Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Circulation ; 145(11): 808-818, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35094551

ABSTRACT

BACKGROUND: Understanding the effect of lifestyle and genetic risk on the lifetime risk of coronary heart disease (CHD) is important to improving public health initiatives. Our objective was to quantify remaining lifetime risk and years free of CHD according to polygenic risk and the American Heart Association's Life's Simple 7 (LS7) guidelines in a population-based cohort study. METHODS: Our analysis included data from participants of the ARIC (Atherosclerosis Risk in Communities) study: 8372 White and 2314 Black participants; 45 years of age and older; and free of CHD at baseline examination. A polygenic risk score (PRS) comprised more than 6 million genetic variants was categorized into low (<20th percentile), intermediate, and high (>80th percentile). An overall LS7 score was calculated at baseline and categorized into "poor," "intermediate," and "ideal" cardiovascular health. Lifetime risk and CHD-free years were computed according to polygenic risk and LS7 categories. RESULTS: The overall remaining lifetime risk was 27%, ranging from 16.6% in individuals with an ideal LS7 score to 43.1% for individuals with a poor LS7 score. The association of PRS with lifetime risk differed according to ancestry. In White participants, remaining lifetime risk ranged from 19.8% to 39.3% according to increasing PRS categories. Individuals with a high PRS and poor LS7 had a remaining lifetime risk of 67.1% and 15.9 fewer CHD-free years than did those with intermediate polygenic risk and LS7 scores. In the high-PRS group, ideal LS7 was associated with 20.2 more CHD-free years compared with poor LS7. In Black participants, remaining lifetime risk ranged from 19.1% to 28.6% according to increasing PRS category. Similar lifetime risk estimates were observed for individuals of poor LS7 regardless of PRS category. In the high-PRS group, an ideal LS7 score was associated with only 4.5 more CHD-free years compared with a poor LS7 score. CONCLUSIONS: Ideal adherence to LS7 recommendations was associated with lower lifetime risk of CHD for all individuals, especially in those with high genetic susceptibility. In Black participants, adherence to LS7 guidelines contributed to lifetime risk of CHD more so than current PRSs. Improved PRSs are needed to properly evaluate genetic susceptibility for CHD in diverse populations.


Subject(s)
Cardiovascular Diseases , Coronary Disease , American Heart Association , Cardiovascular Diseases/diagnosis , Cohort Studies , Coronary Disease/diagnosis , Coronary Disease/epidemiology , Coronary Disease/genetics , Genetic Predisposition to Disease , Humans , Life Style , Risk Factors , United States/epidemiology
2.
Am J Hum Genet ; 104(1): 112-138, 2019 01 03.
Article in English | MEDLINE | ID: mdl-30595373

ABSTRACT

Mitochondria (MT), the major site of cellular energy production, are under dual genetic control by 37 mitochondrial DNA (mtDNA) genes and numerous nuclear genes (MT-nDNA). In the CHARGEmtDNA+ Consortium, we studied genetic associations of mtDNA and MT-nDNA associations with body mass index (BMI), waist-hip-ratio (WHR), glucose, insulin, HOMA-B, HOMA-IR, and HbA1c. This 45-cohort collaboration comprised 70,775 (insulin) to 170,202 (BMI) pan-ancestry individuals. Validation and imputation of mtDNA variants was followed by single-variant and gene-based association testing. We report two significant common variants, one in MT-ATP6 associated (p ≤ 5E-04) with WHR and one in the D-loop with glucose. Five rare variants in MT-ATP6, MT-ND5, and MT-ND6 associated with BMI, WHR, or insulin. Gene-based meta-analysis identified MT-ND3 associated with BMI (p ≤ 1E-03). We considered 2,282 MT-nDNA candidate gene associations compiled from online summary results for our traits (20 unique studies with 31 dataset consortia's genome-wide associations [GWASs]). Of these, 109 genes associated (p ≤ 1E-06) with at least 1 of our 7 traits. We assessed regulatory features of variants in the 109 genes, cis- and trans-gene expression regulation, and performed enrichment and protein-protein interactions analyses. Of the identified mtDNA and MT-nDNA genes, 79 associated with adipose measures, 49 with glucose/insulin, 13 with risk for type 2 diabetes, and 18 with cardiovascular disease, indicating for pleiotropic effects with health implications. Additionally, 21 genes related to cholesterol, suggesting additional important roles for the genes identified. Our results suggest that mtDNA and MT-nDNA genes and variants reported make important contributions to glucose and insulin metabolism, adipocyte regulation, diabetes, and cardiovascular disease.


Subject(s)
DNA, Mitochondrial/genetics , Genes, Mitochondrial/genetics , Genetic Variation/genetics , Metabolism/genetics , Mitochondria/genetics , Mitochondria/metabolism , Adipocytes/metabolism , Body Mass Index , Cardiovascular Diseases/genetics , Cardiovascular Diseases/metabolism , Cohort Studies , Diabetes Mellitus/genetics , Diabetes Mellitus/metabolism , Glucose/metabolism , Glycated Hemoglobin/metabolism , Humans , Insulin/metabolism , Quantitative Trait Loci , Waist-Hip Ratio
3.
Blood ; 136(26): 3062-3069, 2020 12 24.
Article in English | MEDLINE | ID: mdl-33367543

ABSTRACT

Fibrinogen is a key component of the coagulation cascade, and variation in its circulating levels may contribute to thrombotic diseases, such as venous thromboembolism (VTE) and ischemic stroke. Gamma prime (γ') fibrinogen is an isoform of fibrinogen that has anticoagulant properties. We applied 2-sample Mendelian randomization (MR) to estimate the causal effect of total circulating fibrinogen and its isoform, γ' fibrinogen, on risk of VTE and ischemic stroke subtypes using summary statistics from genome-wide association studies. Genetic instruments for γ' fibrinogen and total fibrinogen were selected, and the inverse-variance weighted MR approach was used to estimate causal effects in the main analysis, complemented by sensitivity analyses that are more robust to the inclusion of pleiotropic variants, including MR-Egger, weighted median MR, and weighted mode MR. The main inverse-variance weighted MR estimates based on a combination of 16 genetic instruments for γ' fibrinogen and 75 genetic instruments for total fibrinogen indicated a protective effect of higher γ' fibrinogen and higher total fibrinogen on VTE risk. There was also a protective effect of higher γ' fibrinogen levels on cardioembolic and large artery stroke risk. Effect estimates were consistent across sensitivity analyses. Our results provide evidence to support effects of genetically determined γ' fibrinogen on VTE and ischemic stroke risk. Further research is needed to explore mechanisms underlying these effects and their clinical applications.


Subject(s)
Fibrinogen , Genetic Variation , Ischemic Stroke , Mendelian Randomization Analysis , Venous Thromboembolism , Female , Fibrinogen/genetics , Fibrinogen/metabolism , Genome-Wide Association Study , Humans , Ischemic Stroke/blood , Ischemic Stroke/epidemiology , Ischemic Stroke/genetics , Male , Risk Factors , Venous Thromboembolism/blood , Venous Thromboembolism/epidemiology , Venous Thromboembolism/genetics
4.
Am J Hum Genet ; 103(5): 691-706, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30388399

ABSTRACT

C-reactive protein (CRP) is a sensitive biomarker of chronic low-grade inflammation and is associated with multiple complex diseases. The genetic determinants of chronic inflammation remain largely unknown, and the causal role of CRP in several clinical outcomes is debated. We performed two genome-wide association studies (GWASs), on HapMap and 1000 Genomes imputed data, of circulating amounts of CRP by using data from 88 studies comprising 204,402 European individuals. Additionally, we performed in silico functional analyses and Mendelian randomization analyses with several clinical outcomes. The GWAS meta-analyses of CRP revealed 58 distinct genetic loci (p < 5 × 10-8). After adjustment for body mass index in the regression analysis, the associations at all except three loci remained. The lead variants at the distinct loci explained up to 7.0% of the variance in circulating amounts of CRP. We identified 66 gene sets that were organized in two substantially correlated clusters, one mainly composed of immune pathways and the other characterized by metabolic pathways in the liver. Mendelian randomization analyses revealed a causal protective effect of CRP on schizophrenia and a risk-increasing effect on bipolar disorder. Our findings provide further insights into the biology of inflammation and could lead to interventions for treating inflammation and its clinical consequences.


Subject(s)
Genetic Loci/genetics , Inflammation/genetics , Metabolic Networks and Pathways/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers/metabolism , Bipolar Disorder/genetics , Bipolar Disorder/metabolism , Body Mass Index , C-Reactive Protein/genetics , Child , Female , Genome-Wide Association Study/methods , Humans , Inflammation/metabolism , Liver/metabolism , Liver/pathology , Male , Mendelian Randomization Analysis/methods , Middle Aged , Schizophrenia/genetics , Schizophrenia/metabolism , Young Adult
5.
Diabet Med ; 38(10): e14639, 2021 10.
Article in English | MEDLINE | ID: mdl-34245042

ABSTRACT

AIMS: Both lifestyle factors and genetic background contribute to the development of type 2 diabetes. Estimation of the lifetime risk of diabetes based on genetic information has not been presented, and the extent to which a normal body weight can offset a high lifetime genetic risk is unknown. METHODS: We used data from 15,671 diabetes-free participants of European ancestry aged 45 years and older from the prospective population-based ARIC study and Rotterdam Study (RS). We quantified the remaining lifetime risk of diabetes stratified by genetic risk and quantified the effect of normal weight in terms of relative and lifetime risks in low, intermediate and high genetic risk. RESULTS: At age 45 years, the lifetime risk of type 2 diabetes in ARIC in the low, intermediate and high genetic risk category was 33.2%, 41.3% and 47.2%, and in RS 22.8%, 30.6% and 35.5% respectively. The absolute lifetime risk for individuals with normal weight compared to individuals with obesity was 24% lower in ARIC and 8.6% lower in RS in the low genetic risk group, 36.3% lower in ARIC and 31.3% lower in RS in the intermediate genetic risk group, and 25.0% lower in ARIC and 29.4% lower in RS in the high genetic risk group. CONCLUSIONS: Genetic variants for type 2 diabetes have value in estimating the lifetime risk of type 2 diabetes. Normal weight mitigates partly the deleterious effect of high genetic risk.


Subject(s)
Diabetes Mellitus, Type 2/etiology , Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease/genetics , Life Style , Obesity/complications , Aged , Diabetes Mellitus, Type 2/epidemiology , Female , Genetic Variation , Humans , Male , Middle Aged , Multifactorial Inheritance , Risk , White People
6.
Eur J Epidemiol ; 36(11): 1143-1155, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34091768

ABSTRACT

Common carotid intima-media thickness (cIMT) is an index of subclinical atherosclerosis that is associated with ischemic stroke and coronary artery disease (CAD). We undertook a cross-sectional epigenome-wide association study (EWAS) of measures of cIMT in 6400 individuals. Mendelian randomization analysis was applied to investigate the potential causal role of DNA methylation in the link between atherosclerotic cardiovascular risk factors and cIMT or clinical cardiovascular disease. The CpG site cg05575921 was associated with cIMT (beta = -0.0264, p value = 3.5 × 10-8) in the discovery panel and was replicated in replication panel (beta = -0.07, p value = 0.005). This CpG is located at chr5:81649347 in the intron 3 of the aryl hydrocarbon receptor repressor gene (AHRR). Our results indicate that DNA methylation at cg05575921 might be in the pathway between smoking, cIMT and stroke. Moreover, in a region-based analysis, 34 differentially methylated regions (DMRs) were identified of which a DMR upstream of ALOX12 showed the strongest association with cIMT (p value = 1.4 × 10-13). In conclusion, our study suggests that DNA methylation may play a role in the link between cardiovascular risk factors, cIMT and clinical cardiovascular disease.


Subject(s)
Carotid Intima-Media Thickness , Coronary Artery Disease , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/genetics , Cross-Sectional Studies , Epigenome , Humans , Risk Factors
7.
Circulation ; 140(8): 645-657, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31424985

ABSTRACT

BACKGROUND: DNA methylation is implicated in coronary heart disease (CHD), but current evidence is based on small, cross-sectional studies. We examined blood DNA methylation in relation to incident CHD across multiple prospective cohorts. METHODS: Nine population-based cohorts from the United States and Europe profiled epigenome-wide blood leukocyte DNA methylation using the Illumina Infinium 450k microarray, and prospectively ascertained CHD events including coronary insufficiency/unstable angina, recognized myocardial infarction, coronary revascularization, and coronary death. Cohorts conducted race-specific analyses adjusted for age, sex, smoking, education, body mass index, blood cell type proportions, and technical variables. We conducted fixed-effect meta-analyses across cohorts. RESULTS: Among 11 461 individuals (mean age 64 years, 67% women, 35% African American) free of CHD at baseline, 1895 developed CHD during a mean follow-up of 11.2 years. Methylation levels at 52 CpG (cytosine-phosphate-guanine) sites were associated with incident CHD or myocardial infarction (false discovery rate<0.05). These CpGs map to genes with key roles in calcium regulation (ATP2B2, CASR, GUCA1B, HPCAL1), and genes identified in genome- and epigenome-wide studies of serum calcium (CASR), serum calcium-related risk of CHD (CASR), coronary artery calcified plaque (PTPRN2), and kidney function (CDH23, HPCAL1), among others. Mendelian randomization analyses supported a causal effect of DNA methylation on incident CHD; these CpGs map to active regulatory regions proximal to long non-coding RNA transcripts. CONCLUSION: Methylation of blood-derived DNA is associated with risk of future CHD across diverse populations and may serve as an informative tool for gaining further insight on the development of CHD.


Subject(s)
Coronary Disease/diagnosis , CpG Islands/genetics , DNA Methylation/physiology , Leukocytes/physiology , Myocardial Infarction/diagnosis , Adult , Aged , Cohort Studies , Coronary Disease/epidemiology , Europe/epidemiology , Female , Genome-Wide Association Study , Humans , Incidence , Male , Middle Aged , Myocardial Infarction/epidemiology , Population Groups , Prognosis , Prospective Studies , Risk , United States/epidemiology
8.
Am J Hum Genet ; 101(6): 888-902, 2017 Dec 07.
Article in English | MEDLINE | ID: mdl-29198723

ABSTRACT

Genome-wide association studies have identified hundreds of genetic variants associated with blood pressure (BP), but sequence variation accounts for a small fraction of the phenotypic variance. Epigenetic changes may alter the expression of genes involved in BP regulation and explain part of the missing heritability. We therefore conducted a two-stage meta-analysis of the cross-sectional associations of systolic and diastolic BP with blood-derived genome-wide DNA methylation measured on the Infinium HumanMethylation450 BeadChip in 17,010 individuals of European, African American, and Hispanic ancestry. Of 31 discovery-stage cytosine-phosphate-guanine (CpG) dinucleotides, 13 replicated after Bonferroni correction (discovery: N = 9,828, p < 1.0 × 10-7; replication: N = 7,182, p < 1.6 × 10-3). The replicated methylation sites are heritable (h2 > 30%) and independent of known BP genetic variants, explaining an additional 1.4% and 2.0% of the interindividual variation in systolic and diastolic BP, respectively. Bidirectional Mendelian randomization among up to 4,513 individuals of European ancestry from 4 cohorts suggested that methylation at cg08035323 (TAF1B-YWHAQ) influences BP, while BP influences methylation at cg00533891 (ZMIZ1), cg00574958 (CPT1A), and cg02711608 (SLC1A5). Gene expression analyses further identified six genes (TSPAN2, SLC7A11, UNC93B1, CPT1A, PTMS, and LPCAT3) with evidence of triangular associations between methylation, gene expression, and BP. Additional integrative Mendelian randomization analyses of gene expression and DNA methylation suggested that the expression of TSPAN2 is a putative mediator of association between DNA methylation at cg23999170 and BP. These findings suggest that heritable DNA methylation plays a role in regulating BP independently of previously known genetic variants.


Subject(s)
Blood Pressure/genetics , DNA Methylation/genetics , Nerve Tissue Proteins/genetics , Tetraspanins/genetics , Aged , CpG Islands/genetics , Cross-Sectional Studies , Epigenesis, Genetic/genetics , Genetic Variation/genetics , Genome-Wide Association Study , Humans , Mendelian Randomization Analysis , Middle Aged , Quantitative Trait Loci/genetics
9.
Twin Res Hum Genet ; 23(4): 204-213, 2020 08.
Article in English | MEDLINE | ID: mdl-32755526

ABSTRACT

Previous genetic association studies have failed to identify loci robustly associated with sepsis, and there have been no published genetic association studies or polygenic risk score analyses of patients with septic shock, despite evidence suggesting genetic factors may be involved. We systematically collected genotype and clinical outcome data in the context of a randomized controlled trial from patients with septic shock to enrich the presence of disease-associated genetic variants. We performed genomewide association studies of susceptibility and mortality in septic shock using 493 patients with septic shock and 2442 population controls, and polygenic risk score analysis to assess genetic overlap between septic shock risk/mortality with clinically relevant traits. One variant, rs9489328, located in AL589740.1 noncoding RNA, was significantly associated with septic shock (p = 1.05 × 10-10); however, it is likely a false-positive. We were unable to replicate variants previously reported to be associated (p < 1.00 × 10-6 in previous scans) with susceptibility to and mortality from sepsis. Polygenic risk scores for hematocrit and granulocyte count were negatively associated with 28-day mortality (p = 3.04 × 10-3; p = 2.29 × 10-3), and scores for C-reactive protein levels were positively associated with susceptibility to septic shock (p = 1.44 × 10-3). Results suggest that common variants of large effect do not influence septic shock susceptibility, mortality and resolution; however, genetic predispositions to clinically relevant traits are significantly associated with increased susceptibility and mortality in septic individuals.


Subject(s)
Genome-Wide Association Study , Multifactorial Inheritance , Shock, Septic , Humans , Randomized Controlled Trials as Topic , Risk Factors , Shock, Septic/genetics , Shock, Septic/mortality
10.
Am J Hum Genet ; 98(4): 680-96, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-27040690

ABSTRACT

Epigenetic modifications, including DNA methylation, represent a potential mechanism for environmental impacts on human disease. Maternal smoking in pregnancy remains an important public health problem that impacts child health in a myriad of ways and has potential lifelong consequences. The mechanisms are largely unknown, but epigenetics most likely plays a role. We formed the Pregnancy And Childhood Epigenetics (PACE) consortium and meta-analyzed, across 13 cohorts (n = 6,685), the association between maternal smoking in pregnancy and newborn blood DNA methylation at over 450,000 CpG sites (CpGs) by using the Illumina 450K BeadChip. Over 6,000 CpGs were differentially methylated in relation to maternal smoking at genome-wide statistical significance (false discovery rate, 5%), including 2,965 CpGs corresponding to 2,017 genes not previously related to smoking and methylation in either newborns or adults. Several genes are relevant to diseases that can be caused by maternal smoking (e.g., orofacial clefts and asthma) or adult smoking (e.g., certain cancers). A number of differentially methylated CpGs were associated with gene expression. We observed enrichment in pathways and processes critical to development. In older children (5 cohorts, n = 3,187), 100% of CpGs gave at least nominal levels of significance, far more than expected by chance (p value < 2.2 × 10(-16)). Results were robust to different normalization methods used across studies and cell type adjustment. In this large scale meta-analysis of methylation data, we identified numerous loci involved in response to maternal smoking in pregnancy with persistence into later childhood and provide insights into mechanisms underlying effects of this important exposure.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Smoking/adverse effects , Asthma/etiology , Asthma/genetics , Child , Child, Preschool , Chromosome Mapping , Cleft Lip/etiology , Cleft Lip/genetics , Cleft Palate/etiology , Cleft Palate/genetics , Female , Genetic Association Studies , Humans , Infant , Infant, Newborn , Pregnancy , White People/genetics
11.
PLoS Genet ; 12(5): e1006034, 2016 05.
Article in English | MEDLINE | ID: mdl-27149122

ABSTRACT

Failure of the human heart to maintain sufficient output of blood for the demands of the body, heart failure, is a common condition with high mortality even with modern therapeutic alternatives. To identify molecular determinants of mortality in patients with new-onset heart failure, we performed a meta-analysis of genome-wide association studies and follow-up genotyping in independent populations. We identified and replicated an association for a genetic variant on chromosome 5q22 with 36% increased risk of death in subjects with heart failure (rs9885413, P = 2.7x10-9). We provide evidence from reporter gene assays, computational predictions and epigenomic marks that this polymorphism increases activity of an enhancer region active in multiple human tissues. The polymorphism was further reproducibly associated with a DNA methylation signature in whole blood (P = 4.5x10-40) that also associated with allergic sensitization and expression in blood of the cytokine TSLP (P = 1.1x10-4). Knockdown of the transcription factor predicted to bind the enhancer region (NHLH1) in a human cell line (HEK293) expressing NHLH1 resulted in lower TSLP expression. In addition, we observed evidence of recent positive selection acting on the risk allele in populations of African descent. Our findings provide novel genetic leads to factors that influence mortality in patients with heart failure.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , DNA Methylation/genetics , Heart Failure/genetics , Receptors, Cytokine/genetics , Black or African American/genetics , Alleles , Basic Helix-Loop-Helix Transcription Factors/blood , Chromosomes, Human, Pair 5/genetics , Female , Gene Expression Regulation , Gene Knockdown Techniques , Genetic Predisposition to Disease , Genetic Variation , Genome-Wide Association Study , Genotype , HEK293 Cells , Heart Failure/blood , Heart Failure/mortality , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Receptors, Cytokine/blood
12.
Circ Res ; 118(1): 83-94, 2016 Jan 08.
Article in English | MEDLINE | ID: mdl-26487741

ABSTRACT

RATIONALE: Coronary artery disease (CAD) is a critical determinant of morbidity and mortality. Previous studies have identified several cardiovascular disease risk factors, which may partly arise from a shared genetic basis with CAD, and thus be useful for discovery of CAD genes. OBJECTIVE: We aimed to improve discovery of CAD genes and inform the pathogenic relationship between CAD and several cardiovascular disease risk factors using a shared polygenic signal-informed statistical framework. METHODS AND RESULTS: Using genome-wide association studies summary statistics and shared polygenic pleiotropy-informed conditional and conjunctional false discovery rate methodology, we systematically investigated genetic overlap between CAD and 8 traits related to cardiovascular disease risk factors: low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides, type 2 diabetes mellitus, C-reactive protein, body mass index, systolic blood pressure, and type 1 diabetes mellitus. We found significant enrichment of single-nucleotide polymorphisms associated with CAD as a function of their association with low-density lipoprotein, high-density lipoprotein, triglycerides, type 2 diabetes mellitus, C-reactive protein, body mass index, systolic blood pressure, and type 1 diabetes mellitus. Applying the conditional false discovery rate method to the enriched phenotypes, we identified 67 novel loci associated with CAD (overall conditional false discovery rate <0.01). Furthermore, we identified 53 loci with significant effects in both CAD and at least 1 of low-density lipoprotein, high-density lipoprotein, triglycerides, type 2 diabetes mellitus, C-reactive protein, systolic blood pressure, and type 1 diabetes mellitus. CONCLUSIONS: The observed polygenic overlap between CAD and cardiometabolic risk factors indicates a pathogenic relation that warrants further investigation. The new gene loci identified implicate novel genetic mechanisms related to CAD.


Subject(s)
Coronary Artery Disease/genetics , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Genome-Wide Association Study/methods , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/genetics , Cohort Studies , Coronary Artery Disease/diagnosis , Female , Humans , Prospective Studies , Risk Factors
13.
Arterioscler Thromb Vasc Biol ; 37(6): 1222-1227, 2017 06.
Article in English | MEDLINE | ID: mdl-28428221

ABSTRACT

OBJECTIVE: Interleukin (IL)-1ß represents a key cytokine in the development of cardiovascular disease (CVD). IL-1ß is counter-regulated by IL-1 receptor antagonist (IL-1RA), an endogenous inhibitor. This study aimed to identify population-based studies on circulating IL-1RA and incident CVD in a systematic review, estimate the association between IL-1RA and incident CVD in a meta-analysis, and to test whether the association between IL-1RA and incident CVD is explained by other inflammation-related biomarkers in the MONICA/KORA Augsburg case-cohort study (Multinational Monitoring of Trends and Determinants in Cardiovascular Disease/Cooperative Health Research in the Region of Augsburg). APPROACH AND RESULTS: We performed a systematic literature search and identified 5 cohort studies on IL-1RA and incident CVD in addition to the MONICA/KORA Augsburg case-cohort study for a meta-analysis based on a total of 1855 CVD cases and 18 745 noncases with follow-up times between 5 and 16 years. The pooled standardized hazard ratio (95% confidence interval) for incident CVD was 1.11 (1.06-1.17) after adjustment for age, sex, anthropometric, metabolic, and lifestyle factors (P<0.0001). There was no heterogeneity in effect sizes (I2=0%; P=0.88). More detailed analyses in the MONICA/KORA study showed that the excess risk for CVD was attenuated by ≥10% after additional separate adjustment for serum levels of high-sensitivity C-reactive protein, IL-6, myeloperoxidase, soluble E-selectin, or soluble intercellular adhesion molecule-1. CONCLUSIONS: Serum IL-1RA levels were positively associated with risk of CVD after adjustment for multiple confounders in a meta-analysis of 6 population-based cohorts. This association may at least partially reflect a response to triggers inducing subclinical inflammation, oxidative stress, and endothelial activation.


Subject(s)
Cardiovascular Diseases/blood , Cardiovascular Diseases/epidemiology , Interleukin 1 Receptor Antagonist Protein/blood , Biomarkers/blood , Cardiovascular Diseases/diagnosis , Humans , Odds Ratio , Prognosis , Risk Assessment , Risk Factors , Time Factors
14.
Diabetologia ; 60(5): 843-853, 2017 05.
Article in English | MEDLINE | ID: mdl-28224192

ABSTRACT

AIMS/HYPOTHESIS: Previous studies have found an association between serum magnesium and incident diabetes; however, this association may be due to reverse causation, whereby diabetes may induce urinary magnesium loss. In contrast, in prediabetes (defined as impaired fasting glucose), serum glucose levels are below the threshold for urinary magnesium wasting and, hence, unlikely to influence serum magnesium levels. Thus, to study the directionality of the association between serum magnesium levels and diabetes, we investigated its association with prediabetes. We also investigated whether magnesium-regulating genes influence diabetes risk through serum magnesium levels. Additionally, we quantified the effect of insulin resistance in the association between serum magnesium levels and diabetes risk. METHODS: Within the population-based Rotterdam Study, we used Cox models, adjusted for age, sex, lifestyle factors, comorbidities, kidney function, serum levels of electrolytes and diuretic use, to study the association between serum magnesium and prediabetes/diabetes. In addition, we performed two mediation analyses: (1) to study if common genetic variation in eight magnesium-regulating genes influence diabetes risk through serum magnesium levels; and (2) to quantify the proportion of the effect of serum magnesium levels on diabetes that is mediated through insulin resistance (quantified by HOMA-IR). RESULTS: A total of 8555 participants (mean age, 64.7 years; median follow-up, 5.7 years) with normal glucose levels (mean ± SD: 5.46 ± 0.58 mmol/l) at baseline were included. A 0.1 mmol/l decrease in serum magnesium level was associated with an increase in diabetes risk (HR 1.18 [95% CI 1.04, 1.33]), confirming findings from previous studies. Of interest, a similar association was found between serum magnesium levels and prediabetes risk (HR 1.12 [95% CI 1.01, 1.25]). Genetic variation in CLDN19, CNNM2, FXYD2, SLC41A2, and TRPM6 significantly influenced diabetes risk (p < 0.05), and for CNNM2, FXYD2, SLC41A2 and TRPM6 this risk was completely mediated by serum magnesium levels. We found that 29.1% of the effect of serum magnesium levels on diabetes was mediated through insulin resistance, whereas for prediabetes 13.4% was mediated through insulin resistance. CONCLUSIONS/INTERPRETATION: Low serum magnesium levels are associated with an increased risk of prediabetes and this increased risk is similar to that of diabetes. Furthermore, common variants in magnesium-regulating genes modify diabetes risk through serum magnesium levels. Both findings support a potential causal role of magnesium in the development of diabetes, where the hypothesised pathway is partly mediated through insulin resistance.


Subject(s)
Magnesium/blood , Prediabetic State/blood , Prediabetic State/epidemiology , Aged , Cation Transport Proteins , Claudins/genetics , Cohort Studies , Cyclins/genetics , Female , Humans , Insulin Resistance/physiology , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Prediabetic State/genetics , Risk Factors , Sodium-Potassium-Exchanging ATPase/genetics , TRPM Cation Channels/genetics
15.
Diabetologia ; 60(10): 1951-1960, 2017 10.
Article in English | MEDLINE | ID: mdl-28721436

ABSTRACT

AIMS/HYPOTHESIS: In this study, we aimed to examine the association between age at natural menopause and risk of type 2 diabetes, and to assess whether this association is independent of potential mediators. METHODS: We included 3639 postmenopausal women from the prospective, population-based Rotterdam Study. Age at natural menopause was self-reported retrospectively and was treated as a continuous variable and in categories (premature, <40 years; early, 40-44 years; normal, 45-55 years; and late menopause, >55 years [reference]). Type 2 diabetes events were diagnosed on the basis of medical records and glucose measurements from Rotterdam Study visits. HRs and 95% CIs were calculated using Cox proportional hazards models, adjusted for confounding factors; in another model, they were additionally adjusted for potential mediators, including obesity, C-reactive protein, glucose and insulin, as well as for levels of total oestradiol and androgens. RESULTS: During a median follow-up of 9.2 years, we identified 348 individuals with incident type 2 diabetes. After adjustment for confounders, HRs for type 2 diabetes were 3.7 (95% CI 1.8, 7.5), 2.4 (95% CI 1.3, 4.3) and 1.60 (95% CI 1.0, 2.8) for women with premature, early and normal menopause, respectively, relative to those with late menopause (p trend <0.001). The HR for type 2 diabetes per 1 year older at menopause was 0.96 (95% CI 0.94, 0.98). Further adjustment for BMI, glycaemic traits, metabolic risk factors, C-reactive protein, endogenous sex hormone levels or shared genetic factors did not affect this association. CONCLUSIONS/INTERPRETATION: Early onset of natural menopause is an independent marker for type 2 diabetes in postmenopausal women.


Subject(s)
Diabetes Mellitus, Type 2/epidemiology , Adult , Age Factors , Female , Humans , Incidence , Menopause , Middle Aged , Postmenopause , Prospective Studies , Risk
16.
Diabetologia ; 60(2): 280-286, 2017 02.
Article in English | MEDLINE | ID: mdl-27787621

ABSTRACT

AIMS/HYPOTHESIS: ADAMTS13 is a protease that breaks down von Willebrand factor (VWF) multimers into smaller, less active particles. VWF has been associated with an increased risk of incident type 2 diabetes mellitus. Here, we determine whether ADAMTS13 activity and VWF antigen are associated with incident diabetes. METHODS: This study included 5176 participants from the Rotterdam Study, a prospective population-based cohort study. Participants were free of diabetes at baseline and followed up for more than 20 years. Cox proportional hazards models were used to examine the association of ADAMTS13 activity and VWF antigen with incident diabetes. RESULTS: ADAMTS13 activity was associated with an increased risk of incident diabetes (HR 1.17 [95% CI 1.08, 1.27]) after adjustment for known risk factors and VWF antigen levels. Although ADAMTS13 activity was positively associated with fasting glucose and insulin, the association with incident diabetes did not change when we adjusted for these covariates. ADAMTS13 activity was also associated with incident prediabetes (defined on the basis of both fasting and non-fasting blood glucose) after adjustment for known risk factors (HR 1.11 [95% CI 1.03, 1.19]), while the VWF antigen level was not. VWF antigen was associated with incident diabetes, but this association was attenuated after adjustment for known risk factors. CONCLUSIONS/INTERPRETATION: ADAMTS13 activity appears to be an independent risk factor for incident prediabetes and type 2 diabetes. As the association between ADAMTS13 and diabetes did not appear to be explained by its cleavage of VWF, ADAMTS13 may have an independent role in the development of diabetes.


Subject(s)
ADAMTS13 Protein/metabolism , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/metabolism , ADAMTS13 Protein/genetics , Aged , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/genetics , Fasting/blood , Female , Humans , Insulin/blood , Male , Middle Aged , Proportional Hazards Models , Prospective Studies , Risk Factors , von Willebrand Factor/genetics , von Willebrand Factor/metabolism
17.
Eur J Epidemiol ; 32(3): 217-226, 2017 03.
Article in English | MEDLINE | ID: mdl-28258520

ABSTRACT

The immune response involved in each phase of type 2 diabetes (T2D) development might be different. We aimed to identify novel inflammatory markers that predict progression from normoglycemia to pre-diabetes, incident T2D and insulin therapy. We used plasma levels of 26 inflammatory markers in 971 subjects from the Rotterdam Study. Among them 17 are novel and 9 previously studied. Cox regression models were built to perform survival analysis. MAIN OUTCOME MEASURES: During a follow-up of up to 14.7 years (between April 1, 1997, and Jan 1, 2012) 139 cases of pre-diabetes, 110 cases of T2D and 26 cases of insulin initiation were identified. In age and sex adjusted Cox models, IL13 (HR = 0.78), EN-RAGE (1.30), CFH (1.24), IL18 (1.22) and CRP (1.32) were associated with incident pre-diabetes. IL13 (0.62), IL17 (0.75), EN-RAGE (1.25), complement 3 (1.44), IL18 (1.35), TNFRII (1.27), IL1ra (1.24) and CRP (1.64) were associated with incident T2D. In multivariate models, IL13 (0.77), EN-RAGE (1.23) and CRP (1.26) remained associated with pre-diabetes. IL13 (0.67), IL17 (0.76) and CRP (1.32) remained associated with T2D. IL13 (0.55) was the only marker associated with initiation of insulin therapy in diabetics. Various inflammatory markers are associated with progression from normoglycemia to pre-diabetes (IL13, EN-RAGE, CRP), T2D (IL13, IL17, CRP) or insulin therapy start (IL13). Among them, EN-RAGE is a novel inflammatory marker for pre-diabetes, IL17 for incident T2D and IL13 for pre-diabetes, incident T2D and insulin therapy start.


Subject(s)
Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/epidemiology , Inflammation/blood , Inflammation/epidemiology , Prediabetic State/blood , Prediabetic State/epidemiology , Aged , Biomarkers/blood , Cohort Studies , Comorbidity , Female , Humans , Incidence , Male , Netherlands/epidemiology , Proportional Hazards Models , Prospective Studies , Risk Factors
18.
Diabetologia ; 59(5): 998-1006, 2016 May.
Article in English | MEDLINE | ID: mdl-26825526

ABSTRACT

AIMS/HYPOTHESIS: Tobacco smoking, a risk factor for diabetes, is an established modifier of DNA methylation. We hypothesised that tobacco smoking modifies DNA methylation of genes previously identified for diabetes. METHODS: We annotated CpG sites available on the Illumina Human Methylation 450K array to diabetes genes previously identified by genome-wide association studies (GWAS), and investigated them for an association with smoking by comparing current to never smokers. The discovery study consisted of 630 individuals (Bonferroni-corrected p = 1.4 × 10(-5)), and we sought replication in an independent sample of 674 individuals. The replicated sites were tested for association with nearby genetic variants and gene expression and fasting glucose and insulin levels. RESULTS: We annotated 3,620 CpG sites to the genes identified in the GWAS on type 2 diabetes. Comparing current smokers to never smokers, we found 12 differentially methylated CpG sites, of which five replicated: cg23161492 within ANPEP (p = 1.3 × 10(-12)); cg26963277 (p = 1.2 × 10(-9)), cg01744331 (p = 8.0 × 10(-6)) and cg16556677 (p = 1.2 × 10(-5)) within KCNQ1 and cg03450842 (p = 3.1 × 10(-8)) within ZMIZ1. The effect of smoking on DNA methylation at the replicated CpG sites attenuated after smoking cessation. Increased DNA methylation at cg23161492 was associated with decreased gene expression levels of ANPEP (p = 8.9 × 10(-5)). rs231356-T, which was associated with hypomethylation of cg26963277 (KCNQ1), was associated with a higher odds of diabetes (OR 1.06, p = 1.3 × 10(-5)). Additionally, hypomethylation of cg26963277 was associated with lower fasting insulin levels (p = 0.04). CONCLUSIONS/INTERPRETATION: Tobacco smoking is associated with differential DNA methylation of the diabetes risk genes ANPEP, KCNQ1 and ZMIZ1. Our study highlights potential biological mechanisms connecting tobacco smoking to excess risk of type 2 diabetes.


Subject(s)
DNA Methylation/genetics , Diabetes Mellitus, Type 2/genetics , Smoking/adverse effects , Aged , Female , Genome-Wide Association Study , Humans , Male , Middle Aged
19.
BMC Genomics ; 17: 443, 2016 06 10.
Article in English | MEDLINE | ID: mdl-27286809

ABSTRACT

BACKGROUND: Genome-wide association studies (GWAS) have identified multiple genetic loci for C-reactive protein (CRP) and lipids, of which some overlap. We aimed to identify genetic pleiotropy among CRP and lipids in order to better understand the shared biology of chronic inflammation and lipid metabolism. RESULTS: In a bivariate GWAS, we combined summary statistics of published GWAS on CRP (n = 66,185) and lipids, including LDL-cholesterol, HDL-cholesterol, triglycerides, and total cholesterol (n = 100,184), using an empirical weighted linear-combined test statistic. We sought replication for novel CRP associations in an independent sample of 17,743 genotyped individuals, and performed in silico replication of novel lipid variants in 93,982 individuals. Fifty potentially pleiotropic SNPs were identified among CRP and lipids: 21 for LDL-cholesterol and CRP, 20 for HDL-cholesterol and CRP, 21 for triglycerides, and CRP and 20 for total cholesterol and CRP. We identified and significantly replicated three novel SNPs for CRP in or near CTSB/FDFT1 (rs10435719, Preplication: 2.6 × 10(-5)), STAG1/PCCB (rs7621025, Preplication: 1.4 × 10(-3)) and FTO (rs1558902, Preplication: 2.7 × 10(-5)). Seven pleiotropic lipid loci were replicated in the independent set of MetaboChip samples of the Global Lipids Genetics Consortium. Annotating the effect of replicated CRP SNPs to the expression of nearby genes, we observed an effect of rs10435719 on gene expression of FDFT1, and an effect of rs7621025 on PCCB. CONCLUSIONS: Our large scale combined GWAS analysis identified numerous pleiotropic loci for CRP and lipids providing further insight in the genetic interrelation between lipids and inflammation. In addition, we provide evidence for FDFT1, PCCB and FTO to be associated with CRP levels.


Subject(s)
Genome-Wide Association Study , Inflammation/genetics , Lipid Metabolism/genetics , Multifactorial Inheritance , Quantitative Trait Loci , Biomarkers , C-Reactive Protein , Cholesterol, HDL , DNA Replication , Gene Expression , Genetic Association Studies , Polymorphism, Single Nucleotide , Triglycerides
20.
PLoS Med ; 13(7): e1002086, 2016 07.
Article in English | MEDLINE | ID: mdl-27433939

ABSTRACT

BACKGROUND: Overweight and obesity are associated with increased risk of type 2 diabetes. Limited evidence exists regarding the effect of excess weight on years lived with and without diabetes. We aimed to determine the association of overweight and obesity with the number of years lived with and without diabetes in a middle-aged and elderly population. METHODS AND FINDINGS: The study included 6,499 individuals (3,656 women) aged 55 y and older from the population-based Rotterdam Study. We developed a multistate life table to calculate life expectancy for individuals who were normal weight, overweight, and obese and the difference in years lived with and without diabetes. For life table calculations, we used prevalence, incidence rate, and hazard ratios (HRs) for three transitions (healthy to diabetes, healthy to death, and diabetes to death), stratifying by body mass index (BMI) at baseline and adjusting for confounders. During a median follow-up of 11.1 y, we observed 697 incident diabetes events and 2,192 overall deaths. Obesity was associated with an increased risk of developing diabetes (HR: 2.13 [p < 0.001] for men and 3.54 [p < 0.001] for women). Overweight and obesity were not associated with mortality in men and women with or without diabetes. Total life expectancy remained unaffected by overweight and obesity. Nevertheless, men with obesity aged 55 y and older lived 2.8 (95% CI -6.1 to -0.1) fewer y without diabetes than normal weight individuals, whereas, for women, the difference between obese and normal weight counterparts was 4.7 (95% CI -9.0 to -0.6) y. Men and women with obesity lived 2.8 (95% CI 0.6 to 6.2) and 5.3 (95% CI 1.6 to 9.3) y longer with diabetes, respectively, compared to their normal weight counterparts. Since the implications of these findings could be limited to middle-aged and older white European populations, our results need confirmation in other populations. CONCLUSIONS: Obesity in the middle aged and elderly is associated with a reduction in the number of years lived free of diabetes and an increase in the number of years lived with diabetes. Those extra years lived with morbidity might place a high toll on individuals and health care systems.


Subject(s)
Diabetes Mellitus, Type 2/mortality , Life Expectancy , Obesity/mortality , Aged , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/etiology , Female , Humans , Incidence , Male , Middle Aged , Netherlands/epidemiology , Obesity/complications , Obesity/epidemiology , Overweight/complications , Overweight/epidemiology , Overweight/mortality , Prospective Studies , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL