , Hydrogen-Ion Concentration , Adsorption , Water
8.
Chem Geol ; 6362023 Oct 05.
Article in English | MEDLINE | ID: mdl-37601980

ABSTRACT

We integrated aqueous chemistry analyses with geochemical modeling to determine the kinetics of the dissolution of Na and K uranyl arsenate solids (UAs(s)) at acidic pH. Improving our understanding of how UAs(s) dissolve is essential to predict transport of U and As, such as in acid mine drainage. At pH 2, Na0.48H0.52(UO2)(AsO4)(H2O)2.5(s) (NaUAs(s)) and K0.9H0.1(UO2)(AsO4)(H2O)2.5(s) (KUAs(s)) both dissolve with a rate constant of 3.2 × 10-7 mol m-2 s-1, which is faster than analogous uranyl phosphate solids. At pH 3, NaUAs(s) (6.3 × 10-8 mol m-2 s-1) and KUAs(s) (2.0 × 10-8 mol m-2 s-1) have smaller rate constants. Steady-state aqueous concentrations of U and As are similarly reached within the first several hours of reaction progress. This study provides dissolution rate constants for UAs(s), which may be integrated into reactive transport models for risk assessment and remediation of U and As contaminated waters.

9.
Environ Eng Sci ; 40(11): 562-573, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37981952

ABSTRACT

We studied the co-occurrence of microplastics (MPs) and metals in field sites and further investigated their interfacial interaction in controlled laboratory conditions. First, we detected MPs in freshwater co-occurring with metals in rural and urban areas in New Mexico. Automated particle counting and fluorescence microscopy indicated that particles in field samples ranged from 7 to 149 particles/L. The urban location contained the highest count of confirmed MPs, including polyester, cellophane, and rayon, as indicated by Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy analyses. Metal analyses using inductively coupled plasma (ICP) revealed that bodies of water in a rural site affected by mining legacy contained up to 332.8 µg/L of U, while all bodies of water contained As concentrations below 11.4 µg/L. These field findings motivated experiments in laboratory conditions, reacting MPs with 0.02-0.2 mM of As or U solutions at acidic and neutral pH with poly(methyl-methacrylate), polyethylene, and polystyrene MPs. In these experiments, As did not interact with any of the MPs tested at pH 3 and pH 7, nor U with any MPs at pH 3. Experiments supplied with U and MPs at pH 7 indicated that MPs served as substrate surface for the adsorption and nucleation of U precipitates. Chemical speciation modeling and microscopy analyses (i.e., Transmission Electron Microscopy [TEM]) suggest that U precipitates resemble sodium-compreignacite and schoepite. These findings have relevant implications to further understanding the occurrence and interfacial interaction of MPs and metals in freshwater.

10.
Mov Disord ; 37(4): 857-864, 2022 04.
Article in English | MEDLINE | ID: mdl-34997937

ABSTRACT

BACKGROUND: Previous prospective studies highlighted dairy intake as a risk factor for Parkinson's disease (PD), particularly in men. It is unclear whether this association is causal or explained by reverse causation or confounding. OBJECTIVE: The aim is to examine the association between genetically predicted dairy intake and PD using two-sample Mendelian randomization (MR). METHODS: We genotyped a well-established instrumental variable for dairy intake located in the lactase gene (rs4988235) within the Courage-PD consortium (23 studies; 9823 patients and 8376 controls of European ancestry). RESULTS: Based on a dominant model, there was an association between genetic predisposition toward higher dairy intake and PD (odds ratio [OR] per one serving per day = 1.70, 95% confidence interval = 1.12-2.60, P = 0.013) that was restricted to men (OR = 2.50 [1.37-4.56], P = 0.003; P-difference with women = 0.029). CONCLUSIONS: Using MR, our findings provide further support for a causal relationship between dairy intake and higher PD risk, not biased by confounding or reverse causation. Further studies are needed to elucidate the underlying mechanisms. © 2022 International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Dairy Products/adverse effects , Female , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Humans , Male , Mendelian Randomization Analysis , Parkinson Disease/epidemiology , Parkinson Disease/genetics , Polymorphism, Single Nucleotide/genetics , Risk Factors
11.
Mov Disord ; 37(9): 1929-1937, 2022 09.
Article in English | MEDLINE | ID: mdl-35810454

ABSTRACT

BACKGROUND: Two studies that examined the interaction between HLA-DRB1 and smoking in Parkinson's disease (PD) yielded findings in opposite directions. OBJECTIVE: To perform a large-scale independent replication of the HLA-DRB1 × smoking interaction. METHODS: We genotyped 182 single nucleotide polymorphism (SNPs) associated with smoking initiation in 12 424 cases and 9480 controls to perform a Mendelian randomization (MR) analysis in strata defined by HLA-DRB1. RESULTS: At the amino acid level, a valine at position 11 (V11) in HLA-DRB1 displayed the strongest association with PD. MR showed an inverse association between genetically predicted smoking initiation and PD only in absence of V11 (odds ratio, 0.74, 95% confidence interval, 0.59-0.93, PInteraction  = 0.028). In silico predictions of the influence of V11 and smoking-induced modifications of α-synuclein on binding affinity showed findings consistent with this interaction pattern. CONCLUSIONS: Despite being one of the most robust findings in PD research, the mechanisms underlying the inverse association between smoking and PD remain unknown. Our findings may help better understand this association. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Genetic Predisposition to Disease , HLA-DRB1 Chains/genetics , Humans , Parkinson Disease/genetics , Polymorphism, Single Nucleotide/genetics , Smoking/genetics
12.
Am J Hum Genet ; 103(1): 74-88, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29961571

ABSTRACT

In a Dutch consanguineous family with recessively inherited nonsyndromic hearing impairment (HI), homozygosity mapping combined with whole-exome sequencing revealed a MPZL2 homozygous truncating variant, c.72del (p.Ile24Metfs∗22). By screening a cohort of phenotype-matched subjects and a cohort of HI subjects in whom WES had been performed previously, we identified two additional families with biallelic truncating variants of MPZL2. Affected individuals demonstrated symmetric, progressive, mild to moderate sensorineural HI. Onset of HI was in the first decade, and high-frequency hearing was more severely affected. There was no vestibular involvement. MPZL2 encodes myelin protein zero-like 2, an adhesion molecule that mediates epithelial cell-cell interactions in several (developing) tissues. Involvement of MPZL2 in hearing was confirmed by audiometric evaluation of Mpzl2-mutant mice. These displayed early-onset progressive sensorineural HI that was more pronounced in the high frequencies. Histological analysis of adult mutant mice demonstrated an altered organization of outer hair cells and supporting cells and degeneration of the organ of Corti. In addition, we observed mild degeneration of spiral ganglion neurons, and this degeneration was most pronounced at the cochlear base. Although MPZL2 is known to function in cell adhesion in several tissues, no phenotypes other than HI were found to be associated with MPZL2 defects. This indicates that MPZL2 has a unique function in the inner ear. The present study suggests that deleterious variants of Mplz2/MPZL2 affect adhesion of the inner-ear epithelium and result in loss of structural integrity of the organ of Corti and progressive degeneration of hair cells, supporting cells, and spiral ganglion neurons.


Subject(s)
Cell Adhesion Molecules/genetics , Hair Cells, Auditory/pathology , Hearing Loss, Sensorineural/genetics , Hearing/genetics , Animals , Cell Adhesion/genetics , Cochlea/pathology , Deafness/genetics , Epithelium/pathology , Female , Homozygote , Humans , Male , Mice , Mice, Inbred C57BL , Mutation/genetics , Neurons/pathology , Spiral Ganglion/pathology
13.
Ann Neurol ; 87(2): 184-193, 2020 02.
Article in English | MEDLINE | ID: mdl-31788832

ABSTRACT

OBJECTIVE: Restless legs syndrome is a frequent neurological disorder with substantial burden on individual well-being and public health. Genetic risk loci have been identified, but the causatives genes at these loci are largely unknown, so that functional investigation and clinical translation of molecular research data are still inhibited. To identify putatively causative genes, we searched for highly significant mutational burden in candidate genes. METHODS: We analyzed 84 candidate genes in 4,649 patients and 4,982 controls by next generation sequencing using molecular inversion probes that targeted mainly coding regions. The burden of low-frequency and rare variants was assessed, and in addition, an algorithm (binomial performance deviation analysis) was established to estimate independently the sequence variation in the probe binding regions from the variation in sequencing depth. RESULTS: Highly significant results (considering the number of genes in the genome) of the conventional burden test and the binomial performance deviation analysis overlapped significantly. Fourteen genes were highly significant by one method and confirmed with Bonferroni-corrected significance by the other to show a differential burden of low-frequency and rare variants in restless legs syndrome. Nine of them (AAGAB, ATP2C1, CNTN4, COL6A6, CRBN, GLO1, NTNG1, STEAP4, VAV3) resided in the vicinity of known restless legs syndrome loci, whereas 5 (BBS7, CADM1, CREB5, NRG3, SUN1) have not previously been associated with restless legs syndrome. Burden test and binomial performance deviation analysis also converged significantly in fine-mapping potentially causative domains within these genes. INTERPRETATION: Differential burden with intragenic low-frequency variants reveals putatively causative genes in restless legs syndrome. ANN NEUROL 2020;87:184-193.


Subject(s)
DNA Mutational Analysis , Genetic Predisposition to Disease/genetics , Restless Legs Syndrome/genetics , Case-Control Studies , Chromosome Mapping/statistics & numerical data , Female , Humans , Male , Middle Aged
14.
Hum Mol Genet ; 27(4): 706-715, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29315381

ABSTRACT

Mutations in the mitochondrially located protein CHCHD10 cause motoneuron disease by an unknown mechanism. In this study, we investigate the mutations p.R15L and p.G66V in comparison to wild-type CHCHD10 and the non-pathogenic variant p.P34S in vitro, in patient cells as well as in the vertebrate in vivo model zebrafish. We demonstrate a reduction of CHCHD10 protein levels in p.R15L and p.G66V mutant patient cells to approximately 50%. Quantitative real-time PCR revealed that expression of CHCHD10 p.R15L, but not of CHCHD10 p.G66V, is already abrogated at the mRNA level. Altered secondary structure and rapid protein degradation are observed with regard to the CHCHD10 p.G66V mutant. In contrast, no significant differences in expression, degradation rate or secondary structure of non-pathogenic CHCHD10 p.P34S are detected when compared with wild-type protein. Knockdown of CHCHD10 expression in zebrafish to about 50% causes motoneuron pathology, abnormal myofibrillar structure and motility deficits in vivo. Thus, our data show that the CHCHD10 mutations p.R15L and p.G66V cause motoneuron disease primarily based on haploinsufficiency of CHCHD10.


Subject(s)
Haploinsufficiency/physiology , Mitochondrial Proteins/metabolism , Motor Neuron Disease/metabolism , Animals , DNA, Complementary/genetics , DNA, Complementary/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Haploinsufficiency/genetics , Humans , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/genetics , Motor Neuron Disease/genetics , Mutation/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Zebrafish , Zebrafish Proteins/chemistry , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
15.
Environ Sci Technol ; 54(7): 3979-3987, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32176846

ABSTRACT

Natural or anthropogenic processes can increase the concentration of uranium (U) and arsenic (As) above the maximum contaminant levels in water sources. Bicarbonate and calcium (Ca) can have major impacts on U speciation and can affect the reactivity between U and As. We therefore investigated the reactivity of aqueous U and As mixtures with bicarbonate and Ca for acidic and neutral pH conditions. In experiments performed with 1 mM U and As mixtures, 10 mM Ca, and without added bicarbonate (pCO2 = 3.5), aqueous U decreased to <0.25 mM at pH 3 and 7. Aqueous As decreased the most at pH 3 (∼0.125 mM). Experiments initiated with 0.005 mM As and U showed similar trends. X-ray spectroscopy (i.e., XAS and EDX) and diffraction indicated that U-As-Ca- and U-Ca-bearing solids resemble uranospinite [Ca(UO2)2(AsO4)2·10H2O] and becquerelite [Ca(UO2)6O4(OH)6·8(H2O)]. These findings suggest that U-As-Ca-bearing solids formed in mixed solutions are stable at pH 3. However, the dissolution of U-As-Ca and U-Ca-bearing solids at pH 7 was observed in reactors containing 10 mM bicarbonate and Ca, suggesting a kinetic reaction of aqueous uranyl-calcium-carbonate complexation. Our study provides new insights regarding U and As mobilization for risk assessment and remediation strategies.


Subject(s)
Arsenic , Uranium , Bicarbonates , Calcium , Hydrogen-Ion Concentration
16.
Proc Natl Acad Sci U S A ; 114(14): 3613-3618, 2017 04 04.
Article in English | MEDLINE | ID: mdl-28265093

ABSTRACT

Large artery atherosclerotic stroke (LAS) shows substantial heritability not explained by previous genome-wide association studies. Here, we explore the role of coding variation in LAS by analyzing variants on the HumanExome BeadChip in a total of 3,127 cases and 9,778 controls from Europe, Australia, and South Asia. We report on a nonsynonymous single-nucleotide variant in serpin family A member 1 (SERPINA1) encoding alpha-1 antitrypsin [AAT; p.V213A; P = 5.99E-9, odds ratio (OR) = 1.22] and confirm histone deacetylase 9 (HDAC9) as a major risk gene for LAS with an association in the 3'-UTR (rs2023938; P = 7.76E-7, OR = 1.28). Using quantitative microscale thermophoresis, we show that M1 (A213) exhibits an almost twofold lower dissociation constant with its primary target human neutrophil elastase (NE) in lipoprotein-containing plasma, but not in lipid-free plasma. Hydrogen/deuterium exchange combined with mass spectrometry further revealed a significant difference in the global flexibility of the two variants. The observed stronger interaction with lipoproteins in plasma and reduced global flexibility of the Val-213 variant most likely improve its local availability and reduce the extent of proteolytic inactivation by other proteases in atherosclerotic plaques. Our results indicate that the interplay between AAT, NE, and lipoprotein particles is modulated by the gate region around position 213 in AAT, far away from the unaltered reactive center loop (357-360). Collectively, our findings point to a functionally relevant balance between lipoproteins, proteases, and AAT in atherosclerosis.


Subject(s)
Histone Deacetylases/genetics , Plaque, Atherosclerotic/complications , Polymorphism, Single Nucleotide , Repressor Proteins/genetics , Stroke/genetics , alpha 1-Antitrypsin/genetics , 3' Untranslated Regions , Deuterium Exchange Measurement , Genetic Association Studies , Humans , Leukocyte Elastase/metabolism , Mass Spectrometry , Plaque, Atherosclerotic/genetics , Stroke/etiology , alpha 1-Antitrypsin/metabolism
17.
Mov Disord ; 34(4): 496-505, 2019 04.
Article in English | MEDLINE | ID: mdl-30485545

ABSTRACT

BACKGROUND: Genetic variability in LRRK2 has been unequivocally established as a major risk factor for familial and sporadic forms of PD in ethnically diverse populations. OBJECTIVES: To resolve the role of LRRK2 in the Indian population. METHODS: We performed targeted resequencing of the LRRK2 locus in 288 cases and 298 controls and resolved the haplotypic structure of LRRK2 in a combined cohort of 800 cases and 402 controls in the Indian population. We assessed the frequency of novel missense variants in the white and East Asian population by leveraging exome sequencing and densely genotype data, respectively. We did computational modeling and biochemical approach to infer the potential role of novel variants impacting the LRRK2 protein function. Finally, we assessed the phosphorylation activity of identified novel coding variants in the LRRK2 gene. RESULTS: We identified four novel missense variants with frequency ranging from 0.0008% to 0.002% specific for the Indian population, encompassing armadillo and kinase domains of the LRRK2 protein. A common genetic variability within LRRK2 may contribute to increased risk, but it was nonsignificant after correcting for multiple testing, because of small cohort size. The computational modeling showed destabilizing effect on the LRRK2 function. In comparison to the wild-type, the kinase domain variant showed 4-fold increase in the kinase activity. CONCLUSIONS: Our study, for the first time, identified novel missense variants for LRRK2, specific for the Indian population, and showed that a novel missense variant in the kinase domain modifies kinase activity in vitro. © 2018 International Parkinson and Movement Disorder Society.


Subject(s)
Genetic Predisposition to Disease , Genetic Variation , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Parkinson Disease/genetics , Polymorphism, Single Nucleotide , Adult , Aged , Aged, 80 and over , Alleles , Female , Gene Frequency , Genotype , Haplotypes , Humans , India , Male , Middle Aged , Mutation, Missense , Young Adult
18.
Gut ; 67(10): 1855-1863, 2018 10.
Article in English | MEDLINE | ID: mdl-28754779

ABSTRACT

OBJECTIVE: Alcohol-related pancreatitis is associated with a disproportionately large number of hospitalisations among GI disorders. Despite its clinical importance, genetic susceptibility to alcoholic chronic pancreatitis (CP) is poorly characterised. To identify risk genes for alcoholic CP and to evaluate their relevance in non-alcoholic CP, we performed a genome-wide association study and functional characterisation of a new pancreatitis locus. DESIGN: 1959 European alcoholic CP patients and population-based controls from the KORA, LIFE and INCIPE studies (n=4708) as well as chronic alcoholics from the GESGA consortium (n=1332) were screened with Illumina technology. For replication, three European cohorts comprising 1650 patients with non-alcoholic CP and 6695 controls originating from the same countries were used. RESULTS: We replicated previously reported risk loci CLDN2-MORC4, CTRC, PRSS1-PRSS2 and SPINK1 in alcoholic CP patients. We identified CTRB1-CTRB2 (chymotrypsin B1 and B2) as a new risk locus with lead single-nucleotide polymorphism (SNP) rs8055167 (OR 1.35, 95% CI 1.23 to 1.6). We found that a 16.6 kb inversion in the CTRB1-CTRB2 locus was in linkage disequilibrium with the CP-associated SNPs and was best tagged by rs8048956. The association was replicated in three independent European non-alcoholic CP cohorts of 1650 patients and 6695 controls (OR 1.62, 95% CI 1.42 to 1.86). The inversion changes the expression ratio of the CTRB1 and CTRB2 isoforms and thereby affects protective trypsinogen degradation and ultimately pancreatitis risk. CONCLUSION: An inversion in the CTRB1-CTRB2 locus modifies risk for alcoholic and non-alcoholic CP indicating that common pathomechanisms are involved in these inflammatory disorders.


Subject(s)
Chymotrypsin/genetics , Pancreatitis, Alcoholic , Adult , Aged , Europe/epidemiology , Female , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Pancreatitis, Alcoholic/epidemiology , Pancreatitis, Alcoholic/genetics , Polymorphism, Single Nucleotide
19.
Hum Genet ; 137(5): 389-400, 2018 May.
Article in English | MEDLINE | ID: mdl-29754270

ABSTRACT

Unraveling the causes and pathomechanisms of progressive disorders is essential for the development of therapeutic strategies. Here, we identified heterozygous pathogenic missense variants of LMX1A in two families of Dutch origin with progressive nonsyndromic hearing impairment (HI), using whole exome sequencing. One variant, c.721G > C (p.Val241Leu), occurred de novo and is predicted to affect the homeodomain of LMX1A, which is essential for DNA binding. The second variant, c.290G > C (p.Cys97Ser), predicted to affect a zinc-binding residue of the second LIM domain that is involved in protein-protein interactions. Bi-allelic deleterious variants of Lmx1a are associated with a complex phenotype in mice, including deafness and vestibular defects, due to arrest of inner ear development. Although Lmx1a mouse mutants demonstrate neurological, skeletal, pigmentation and reproductive system abnormalities, no syndromic features were present in the participating subjects of either family. LMX1A has previously been suggested as a candidate gene for intellectual disability, but our data do not support this, as affected subjects displayed normal cognition. Large variability was observed in the age of onset (a)symmetry, severity and progression rate of HI. About half of the affected individuals displayed vestibular dysfunction and experienced symptoms thereof. The late-onset progressive phenotype and the absence of cochleovestibular malformations on computed tomography scans indicate that heterozygous defects of LMX1A do not result in severe developmental abnormalities in humans. We propose that a single LMX1A wild-type copy is sufficient for normal development but insufficient for maintenance of cochleovestibular function. Alternatively, minor cochleovestibular developmental abnormalities could eventually lead to the progressive phenotype seen in the families.


Subject(s)
Hearing Loss/genetics , Heterozygote , LIM-Homeodomain Proteins/genetics , Mutation, Missense , Transcription Factors/genetics , Vestibular Diseases/genetics , Adult , Aged , Aged, 80 and over , Amino Acid Substitution , Child, Preschool , Female , Humans , Male , Middle Aged
20.
Am J Hum Genet ; 96(6): 883-93, 2015 Jun 04.
Article in English | MEDLINE | ID: mdl-26004199

ABSTRACT

Isolated dystonia is a disorder characterized by involuntary twisting postures arising from sustained muscle contractions. Although autosomal-dominant mutations in TOR1A, THAP1, and GNAL have been found in some cases, the molecular mechanisms underlying isolated dystonia are largely unknown. In addition, although emphasis has been placed on dominant isolated dystonia, the disorder is also transmitted as a recessive trait, for which no mutations have been defined. Using whole-exome sequencing in a recessive isolated dystonia-affected kindred, we identified disease-segregating compound heterozygous mutations in COL6A3, a collagen VI gene associated previously with muscular dystrophy. Genetic screening of a further 367 isolated dystonia subjects revealed two additional recessive pedigrees harboring compound heterozygous mutations in COL6A3. Strikingly, all affected individuals had at least one pathogenic allele in exon 41, including an exon-skipping mutation that induced an in-frame deletion. We tested the hypothesis that disruption of this exon is pathognomonic for isolated dystonia by inducing a series of in-frame deletions in zebrafish embryos. Consistent with our human genetics data, suppression of the exon 41 ortholog caused deficits in axonal outgrowth, whereas suppression of other exons phenocopied collagen deposition mutants. All recessive mutation carriers demonstrated early-onset segmental isolated dystonia without muscular disease. Finally, we show that Col6a3 is expressed in neurons, with relevant mRNA levels detectable throughout the adult mouse brain. Taken together, our data indicate that loss-of-function mutations affecting a specific region of COL6A3 cause recessive isolated dystonia with underlying neurodevelopmental deficits and highlight the brain extracellular matrix as a contributor to dystonia pathogenesis.


Subject(s)
Collagen Type VI/genetics , Dystonic Disorders/genetics , Dystonic Disorders/pathology , Genetic Variation , Animals , Base Sequence , Computational Biology , DNA Mutational Analysis , Exome/genetics , Genes, Recessive , Genetic Testing , In Situ Hybridization , Magnetic Resonance Imaging , Mice , Molecular Sequence Data , Muscle, Skeletal , Mutation/genetics , Pedigree , Zebrafish/genetics
SELECTION OF CITATIONS
SEARCH DETAIL