Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 149
Filter
Add more filters

Publication year range
1.
Cell ; 159(6): 1404-16, 2014 Dec 04.
Article in English | MEDLINE | ID: mdl-25480301

ABSTRACT

Obesity is associated with increased blood pressure (BP), which in turn increases the risk of cardiovascular diseases. We found that the increase in leptin levels seen in diet-induced obesity (DIO) drives an increase in BP in rodents, an effect that was not seen in animals deficient in leptin or leptin receptors (LepR). Furthermore, humans with loss-of-function mutations in leptin and the LepR have low BP despite severe obesity. Leptin's effects on BP are mediated by neuronal circuits in the dorsomedial hypothalamus (DMH), as blocking leptin with a specific antibody, antagonist, or inhibition of the activity of LepR-expressing neurons in the DMH caused a rapid reduction of BP in DIO mice, independent of changes in weight. Re-expression of LepRs in the DMH of DIO LepR-deficient mice caused an increase in BP. These studies demonstrate that leptin couples changes in weight to changes in BP in mammalian species.


Subject(s)
Hypertension/metabolism , Leptin/metabolism , Obesity/metabolism , Animals , Leptin/genetics , Mice, Inbred C57BL , Mutation , Neurons/metabolism , Obesity/pathology , Receptors, Leptin/genetics , Receptors, Leptin/metabolism , Signal Transduction
2.
Mol Psychiatry ; 28(4): 1611-1621, 2023 04.
Article in English | MEDLINE | ID: mdl-36914812

ABSTRACT

Clinical and animal studies have shown that gut microbiome disturbances can affect neural function and behaviors via the microbiota-gut-brain axis, and may be implicated in the pathogenesis of several brain diseases. However, exactly how the gut microbiome modulates nervous system activity remains obscure. Here, using a single-cell nucleus sequencing approach, we sought to characterize the cell type-specific transcriptomic changes in the prefrontal cortex and hippocampus derived from germ-free (GF), specific pathogen free, and colonized-GF mice. We found that the absence of gut microbiota resulted in cell-specific transcriptomic changes. Furthermore, microglia transcriptomes were preferentially influenced, which could be effectively reversed by microbial colonization. Significantly, the gut microbiome modulated the mutual transformation of microglial subpopulations in the two regions. Cross-species analysis showed that the transcriptome changes of these microglial subpopulations were mainly associated with Alzheimer's disease (AD) and major depressive disorder (MDD), which were further supported by animal behavioral tests. Our findings demonstrate that gut microbiota mainly modulate the mutual transformation of microglial subtypes, which may lead to new insights into the pathogenesis of AD and MDD.


Subject(s)
Alzheimer Disease , Depressive Disorder, Major , Gastrointestinal Microbiome , Mice , Animals , Gastrointestinal Microbiome/physiology , Microglia , Depression , Prefrontal Cortex
3.
Mol Psychiatry ; 28(7): 2872-2877, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37131073

ABSTRACT

In the aftermath of the COVID-19 pandemic, we are witnessing an unprecedented wave of post-infectious complications. Most prominently, millions of patients with Long-Covid complain about chronic fatigue and severe post-exertional malaise. Therapeutic apheresis has been suggested as an efficient treatment option for alleviating and mitigating symptoms in this desperate group of patients. However, little is known about the mechanisms and biomarkers correlating with treatment outcomes. Here, we have analyzed in different cohorts of Long-Covid patients specific biomarkers before and after therapeutic apheresis. In patients that reported a significant improvement following two cycles of therapeutic apheresis, there was a significant reduction in neurotransmitter autoantibodies, lipids, and inflammatory markers. Furthermore, we observed a 70% reduction in fibrinogen, and following apheresis, erythrocyte rouleaux formation and fibrin fibers largely disappeared as demonstrated by dark field microscopy. This is the first study demonstrating a pattern of specific biomarkers with clinical symptoms in this patient group. It may therefore form the basis for a more objective monitoring and a clinical score for the treatment of Long-Covid and other postinfectious syndromes.


Subject(s)
Blood Component Removal , COVID-19 , Humans , Lipoproteins, LDL , Autoantibodies , Post-Acute COVID-19 Syndrome , Pandemics , Inflammation , Biomarkers
4.
Mol Psychiatry ; 27(4): 1908-1919, 2022 04.
Article in English | MEDLINE | ID: mdl-35236957

ABSTRACT

The gut microbiome exerts a considerable influence on human neurophysiology and mental health. Interactions between intestinal microbiology and host regulatory systems have now been implicated both in the development of psychiatric conditions and in the efficacy of many common therapies. With the growing acceptance of the role played by the gut microbiome in mental health outcomes, the focus of research is now beginning to shift from identifying relationships between intestinal microbiology and pathophysiology, and towards using this newfound insight to improve clinical outcomes. Here, we review recent advances in our understanding of gut microbiome-brain interactions, the mechanistic underpinnings of these relationships, and the ongoing challenge of distinguishing association and causation. We set out an overarching model of the evolution of microbiome-CNS interaction and examine how a growing knowledge of these complex systems can be used to determine disease susceptibility and reduce risk in a targeted manner.


Subject(s)
Gastrointestinal Microbiome , Mental Disorders , Microbiota , Brain/microbiology , Gastrointestinal Microbiome/physiology , Humans , Mental Disorders/microbiology , Mental Health , Microbiota/physiology
5.
Mol Psychiatry ; 27(2): 1059-1067, 2022 02.
Article in English | MEDLINE | ID: mdl-34719692

ABSTRACT

Most previous studies in the pathophysiology of major depressive disorder (MDD) focused on fecal samples, which limit the identification of the gut mucosal and luminal microbiome in depression. Here, we address this knowledge gap. Male cynomolgus macaques (Macaca fascicularis) were randomly assigned to a chronic unpredictable mild stress (CUMS) group, or to an unstressed control group. Behavioral tests were completed in both groups. At endpoint, microbe composition of paired mucosal and luminal samples from cecum, ascending, transverse, and descending colons were determined by 16S ribosomal RNA gene sequencing. The levels of 34 metabolites involved in carbohydrate or energy metabolism in luminal samples were measured by targeted metabolomics profiling. CUMS macaques demonstrated significantly more depressive-like behaviors than controls. We found differences in mucosal and luminal microbial composition between the two groups, which were characterized by Firmicutes and Bacteriodetes at the phylum level, as well as Prevotellaceae and Lachnospiraceae at the family level. The majority of discriminative microbes correlated with the depressive-like behavioral phenotype. In addition, we found 27 significantly different microbiome community functions between the two groups in mucosa, and one in lumen, which were mainly involved in carbohydrate and energy metabolism. A total of nine metabolites involved in these pathways were depleted in CUMS animals. Together, CUMS macaques with depressive-like behaviors associated with distinct alterations of covarying microbiota, carbohydrate and energy metabolism in mucosa and lumen. Further studies should focus on the mucosal and luminal microbiome to provide a deeper spatiotemporal perspective of microbial alterations in the pathogenesis of MDD.


Subject(s)
Depressive Disorder, Major , Gastrointestinal Microbiome , Microbiota , Animals , Carbohydrates , Macaca fascicularis , Male
6.
Mol Psychiatry ; 27(1): 34-37, 2022 01.
Article in English | MEDLINE | ID: mdl-34140635

ABSTRACT

As millions of patients have been infected by SARS-CoV-2 virus a vast number of individuals complain about continuing breathlessness and fatigue even months after the onset of the disease. This overwhelming phenomenon has not been well defined and has been called "post-COVID syndrome" or "long-COVID" [1]. There are striking similarities to myalgic encephalomyelitis also called chronic fatigue syndrome linked to a viral and autoimmune pathogenesis. In both disorders neurotransmitter receptor antibodies against ß-adrenergic and muscarinic receptors may play a key role. We found similar elevation of these autoantibodies in both patient groups. Extracorporeal apheresis using a special filter seems to be effective in reducing these antibodies in a significant way clearly improving the debilitating symptoms of patients with chronic fatigue syndrome. Therefore, such a form of neuropheresis may provide a promising therapeutic option for patients with post-COVID-19 syndrome. This method will also be effective when other hitherto unknown antibodies and inflammatory mediators are involved.


Subject(s)
Blood Component Removal , COVID-19 , Fatigue Syndrome, Chronic , COVID-19/complications , Fatigue Syndrome, Chronic/diagnosis , Fatigue Syndrome, Chronic/drug therapy , Humans , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
7.
BMC Psychiatry ; 23(1): 352, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37217917

ABSTRACT

BACKGROUND: Depression is the leading cause of global disability and can develop following the change in body image and functional capacity associated with stoma surgery. However, reported prevalence across the literature is unknown. Accordingly, we performed a systematic review and meta-analysis aiming to characterise depressive symptoms after stoma surgery and potential predictive factors. METHODS: PubMed/MEDLINE, Embase, CINAHL and Cochrane Library were searched from respective database inception to 6 March 2023 for studies reporting rates of depressive symptoms after stoma surgery. Risk of bias was assessed using the Downs and Black checklist for non-randomised studies of interventions (NRSIs), and Cochrane RoB2 tool for randomised controlled trials (RCTs). Meta-analysis incorporated meta-regressions and a random-effects model. REGISTRATION: PROSPERO, CRD42021262345. RESULTS: From 5,742 records, 68 studies were included. According to Downs and Black checklist, the 65 NRSIs were of low to moderate methodological quality. According to Cochrane RoB2, the three RCTs ranged from low risk of bias to some concerns of bias. Thirty-eight studies reported rates of depressive symptoms after stoma surgery as a proportion of the respective study populations, and from these, the median rate across all timepoints was 42.9% 42.9% (IQR: 24.2-58.9%). Pooled scores for respective validated depression measures (Hospital Anxiety and Depression Score (HADS), Beck Depression Inventory (BDI), and Patient Health Questionnaire-9 (PHQ-9)) across studies reporting those scores were below clinical thresholds for major depressive disorder according to severity criteria of the respective scores. In the three studies that used the HADS to compare non-stoma versus stoma surgical populations, depressive symptoms were 58% less frequent in non-stoma populations. Region (Asia-Pacific; Europe; Middle East/Africa; North America) was significantly associated with postoperative depressive symptoms (p = 0.002), whereas age (p = 0.592) and sex (p = 0.069) were not. CONCLUSIONS: Depressive symptoms occur in almost half of stoma surgery patients, which is higher than the general population, and many inflammatory bowel disease and colorectal cancer populations outlined in the literature. However, validated measures suggest this is mostly at a level of clinical severity below major depressive disorder. Stoma patient outcomes and postoperative psychosocial adjustment may be enhanced by increased psychological evaluation and care in the perioperative period.


Subject(s)
Depression , Depressive Disorder, Major , Humans , Depression/etiology , Anxiety Disorders , Anxiety , Quality of Life
8.
J Neuroinflammation ; 19(1): 41, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35130906

ABSTRACT

BACKGROUND: The inflammation and oxidative stress (OS) have been considered crucial components of the pathogenesis of depression. Edaravone (EDA), a free radical scavenger, processes strong biological activities including antioxidant, anti-inflammatory and neuroprotective properties. However, its role and potential molecular mechanisms in depression remain unclear. The present study aimed to investigate the antidepressant activity of EDA and its underlying mechanisms. METHODS: A chronic social defeat stress (CSDS) depression model was performed to explore whether EDA could produce antidepressant effects. Behaviors tests were carried out to examine depressive, anxiety-like and cognitive behaviors including social interaction (SI) test, sucrose preference test (SPT), open field test (OFT), elevated plus maze (EPM), novel object recognition (NOR), tail suspension test (TST) and forced swim test (FST). Hippocampal and medial prefrontal cortex (mPFC) tissues were collected for Nissl staining, immunofluorescence, targeted energy metabolomics analysis, enzyme-linked immunosorbent assay (ELISA), measurement of MDA, SOD, GSH, GSH-PX, T-AOC and transmission electron microscopy (TEM). Western blotting (WB) and quantitative real-time polymerase chain reaction (qRT-PCR) detected the Sirt1/Nrf2/HO-1/Gpx4 signaling pathway. EX527, a Sirt1 inhibitor and ML385, a Nrf2 inhibitor were injected intraperitoneally 30 min before EDA injection daily. Knockdown experiments were performed to determine the effects of Gpx4 on CSDS mice with EDA treatment by an adeno-associated virus (AAV) vector containing miRNAi (Gpx4)-EGFP infusion. RESULTS: The administrated of EDA dramatically ameliorated CSDS-induced depressive and anxiety-like behaviors. In addition, EDA notably attenuated neuronal loss, microglial activation, astrocyte dysfunction, oxidative stress damage, energy metabolism and pro-inflammatory cytokines activation in the hippocampus (Hip) and mPFC of CSDS-induced mice. Further examination indicated that the application of EDA after the CSDS model significantly increased the protein expressions of Sirt1, Nrf2, HO-1 and Gpx4 in the Hip. EX527 abolished the antidepressant effect of EDA as well as the protein levels of Nrf2, HO-1 and Gpx4. Similarly, ML385 reversed the antidepressant and anxiolytic effects of EDA via decreased expressions of HO-1 and Gpx4. In addition, Gpx4 knockdown in CSDS mice abolished EDA-generated efficacy on depressive and anxiety-like behaviors. CONCLUSION: These findings suggest that EDA possesses potent antidepressant and anxiolytic properties through Sirt1/Nrf2/HO-1/Gpx4 axis and Gpx4-mediated ferroptosis may play a key role in this effect.


Subject(s)
NF-E2-Related Factor 2 , Sirtuin 1 , Animals , Anxiety/drug therapy , Anxiety/metabolism , Behavior, Animal , Depression/drug therapy , Depression/metabolism , Edaravone/pharmacology , Hippocampus/metabolism , Mice , NF-E2-Related Factor 2/metabolism , Sirtuin 1/metabolism , Stress, Psychological/metabolism
9.
Pharmacogenomics J ; 22(2): 130-135, 2022 03.
Article in English | MEDLINE | ID: mdl-35094016

ABSTRACT

BACKGROUND: Variation within the CYP2C19 gene has been linked to differential metabolism of selective serotonin reuptake inhibitors (SSRIs). Pharmacogenetic recommendations based on the effect of CYP2C19 variants have been made available and are used increasingly by clinical practitioners. Nonetheless, the underlying assumption linking differential metabolism to efficacy or adverse side effects remains understudied. Here, we aim to fill this gap by studying CYP2C19 polymorphisms and inferred metabolism and patient-reported antidepressant response in a sample of 9531 Australian adults who have taken SSRIs. METHODS: Metaboliser status was inferred for participants based on CYP2C19 alleles. Primary analysis consisted of assessing differences in treatment efficacy and tolerability between normal (reference) and: ultrarapid, rapid, intermediate and poor metabolisers. RESULTS: Across medications, poor metabolisers reported a higher efficacy, whereas rapid metabolisers reported higher tolerability. When stratified by drug, associations between metaboliser status and efficacy did not survive multiple testing correction. Intermediate metabolisers were at greater odds of reporting any side effect for sertraline and higher number of side effects across medications and for sertraline. CONCLUSIONS: The effects between metaboliser status and treatment efficacy, tolerability and side effects were in the expected direction. Our power analysis suggests we would detect moderate to large effects, at least nominally. Reduced power may also be explained by heterogeneity in antidepressant dosages or concomitant medications, which we did not measure. The fact that we identify slower metabolisers to be at higher risk of side effects even without adjusting for clinical titration, and the nominally significant associations consistent with the expected metabolic effects provide new evidence for the link between CYP2C19 metabolism and SSRI response. Nonetheless, longitudinal and interventional designs such as randomized clinical trials that stratify by metaboliser status are necessary to establish the effects of CYP2C19 metabolism on SSRI treatment efficacy or adverse effects.


Subject(s)
Depression , Selective Serotonin Reuptake Inhibitors , Adult , Australia , Cytochrome P-450 CYP2C19/genetics , Depression/drug therapy , Depression/genetics , Humans , Retrospective Studies , Selective Serotonin Reuptake Inhibitors/adverse effects
10.
Mol Psychiatry ; 26(12): 7270-7279, 2021 12.
Article in English | MEDLINE | ID: mdl-34489531

ABSTRACT

The neuropeptide oxytocin (OXT) is well recognized for eliciting anxiolytic effects and promoting social reward. However, emerging evidence shows that OXT increases aversive events. These seemingly inconsistent results may be attributable to the broad OXT receptor (OXTr) expression in the central nervous system. This study selectively activated septal neurons expressing OXTr using chemogenetics. We found that chemogenetic activation of septal OXTr neurons induced anxiety- but not depressive-like behavior. In addition, septal OXTr neurons projected dense fibers to the horizontal diagonal band of Broca (HDB), and selective stimulation of those HDB projections also elicited anxiety-like behaviors. We also found that septal OXTr neurons express the vesicular GABA transporter (vGAT) protein and optogenetic stimulation of septal OXTr projections to the HDB inactivated HDB neurons. Our data collectively reveal that septal OXTr neurons increase anxiety by projecting inhibitory GABAergic inputs to the HDB.


Subject(s)
Oxytocin , Receptors, Oxytocin , Anxiety , Neurons/metabolism , Oxytocin/metabolism , Receptors, Oxytocin/genetics , Receptors, Oxytocin/metabolism , Social Behavior
11.
Mol Psychiatry ; 26(7): 2805-2819, 2021 07.
Article in English | MEDLINE | ID: mdl-33067580

ABSTRACT

It is essential to elucidate brain-adipocyte interactions in order to tackle obesity and its comorbidities, as the precise control of brain-adipose tissue cross-talk is crucial for energy and glucose homeostasis. Recent studies show that in the peripheral adipose tissue, adenosine induces adipogenesis through peripheral adenosine A1 receptor (pADORA1) signaling; however, it remains unclear whether systemic and adipose tissue metabolism would also be under the control of central (c) ADORA1 signaling. Here, we use tissue-specific pharmacology and metabolic tools to clarify the roles of cADORA1 signaling in energy and adipocyte physiology. We found that cADORA1 signaling reduces body weight while also inducing adipose tissue lipolysis. cADORA1 signaling also increases adipose tissue sympathetic norepinephrine content. In contrast, pADORA1 signaling facilitates a high-fat diet-induced obesity (DIO). We propose here a novel mechanism in which cADORA1 and pADORA1 signaling hinder and aggravate DIO, respectively.


Subject(s)
Adipose Tissue , Lipid Metabolism , Adipocytes , Adipose Tissue/metabolism , Body Weight , Brain , Diet, High-Fat , Energy Metabolism , Humans
12.
Mol Psychiatry ; 26(6): 2380-2392, 2021 06.
Article in English | MEDLINE | ID: mdl-32376998

ABSTRACT

Emerging research demonstrates that microbiota-gut-brain (MGB) axis changes are associated with depression onset, but the mechanisms underlying this observation remain largely unknown. The gut microbiome of nonhuman primates is highly similar to that of humans, and some subordinate monkeys naturally display depressive-like behaviors, making them an ideal model for studying these phenomena. Here, we characterized microbial composition and function, and gut-brain metabolic signatures, in female cynomolgus macaque (Macaca fascicularis) displaying naturally occurring depressive-like behaviors. We found that both microbial and metabolic signatures of depressive-like macaques were significantly different from those of controls. The depressive-like monkeys had characteristic disturbances of the phylum Firmicutes. In addition, the depressive-like macaques were characterized by changes in three microbial and four metabolic weighted gene correlation network analysis (WGCNA) clusters of the MGB axis, which were consistently enriched in fatty acyl, sphingolipid, and glycerophospholipid metabolism. These microbial and metabolic modules were significantly correlated with various depressive-like behaviors, thus reinforcing MGB axis perturbations as potential mediators of depression onset. These differential brain metabolites were mainly mapped into the hippocampal glycerophospholipid metabolism in a region-specific manner. Together, these findings provide new microbial and metabolic frameworks for understanding the MGB axis' role in depression, and suggesting that the gut microbiome may participate in the onset of depressive-like behaviors by modulating peripheral and central glycerophospholipid metabolism.


Subject(s)
Gastrointestinal Microbiome , Animals , Brain , Depression , Female , Glycerophospholipids , Macaca fascicularis
13.
Mol Psychiatry ; 26(12): 7257-7269, 2021 12.
Article in English | MEDLINE | ID: mdl-34316004

ABSTRACT

We demonstrate that the rate of extracellular signal-related kinase phosphorylation (P-ERK1,2/Total-ERK1,2) in the amygdala is negatively and independently associated with anxiety symptoms in 23 consecutive patients with drug-resistant mesial temporal lobe epilepsy that was surgically treated. In naive Wistar rats, the P-ERK1,2/Total-ERK1,2 ratio in the amygdala correlates negatively with innate anxiety-related behavior on the elevated plus maze (n = 20) but positively with expression of defensive-learned behavior (i.e., freezing) on Pavlovian aversive (fear) conditioning (n = 29). The microinfusion of ERK1/2 inhibitor (FR180204, n = 8-13/group) or MEK inhibitor (U0126, n = 8-9/group) into the basolateral amygdala did not affect anxiety-related behavior but impaired the evocation (anticipation) of conditioned-defensive behavior (n = 9-11/group). In conclusion, the P-ERK1,2/Total-ERK1,2 ratio in the amygdala predicts anxiety in humans and the innate anxiety- and conditioned freezing behaviors in rats. However, the ERK1/2 in the basolateral AMY is only required for the expression of defensive-learned behavior. These results support a dissociate ERK-dependent mechanism in the amygdala between innate anxiety-like responses and the anticipation of learned-defensive behavior. These findings have implications for understanding highly prevalent psychiatric disorders related to the defensive circuit manifested by anxiety and fear. HIGHLIGHTS: The P-ERK1,2/Total-ERK1,2 ratio in the amygdala (AMY) correlates negatively with anxiety symptoms in patients with mesial temporal lobe epilepsy. The P-ERK1,2/Total-ERK1,2 in the amygdala correlates negatively with the anxiety-like behavior and positively with freezing-learned behavior in naive rats. ERK1,2 in the basolateral amygdala is required for learned-defensive but not for the anxiety-like behavior expression in rats.


Subject(s)
Amygdala , Anxiety , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Amygdala/metabolism , Animals , Anxiety/metabolism , Humans , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/metabolism , Phosphorylation , Rats , Rats, Wistar
14.
Intern Med J ; 52(7): 1268-1271, 2022 07.
Article in English | MEDLINE | ID: mdl-35879236

ABSTRACT

Machine learning may assist in medical student evaluation. This study involved scoring short answer questions administered at three centres. Bidirectional encoder representations from transformers were particularly effective for professionalism question scoring (accuracy ranging from 41.6% to 92.5%). In the scoring of 3-mark professionalism questions, as compared with clinical questions, machine learning had a lower classification accuracy (P < 0.05). The role of machine learning in medical professionalism evaluation warrants further investigation.


Subject(s)
Professionalism , Students, Medical , Humans , Machine Learning
15.
BMC Public Health ; 22(1): 1360, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35840968

ABSTRACT

Suicide rates in the United States (US) reached a peak in 2018 and declined in 2019 and 2020, with substantial and often growing disparities by age, sex, race/ethnicity, geography, veteran status, sexual minority status, socioeconomic status, and method employed (means disparity). In this narrative review and commentary, we highlight these many disparities in US suicide deaths, then examine the possible causes and potential solutions, with the overarching goal of reducing suicide death disparities to achieve health equity.The data implicate untreated, undertreated, or unidentified depression or other mental illness, and access to firearms, as two modifiable risk factors for suicide across all groups. The data also reveal firearm suicides increasing sharply and linearly with increasing county rurality, while suicide rates by falls (e.g., from tall structures) decrease linearly by increasing rurality, and suicide rates by other means remain fairly constant regardless of relative county urbanization. In addition, for all geographies, gun suicides are significantly higher in males than females, and highest in ages 51-85 + years old for both sexes. Of all US suicides from 1999-2019, 55% of male suicides and 29% of female suicides were by gun in metropolitan (metro) areas, versus 65% (Male) and 42% (Female) suicides by gun in non-metro areas. Guns accounted for 89% of suicides in non-metro males aged 71-85 + years old. Guns (i.e., employment of more lethal means) are also thought to be a major reason why males have, on average, 2-4 times higher suicide rates than women, despite having only 1/4-1/2 as many suicide attempts as women. Overall the literature and data strongly implicate firearm access as a risk factor for suicide across all populations, and even more so for male, rural, and older populations.To achieve the most significant results in suicide prevention across all groups, we need 1) more emphasis on policies and universal programs to reduce suicidal behaviors, and 2) enhanced population-based strategies for ameliorating the two most prominent modifiable targets for suicide prevention: depression and firearms.


Subject(s)
Firearms , Health Equity , Aged , Aged, 80 and over , Ethnicity , Female , Homicide , Humans , Male , Middle Aged , Rural Population , United States/epidemiology , Urbanization
16.
Mol Psychiatry ; 25(2): 275-282, 2020 02.
Article in English | MEDLINE | ID: mdl-31595035

ABSTRACT

Current therapeutic approaches to Alzheimer disease (AD) remain disappointing and, hence, there is an urgent need for effective treatments. Here, we provide a perspective review on the emerging role of "metabolic inflammation" and stress as a key factor in the pathogenesis of AD and propose a novel rationale for correction of metabolic inflammation, increase resilience and potentially slow-down or halt the progression of the neurodegenerative process. Based on recent evidence and observations of an early pilot trial, we posit a potential use of extracorporeal apheresis in the prevention and treatment of AD. Apolipoprotein E, lipoprotein(a), oxidized LDL (low density lipoprotein)'s and large LDL particles, as well as other proinflammatory lipids and stress hormones such as cortisol, have been recognized as key factors in amyloid plaque formation and aggravation of AD. Extracorporeal lipoprotein apheresis systems employ well-established, powerful methods to provide an acute, reliable 60-80% reduction in the circulating concentration of these lipid classes and reduce acute cortisol levels. Following a double-membrane extracorporeal apheresis in patients with AD, there was a significant reduction of proinflammatory lipids, circulating cytokines, immune complexes, proinflammatory metals and toxic chaperones in patients with AD. On the basis of the above, we suggest designing clinical trials to assess the promising potential of such "cerebropheresis" treatment in patients with AD and, possibly, other neurodegenerative diseases.


Subject(s)
Alzheimer Disease/therapy , Blood Component Removal/methods , Cholesterol, LDL/blood , Humans , Inflammation/metabolism , Lipid Metabolism/physiology , Lipids/physiology , Lipoproteins, LDL/blood , Stress, Psychological/physiopathology
17.
Intern Med J ; 51(9): 1539-1542, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34541769

ABSTRACT

To utilise effectively tools that employ machine learning (ML) in clinical practice medical students and doctors will require a degree of understanding of ML models. To evaluate current levels of understanding, a formative examination and survey was conducted across three centres in Australia, New Zealand and the United States. Of the 245 individuals who participated in the study (response rate = 45.4%), the majority had difficulty with identifying weaknesses in model performance analysis. Further studies examining educational interventions addressing such ML topics are warranted.


Subject(s)
Education, Medical, Undergraduate , Students, Medical , Australia/epidemiology , Cross-Sectional Studies , Curriculum , Humans , Machine Learning , United States
18.
Bioessays ; 40(9): e1800027, 2018 09.
Article in English | MEDLINE | ID: mdl-30004130

ABSTRACT

We propose the "microbiota-inflammasome" hypothesis of major depressive disorder (MDD, a mental illness affecting the way a person feels and thinks, characterized by long-lasting feelings of sadness). We hypothesize that pathological shifts in gut microbiota composition (dysbiosis) caused by stress and gut conditions result in the upregulation of pro-inflammatory pathways mediated by the Nod-like receptors family pyrin domain containing 3 (NLRP3) inflammasome (an intracellular platform involved in the activation of inflammatory processes). This upregulation exacerbates depressive symptomatology and further compounds gut dysbiosis. In this review we describe MDD/chronic stress-induced changes in: 1) NLRP3 inflammasome; 2) gut microbiota; and 3) metabolic pathways; and how inflammasome signaling may affect depressive-like behavior and gut microbiota composition. The implication is that novel therapeutic strategies could emerge for MDD and co-morbid conditions. A number of testable predictions surface from this microbiota-gut-inflammasome-brain hypothesis of MDD, using approaches that modulate gut microbiota composition via inflammasome modulation, fecal microbiota transplantation, psychobiotics supplementation, or dietary change.


Subject(s)
Depressive Disorder, Major/metabolism , Depressive Disorder, Major/pathology , Gastrointestinal Microbiome/physiology , Inflammasomes/metabolism , Animals , Humans , Inflammation/metabolism , Inflammation/microbiology , Metabolic Networks and Pathways/physiology , Signal Transduction/physiology
19.
Int J Mol Sci ; 21(20)2020 Oct 09.
Article in English | MEDLINE | ID: mdl-33050201

ABSTRACT

Variations in anxiety-related behavior are associated with individual allostatic set-points in chronically stressed rats. Actively offensive rats with the externalizing indicators of sniffling and climbing the stimulus and material tearing during 10 days of predator scent stress had reduced plasma corticosterone, increased striatal glutamate metabolites, and increased adrenal 11-dehydrocorticosterone content compared to passively defensive rats with the internalizing indicators of freezing and grooming, as well as to controls without any behavioral changes. These findings suggest that rats that display active offensive activity in response to stress develop anxiety associated with decreased allostatic set-points and increased resistance to stress.


Subject(s)
Anxiety/metabolism , Anxiety/psychology , Corpus Striatum/metabolism , Glutamic Acid/metabolism , Hypothalamus/metabolism , Limbic System/metabolism , Pituitary-Adrenal System/metabolism , Stress, Psychological , Animals , Anxiety/diagnostic imaging , Anxiety/etiology , Behavior, Animal , Biomarkers , Corpus Striatum/physiopathology , Disease Models, Animal , Hormones/metabolism , Magnetic Resonance Imaging , Male , Maze Learning , Rats , Spectrum Analysis , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL