Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Neuroinflammation ; 20(1): 170, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37480114

ABSTRACT

INTRODUCTION: Lipopolysaccharide (LPS) is the outer membrane component of Gram-negative bacteria. LPS-binding protein (LBP) is an acute-phase reactant that mediates immune responses triggered by LPS and has been used as a blood marker for LPS. LBP has recently been indicated to be associated with Parkinson's disease (PD) in small-scale retrospective case-control studies. We aimed to investigate the association between LBP blood levels with PD risk in a nested case-control study within a large European prospective cohort. METHODS: A total of 352 incident PD cases (55% males) were identified and one control per case was selected, matched by age at recruitment, sex and study center. LBP levels in plasma collected at recruitment, which was on average 7.8 years before diagnosis of the cases, were analyzed by enzyme linked immunosorbent assay. Odds ratios (ORs) were estimated for one unit increase of the natural log of LBP levels and PD incidence by conditional logistic regression. RESULTS: Plasma LBP levels were higher in prospective PD cases compared to controls (median (interquartile range) 26.9 (18.1-41.0) vs. 24.7 (16.6-38.4) µg/ml). The OR for PD incidence per one unit increase of log LBP was elevated (1.46, 95% CI 0.98-2.19). This association was more pronounced among women (OR 2.68, 95% CI 1.40-5.13) and overweight/obese subjects (OR 1.54, 95% CI 1.09-2.18). CONCLUSION: The findings suggest that higher plasma LBP levels may be associated with an increased risk of PD and may thus pinpoint to a potential role of endotoxemia in the pathogenesis of PD, particularly in women and overweight/obese individuals.


Subject(s)
Lipopolysaccharides , Parkinson Disease , Male , Humans , Female , Case-Control Studies , Overweight , Parkinson Disease/epidemiology , Prospective Studies , Retrospective Studies , Acute-Phase Proteins
2.
Mov Disord ; 38(12): 2302-2307, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37675653

ABSTRACT

BACKGROUND: Metals have been postulated as environmental concerns in the etiology of Parkinson's disease (PD), but metal levels are typically measured after diagnosis, which might be subject to reverse causality. OBJECTIVE: The aim of this study was to investigate the association between prediagnostic blood metal levels and PD risk. METHODS: A case-control study was nested in a prospective European cohort, using erythrocyte samples collected before PD diagnosis. RESULTS: Most assessed metals were not associated with PD risk. Cadmium has a suggestive negative association with PD (odds ratio [95% confidence interval] for the highest quartile, 0.70 [0.42-1.17]), which diminished among never smokers. Among current smokers only, lead was associated with decreased PD risk (0.06 [0.01-0.35]), whereas arsenic showed associations toward an increased PD risk (1.85 [0.45-7.93]). CONCLUSIONS: We observe no strong evidence to support a role of metals in the development of PD. In particular, smoking may confound the association with tobacco-derived metals. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/diagnosis , Parkinson Disease/epidemiology , Parkinson Disease/etiology , Prospective Studies , Case-Control Studies , Causality
3.
Alzheimers Dement ; 19(8): 3350-3364, 2023 08.
Article in English | MEDLINE | ID: mdl-36790009

ABSTRACT

INTRODUCTION: This study employed an integrative system and causal inference approach to explore molecular signatures in blood and CSF, the amyloid/tau/neurodegeneration [AT(N)] framework, mild cognitive impairment (MCI) conversion to Alzheimer's disease (AD), and genetic risk for AD. METHODS: Using the European Medical Information Framework (EMIF)-AD cohort, we measured 696 proteins in cerebrospinal fluid (n = 371), 4001 proteins in plasma (n = 972), 611 metabolites in plasma (n = 696), and genotyped whole-blood (7,778,465 autosomal single nucleotide epolymorphisms, n = 936). We investigated associations: molecular modules to AT(N), module hubs with AD Polygenic Risk scores and APOE4 genotypes, molecular hubs to MCI conversion and probed for causality with AD using Mendelian randomization (MR). RESULTS: AT(N) framework associated with protein and lipid hubs. In plasma, Proprotein Convertase Subtilisin/Kexin Type 7 showed evidence for causal associations with AD. AD was causally associated with Reticulocalbin 2 and sphingomyelins, an association driven by the APOE isoform. DISCUSSION: This study reveals multi-omics networks associated with AT(N) and causal AD molecular candidates.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Amyloid beta-Peptides/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Multiomics , Biomarkers/cerebrospinal fluid , Cognitive Dysfunction/cerebrospinal fluid , Peptide Fragments/cerebrospinal fluid
4.
Neuroimage ; 245: 118707, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34742942

ABSTRACT

Dopamine (DA) integrity is suggested as a potential cause of individual differences in working memory (WM) performance among older adults. Still, the principal dopaminergic mechanisms giving rise to WM differences remain unspecified. Here, 61 single-nucleotide polymorphisms, located in or adjacent to various dopamine-related genes, were assessed for their links to WM performance in a sample of 1313 adults aged 61-80 years from the Berlin Aging Study II. Least Absolute Shrinkage and Selection Operator (LASSO) regression was conducted to estimate associations between polymorphisms and WM. Rs40184 in the DA transporter gene, SLC6A3, showed allelic group differences in WM, with T-carriers performing better than C homozygotes (p<0.01). This finding was replicated in an independent sample from the Cognition, Brain, and Aging study (COBRA; baseline: n = 181, ages: 64-68 years; 5-year follow up: n = 129). In COBRA, in vivo DA integrity was measured with 11C-raclopride and positron emission tomography. Notably, WM as well as in vivo DA integrity was higher for rs40184 T-carriers at baseline (p<0.05 for WM and caudate and hippocampal D2-receptor availability) and at the 5-year follow-up (p<0.05 for WM and hippocampal D2 availability). Our findings indicate that individual differences in DA transporter function contribute to differences in WM performance in old age, presumably by regulating DA availability.


Subject(s)
Aging/genetics , Hippocampus/diagnostic imaging , Memory, Short-Term/physiology , Positron-Emission Tomography , Receptors, Dopamine D2/genetics , Receptors, Dopamine D2/metabolism , Aged , Aged, 80 and over , Alleles , Female , Homozygote , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Raclopride
5.
Mov Disord ; 36(10): 2264-2272, 2021 10.
Article in English | MEDLINE | ID: mdl-34426982

ABSTRACT

BACKGROUND: Studies of Parkinson's disease (PD) and the association with age at menarche or menopause have reported inconsistent findings. Mendelian randomization (MR) may address measurement errors because of difficulties accurately reporting the age these life events occur. OBJECTIVE: We used MR to assess the association between age at menopause and age at menarche with PD risk. METHODS: We performed inverse variant-weighted (IVW) MR analysis using external genome-wide association study (GWAS) summary data from the United Kingdom biobank, and the effect estimates between genetic variants and PD among two population-based studies (Parkinson's disease in Denmark (PASIDA) study, Denmark, and Parkinson's Environment and Gene study [PEG], United States) that enrolled 1737 female and 2430 male subjects of European ancestry. We, then, replicated our findings for age at menopause using summary statistics from the PD consortium (19 773 women), followed by a meta-analysis combining all summary statistics. RESULTS: For each year increase in age at menopause, the risk for PD decreased (odds ration [OR], 0.84; 95% confidence interval [CI], 0.73-0.98; P = 0.03) among women in our study, whereas there was no association among men (OR, 0.98; 95% CI, 0.85-1.11; P = 0.71). A replication using summary statistics from the PD consortium estimated an OR of 0.94 (95% CI, 0.90-0.99; P = 0.01), and we calculated a meta-analytic OR of 0.93 (95% CI, 0.89-0.98; P = 0.003). There was no indication for an association between age at menarche and PD (OR, 0.75; 95% CI, 0.44-1.29; P = 0.29). CONCLUSIONS: A later age at menopause was associated with a decreased risk of PD in women, supporting the hypothesis that sex hormones or other factors related to late menopause may be neuroprotective in PD. © 2021 International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Female , Genome-Wide Association Study , Humans , Male , Mendelian Randomization Analysis , Menopause , Parkinson Disease/epidemiology , Parkinson Disease/genetics , Polymorphism, Single Nucleotide/genetics , Risk Factors
6.
Mov Disord ; 36(7): 1499-1510, 2021 07.
Article in English | MEDLINE | ID: mdl-34396589

ABSTRACT

This Movement Disorder Society Genetic mutation database Systematic Review focuses on monogenic atypical parkinsonism with mutations in the ATP13A2, DCTN1, DNAJC6, FBXO7, SYNJ1, and VPS13C genes. We screened 673 citations and extracted genotypic and phenotypic data for 140 patients (73 families) from 77 publications. In an exploratory fashion, we applied an automated classification procedure via an ensemble of bootstrap-aggregated ("bagged") decision trees to distinguish these 6 forms of monogenic atypical parkinsonism and found a high accuracy of 86.5% (95%CI, 86.3%-86.7%) based on the following 10 clinical variables: age at onset, spasticity and pyramidal signs, hypoventilation, decreased body weight, minimyoclonus, vertical gaze palsy, autonomic symptoms, other nonmotor symptoms, levodopa response quantification, and cognitive decline. Comparing monogenic atypical with monogenic typical parkinsonism using 2063 data sets from Movement Disorder Society Genetic mutation database on patients with SNCA, LRRK2, VPS35, Parkin, PINK1, and DJ-1 mutations, the age at onset was earlier in monogenic atypical parkinsonism (24 vs 40 years; P = 1.2647 × 10-12) and levodopa response less favorable than in patients with monogenic typical presentations (49% vs 93%). In addition, we compared monogenic to nonmonogenic atypical parkinsonism using data from 362 patients with progressive supranuclear gaze palsy, corticobasal degeneration, multiple system atrophy, or frontotemporal lobar degeneration. Although these conditions share many clinical features with the monogenic atypical forms, they can typically be distinguished based on their later median age at onset (64 years; IQR, 57-70 years). In conclusion, age at onset, presence of specific signs, and degree of levodopa response inform differential diagnostic considerations and genetic testing indications in atypical forms of parkinsonism. © 2021 International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Parkinsonian Disorders , Genotype , Humans , Levodopa , Parkinsonian Disorders/genetics , Phenotype
7.
Alzheimers Dement ; 17(9): 1452-1464, 2021 09.
Article in English | MEDLINE | ID: mdl-33792144

ABSTRACT

INTRODUCTION: This study sought to discover and replicate plasma proteomic biomarkers relating to Alzheimer's disease (AD) including both the "ATN" (amyloid/tau/neurodegeneration) diagnostic framework and clinical diagnosis. METHODS: Plasma proteins from 972 subjects (372 controls, 409 mild cognitive impairment [MCI], and 191 AD) were measured using both SOMAscan and targeted assays, including 4001 and 25 proteins, respectively. RESULTS: Protein co-expression network analysis of SOMAscan data revealed the relation between proteins and "N" varied across different neurodegeneration markers, indicating that the ATN variants are not interchangeable. Using hub proteins, age, and apolipoprotein E ε4 genotype discriminated AD from controls with an area under the curve (AUC) of 0.81 and MCI convertors from non-convertors with an AUC of 0.74. Targeted assays replicated the relation of four proteins with the ATN framework and clinical diagnosis. DISCUSSION: Our study suggests that blood proteins can predict the presence of AD pathology as measured in the ATN framework as well as clinical diagnosis.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides/blood , Biomarkers/blood , Blood Proteins , Proteomics , tau Proteins/blood , Aged , Alzheimer Disease/blood , Alzheimer Disease/pathology , Apolipoprotein E4/blood , Apolipoprotein E4/genetics , Cognitive Dysfunction/blood , Cognitive Dysfunction/pathology , Europe , Female , Humans , Male , Middle Aged
8.
Alzheimers Dement ; 17(10): 1628-1640, 2021 10.
Article in English | MEDLINE | ID: mdl-33991015

ABSTRACT

INTRODUCTION: Neurofilament light (NfL), chitinase-3-like protein 1 (YKL-40), and neurogranin (Ng) are biomarkers for Alzheimer's disease (AD) to monitor axonal damage, astroglial activation, and synaptic degeneration, respectively. METHODS: We performed genome-wide association studies (GWAS) using DNA and cerebrospinal fluid (CSF) samples from the EMIF-AD Multimodal Biomarker Discovery study for discovery, and the Alzheimer's Disease Neuroimaging Initiative study for validation analyses. GWAS were performed for all three CSF biomarkers using linear regression models adjusting for relevant covariates. RESULTS: We identify novel genome-wide significant associations between DNA variants in TMEM106B and CSF levels of NfL, and between CPOX and YKL-40. We confirm previous work suggesting that YKL-40 levels are associated with DNA variants in CHI3L1. DISCUSSION: Our study provides important new insights into the genetic architecture underlying interindividual variation in three AD-related CSF biomarkers. In particular, our data shed light on the sequence of events regarding the initiation and progression of neuropathological processes relevant in AD.


Subject(s)
Alzheimer Disease/genetics , Biomarkers/cerebrospinal fluid , Genome-Wide Association Study , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Aged , Chitinase-3-Like Protein 1/genetics , Female , Humans , Male , Neurofilament Proteins/genetics , Neurogranin/cerebrospinal fluid
9.
Ann Neurol ; 85(6): 835-851, 2019 06.
Article in English | MEDLINE | ID: mdl-30990912

ABSTRACT

OBJECTIVE: MicroRNA (miRNA)-mediated (dys)regulation of gene expression has been implicated in Parkinson's disease (PD), although results of miRNA expression studies remain inconclusive. We aimed to identify miRNAs that show consistent differential expression across all published expression studies in PD. METHODS: We performed a systematic literature search on miRNA expression studies in PD and extracted data from eligible publications. After stratification for brain, blood, and cerebrospinal fluid (CSF)-derived specimen, we performed meta-analyses across miRNAs assessed in three or more independent data sets. Meta-analyses were performed using effect-size- and p-value-based methods, as applicable. RESULTS: After screening 599 publications, we identified 47 data sets eligible for meta-analysis. On these, we performed 160 meta-analyses on miRNAs quantified in brain (n = 125), blood (n = 31), or CSF (n = 4). Twenty-one meta-analyses were performed using effect sizes. We identified 13 significantly (Bonferroni-adjusted α = 3.13 × 10-4 ) differentially expressed miRNAs in brain (n = 3) and blood (n = 10) with consistent effect directions across studies. The most compelling findings were with hsa-miR-132-3p (p = 6.37 × 10-5 ), hsa-miR-497-5p (p = 1.35 × 10-4 ), and hsa-miR-133b (p = 1.90 × 10-4 ) in brain and with hsa-miR-221-3p (p = 4.49 × 10-35 ), hsa-miR-214-3p (p = 2.00 × 10-34 ), and hsa-miR-29c-3p (p = 3.00 × 10-12 ) in blood. No significant signals were found in CSF. Analyses of genome-wide association study data for target genes of brain miRNAs showed significant association (α = 9.40 × 10-5 ) of genetic variants in nine loci. INTERPRETATION: We identified several miRNAs that showed highly significant differential expression in PD. Future studies may assess the possible role of the identified brain miRNAs in pathogenesis and disease progression as well as the potential of the top blood miRNAs as biomarkers for diagnosis, progression, or prediction of PD. ANN NEUROL 2019;85:835-851.


Subject(s)
Gene Expression Profiling/methods , Genome-Wide Association Study/methods , MicroRNAs/genetics , Parkinson Disease/genetics , Humans , MicroRNAs/biosynthesis , Parkinson Disease/diagnosis , Parkinson Disease/epidemiology
10.
Mol Cell Probes ; : 101471, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31978549

ABSTRACT

The Publisher regrets that this article is an accidental duplication of an article that has already been published, DOI of original article: https://doi.org/10.1016/j.mcp.2016.11.001. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.

11.
Mov Disord ; 34(1): 133-137, 2019 01.
Article in English | MEDLINE | ID: mdl-30537300

ABSTRACT

BACKGROUND: Although the genetic load is high in early-onset Parkinson's disease, thorough investigation of the genetic diagnostic yield has yet to be established. The objectives of this study were to assess variants in known genes for PD and other movement disorders and to find new candidates in 50 patients with early-onset PD. METHODS: We searched for variants either within genes listed by the International Parkinson and Movement Disorder Society Task Force on Genetic Nomenclature or rare homozygous variants in novel candidate genes. Further, exome data from 1148 European PD patients (International Parkinson Disease Genomics Consortium) were used for association testing. RESULTS: Seven patients (14%) carried pathogenic or likely pathogenic variants in Parkin, PLA2G6, or GBA. In addition, rare missense variants in DNAJC13:p.R1830C and in PPM1K:p.Y352C were detected. SPG7:p.A510V and PPM1K:p.Y352C revealed significant association with PD risk (P < 0.05). CONCLUSIONS: Although we identified pathogenic variants in 14% of our early-onset PD patients, the majority remain unexplained, and novel candidates need to be validated independently to better further evaluate their role in PD. © 2018 International Parkinson and Movement Disorder Society.


Subject(s)
Exome/genetics , Genetic Predisposition to Disease/genetics , Parkinson Disease/genetics , Adult , Age of Onset , Aged , Female , Group VI Phospholipases A2/genetics , Humans , Male , Middle Aged , Mutation/genetics , Mutation, Missense/genetics
12.
Mult Scler ; 25(5): 661-668, 2019 04.
Article in English | MEDLINE | ID: mdl-29532745

ABSTRACT

BACKGROUND: The course of multiple sclerosis (MS) shows substantial inter-individual variability. The underlying determinants of disease severity likely involve genetic and environmental factors. OBJECTIVE: The aim of this study was to assess the impact of APOE and HLA polymorphisms as well as smoking and body mass index (BMI) in the very early MS course. METHODS: Untreated patients ( n = 263) with a recent diagnosis of relapsing-remitting (RR) MS or clinically isolated syndrome underwent standardized magnetic resonance imaging (MRI). Genotyping was performed for single-nucleotide polymorphisms (SNPs) rs3135388 tagging the HLA-DRB1*15:01 haplotype and rs7412 (Ɛ2) and rs429358 (Ɛ4) in APOE. Linear regression analyses were applied based on the three SNPs, smoking and BMI as exposures and MRI surrogate markers for disease severity as outcomes. RESULTS: Current smoking was associated with reduced gray matter fraction, lower brain parenchymal fraction and increased cerebrospinal fluid fraction in comparison to non-smoking, whereas no effect was observed on white matter fraction. BMI and the SNPs in HLA and APOE were not associated with structural MRI parameters. CONCLUSIONS: Smoking may have an unfavorable effect on the gray matter fraction as a potential measure of MS severity already in early MS. These findings may impact patients' counseling upon initial diagnosis of MS.


Subject(s)
Apolipoproteins E/genetics , Brain/pathology , HLA-DRB1 Chains/genetics , Multiple Sclerosis/etiology , Smoking/adverse effects , Adolescent , Adult , Aged , Atrophy/genetics , Body Mass Index , Female , Genetic Predisposition to Disease/genetics , Humans , Male , Middle Aged , Multiple Sclerosis/genetics , Multiple Sclerosis/pathology , Polymorphism, Single Nucleotide/genetics , Young Adult
13.
BMC Cardiovasc Disord ; 19(1): 240, 2019 10 29.
Article in English | MEDLINE | ID: mdl-31664920

ABSTRACT

BACKGROUND: We characterised the phenotypic consequence of genetic variation at the PCSK9 locus and compared findings with recent trials of pharmacological inhibitors of PCSK9. METHODS: Published and individual participant level data (300,000+ participants) were combined to construct a weighted PCSK9 gene-centric score (GS). Seventeen randomized placebo controlled PCSK9 inhibitor trials were included, providing data on 79,578 participants. Results were scaled to a one mmol/L lower LDL-C concentration. RESULTS: The PCSK9 GS (comprising 4 SNPs) associations with plasma lipid and apolipoprotein levels were consistent in direction with treatment effects. The GS odds ratio (OR) for myocardial infarction (MI) was 0.53 (95% CI 0.42; 0.68), compared to a PCSK9 inhibitor effect of 0.90 (95% CI 0.86; 0.93). For ischemic stroke ORs were 0.84 (95% CI 0.57; 1.22) for the GS, compared to 0.85 (95% CI 0.78; 0.93) in the drug trials. ORs with type 2 diabetes mellitus (T2DM) were 1.29 (95% CI 1.11; 1.50) for the GS, as compared to 1.00 (95% CI 0.96; 1.04) for incident T2DM in PCSK9 inhibitor trials. No genetic associations were observed for cancer, heart failure, atrial fibrillation, chronic obstructive pulmonary disease, or Alzheimer's disease - outcomes for which large-scale trial data were unavailable. CONCLUSIONS: Genetic variation at the PCSK9 locus recapitulates the effects of therapeutic inhibition of PCSK9 on major blood lipid fractions and MI. While indicating an increased risk of T2DM, no other possible safety concerns were shown; although precision was moderate.


Subject(s)
Anticholesteremic Agents/therapeutic use , Cholesterol, LDL/blood , Dyslipidemias/drug therapy , Dyslipidemias/genetics , PCSK9 Inhibitors , Polymorphism, Single Nucleotide , Proprotein Convertase 9/genetics , Serine Proteinase Inhibitors/therapeutic use , Anticholesteremic Agents/adverse effects , Biomarkers/blood , Brain Ischemia/epidemiology , Brain Ischemia/prevention & control , Down-Regulation , Dyslipidemias/blood , Dyslipidemias/epidemiology , Genome-Wide Association Study , Humans , Myocardial Infarction/epidemiology , Myocardial Infarction/prevention & control , Randomized Controlled Trials as Topic , Risk Assessment , Risk Factors , Serine Proteinase Inhibitors/adverse effects , Stroke/epidemiology , Stroke/prevention & control , Treatment Outcome
14.
Alzheimers Dement ; 15(11): 1468-1477, 2019 11.
Article in English | MEDLINE | ID: mdl-31495604

ABSTRACT

INTRODUCTION: Several microRNAs (miRNAs) have been implicated in Alzheimer's disease pathogenesis, but the evidence from individual case-control studies remains inconclusive. METHODS: A systematic literature review was performed, followed by standardized multistage data extraction, quality control, and meta-analyses on eligible data for brain, blood, and cerebrospinal fluid specimens. Results were compared with miRNAs reported in the abstracts of eligible studies or recent qualitative reviews to assess novelty. RESULTS: Data from 147 independent data sets across 107 publications were quantitatively assessed in 461 meta-analyses. Twenty-five, five, and 32 miRNAs showed studywide significant differential expression (α < 1·08 × 10-4) in brain, cerebrospinal fluid, and blood-derived specimens, respectively, with 5 miRNAs showing differential expression in both brain and blood. Of these 57 miRNAs, 13 had not been reported in the abstracts of previous original or review articles. DISCUSSION: Our systematic assessment of differential miRNA expression is the first of its kind in Alzheimer's disease and highlights several miRNAs of potential relevance.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/physiopathology , Biomarkers/cerebrospinal fluid , MicroRNAs/genetics , Alzheimer Disease/blood , Alzheimer Disease/cerebrospinal fluid , Brain/pathology , Case-Control Studies , Epigenomics , Humans
16.
J Autoimmun ; 94: 83-89, 2018 11.
Article in English | MEDLINE | ID: mdl-30143393

ABSTRACT

Genome-wide association studies (GWAS) have identified a large number of genetic risk loci for autoimmune diseases. However, the functional variants underlying these disease associations remain largely unknown. There is evidence that microRNA-mediated regulation may play an important role in this context. Therefore, we assessed whether autoimmune disease loci unfold their effects via altering microRNA expression in relevant immune cells. To this end, we performed comprehensive data integration of many large and publicly available datasets to combine information on autoimmune disease risk loci with RNA-Seq-based microRNA expression data. Specifically, we carried out microRNA expression quantitative trait loci (eQTL) analyses across 115 GWAS regions associated with 12 autoimmune diseases using next-generation sequencing data of 345 lymphoblastoid cell lines. Statistical analyses included the application and extension of a recently proposed framework (joint likelihood mapping) to microRNA expression data and microRNA target gene enrichment analyses of relevant GWAS data. Overall, only a minority of autoimmune disease risk loci may exert their pathophysiologic effects by altering microRNA expression based on JLIM. However, detailed functional fine-mapping revealed two independent GWAS regions harboring autoimmune disease risk SNPs with significant effects on microRNA expression. These relate to SNPs associated with Crohn's disease (CD; rs102275) and rheumatoid arthritis (RA; rs968567), which affect the expression of miR-1908-5p (prs102275 = 1.44e-20, prs968567 = 2.54e-14). In addition, an independent CD risk SNP, rs3853824, was found to alter the expression of miR-3614-5p (p = 5.70e-7). To support these findings, we demonstrate that GWAS signals for RA and CD were enriched in genes predicted to be targeted by both microRNAs (all with p < 0.05). In summary, our study points towards a potential pathophysiological role of miR-1908-5p and miR-3614-5p in autoimmunity.


Subject(s)
Arthritis, Rheumatoid/genetics , Crohn Disease/genetics , Lymphocytes/immunology , MicroRNAs/genetics , Arthritis, Rheumatoid/diagnosis , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/pathology , Cell Line , Computational Biology/methods , Crohn Disease/diagnosis , Crohn Disease/immunology , Crohn Disease/pathology , Datasets as Topic , Gene Expression Profiling , Gene Expression Regulation , Genome-Wide Association Study , HapMap Project , Humans , Lymphocytes/pathology , MicroRNAs/immunology , Quantitative Trait Loci , Risk
17.
Ann Neurol ; 82(5): 655-664, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28981958

ABSTRACT

OBJECTIVE: Inflammatory response plays an important role in Parkinson disease (PD). Previous studies have reported an association between human leukocyte antigen (HLA)-DRB1 and the risk of PD. There has also been growing interest in investigating whether inflammation-related genes interact with environmental factors such as smoking to influence PD risk. We performed a pooled analysis of the interaction between HLA-DRB1 and smoking in PD in 3 population-based case-control studies from Denmark and France. METHODS: We included 2,056 cases and 2,723 controls from 3 PD studies (Denmark, France) that obtained information on smoking through interviews. Genotyping of the rs660895 polymorphism in the HLA-DRB1 region was based on saliva or blood DNA samples. To assess interactions, we used logistic regression with product terms between rs660895 and smoking. We performed random-effects meta-analysis of marginal associations and interactions. RESULTS: Both carrying rs660895-G (AG vs AA: odds ratio [OR] = 0.81; GG vs AA: OR = 0.56; p-trend = 0.003) and ever smoking (OR = 0.56, p < 0.001) were inversely associated with PD. A multiplicative interaction was observed between rs660895 and smoking using codominant, additive (interaction parameter = 1.37, p = 0.005), and dominant (interaction parameter = 1.54, p = 0.001) genetic models without any heterogeneity (I² = 0.0%); the inverse association of rs660895-(AG+GG) with PD seen in never smokers (OR = 0.64, p < 0.001) disappeared among ever smokers (OR = 1.00, p = 0.99). Similar interactions were observed when we investigated light and heavy smokers separately. INTERPRETATION: Our study provides the first evidence that smoking modifies the previously reported inverse association of rs660895-G with PD, and suggests that smoking and HLA-DRB1 are involved in common pathways, possibly related to neuroinflammation. Ann Neurol 2017;82:655-664.


Subject(s)
Genetic Predisposition to Disease/genetics , HLA-DRB1 Chains/genetics , Parkinson Disease/genetics , Smoking/genetics , Aged , Case-Control Studies , Female , Genotype , Humans , Male , Models, Genetic , Polymorphism, Single Nucleotide/genetics
18.
Mov Disord ; 33(12): 1857-1870, 2018 12.
Article in English | MEDLINE | ID: mdl-30357936

ABSTRACT

This comprehensive MDSGene review is devoted to the three autosomal-dominant PD forms: PARK-SNCA, PARK-LRRK2, and PARK-VPS35. It follows MDSGene's standardized data extraction protocol, screened a total of 2,972 citations, and is based on fully curated phenotypic and genotypic data on 937 patients with dominantly inherited PD attributed to 44 different mutations in SNCA, LRRK2, or VPS35. All of these data are also available in an easily searchable online database (www.mdsgene.org), which additionally provides descriptive summary statistics on phenotypic and genetic data. Despite the high degree of missingness of phenotypic features and unsystematic reporting of genotype data in the original literature, the present review recapitulates many of the previously described findings including later onset of disease (median age at onset: ∼49 years) compared to recessive forms of PD of an overall excellent treatment response. Our systematic review validates previous reports showing that SNCA mutation carriers have a younger age at onset compared to LRRK2 and VPS35 (P < 0.001). SNCA mutation carriers often have additional psychiatric symptoms, and although not exclusive to only LRRK2 or VPS35 mutation carriers, LRRK2 mutation carriers have a typical form of PD, and, lastly, VPS35 mutation carriers have good response to l-dopa. © 2018 International Parkinson and Movement Disorder Society.


Subject(s)
Genotype , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Phenotype , Vesicular Transport Proteins/genetics , alpha-Synuclein/genetics , Humans , Parkinson Disease/genetics
19.
Mov Disord ; 33(5): 730-741, 2018 05.
Article in English | MEDLINE | ID: mdl-29644727

ABSTRACT

This first comprehensive MDSGene review is devoted to the 3 autosomal recessive Parkinson's disease forms: PARK-Parkin, PARK-PINK1, and PARK-DJ1. It followed MDSGene's standardized data extraction protocol and screened a total of 3652 citations and is based on fully curated phenotypic and genotypic data on >1100 patients with recessively inherited PD because of 221 different disease-causing mutations in Parkin, PINK1, or DJ1. All these data are also available in an easily searchable online database (www.mdsgene.org), which also provides descriptive summary statistics on phenotypic and genetic data. Despite the high degree of missingness of phenotypic features and unsystematic reporting of genotype data in the original literature, the present review recapitulates many of the previously described findings including early onset (median age at onset of ∼30 years for carriers of at least 2 mutations in any of the 3 genes) of an overall clinically typical form of PD with excellent treatment response, dystonia and dyskinesia being relatively common and cognitive decline relatively uncommon. However, when comparing actual data with common expert knowledge in previously published reviews, we detected several discrepancies. We conclude that systematic reporting of phenotypes is a pressing need in light of increasingly available molecular genetic testing and the emergence of first gene-specific therapies entering clinical trials. © 2018 International Parkinson and Movement Disorder Society.


Subject(s)
Genetic Association Studies , Parkinson Disease/genetics , Protein Deglycase DJ-1/genetics , Protein Kinases/genetics , Ubiquitin-Protein Ligases/genetics , Animals , Humans , Parkinson Disease/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL