Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Analyst ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39105622

ABSTRACT

Lung cancer is one of the most commonly occurring malignant tumours worldwide. Although some reference methods such as X-ray, computed tomography or bronchoscope are widely used for clinical diagnosis of lung cancer, there is still a need to develop new methods for early detection of lung cancer. Especially needed are approaches that might be non-invasive and fast with high analytical precision and statistically reliable. Herein, we developed a swab "dip" test in saliva whereby swabs were analysed using attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy harnessed to principal component analysis-quadratic discriminant analysis (QDA) and variable selection techniques employing successive projections algorithm (SPA) and genetic algorithm (GA) for feature selection/extraction combined with QDA. A total of 1944 saliva samples (56 designated as lung-cancer positive and 1888 designed as controls) were obtained in a lung cancer-screening programme being undertaken in North-West England. GA-QDA models achieved, for the test set, sensitivity and specificity values of 100.0% and 99.1%, respectively. Three wavenumbers (1422 cm-1, 1546 cm-1 and 1578 cm-1) were identified using the GA-QDA model to distinguish between lung cancer and controls, including ring C-C stretching, CN adenine, Amide II [δ(NH), ν(CN)] and νs(COO-) (polysaccharides, pectin). These findings highlight the potential of using biospectroscopy associated with multivariate classification algorithms to discriminate between benign saliva samples and those with underlying lung cancer.

2.
Anal Bioanal Chem ; 414(27): 7897-7909, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36149475

ABSTRACT

The investigation and control of jet fuel contamination for private aircrafts has gained attention due to the softer monitoring in comparison to commercial aviation. The possible contamination with kerosene solvent (KS) makes this investigation more challenging, since it has physicochemical similarities with jet fuel. To help solve this problem, a chemometric methodology was applied in this research combining multivariate curve resolution with alternating least squares (MCR-ALS) and partial least squares (PLS) models coupled to near- and mid-infrared spectroscopies (MIR/NIR) in order to detect and quantify KS in blends with JET-A1 using 23 samples (5-60% v/v). Additionally, 98 samples were stored for 60 days, and principal component analysis, genetic algorithm, and successive projections algorithm were coupled to linear discriminant analysis (PCA-LDA, GA-LDA, and SPA-LDA) in order to classify the blends according to the bands assigned to oxidation products, such as phenols and carboxylic acids. GA-LDA and SPA-LDA models were accurate and reached 100% sensitivity and specificity. Physicochemical analysis was not able to detect the presence of KS in contaminated jet fuel samples, even in high concentrations. The use of MIR-NIR combined spectra improved the quantification results, thus decreasing the experimental error from 5.22% (using only NIR) to 1.64%. PLS regression quantified the content of KS with high accuracy (RMSEP < 1.64%, R2 > 0.995). The MCR-ALS model stood out for recovering the spectral profile of kerosene solvent by segregating it from jet fuel spectra. The development of models using chemometric tools contributed to a fast, low-cost, and efficient process for quality control that can be applied in the fuel industry.


Subject(s)
Kerosene , Phenols , Carboxylic Acids , Least-Squares Analysis , Solvents
3.
Molecules ; 27(7)2022 Apr 02.
Article in English | MEDLINE | ID: mdl-35408711

ABSTRACT

Biospectroscopy offers the ability to simultaneously identify key biochemical changes in tissue associated with a given pathological state to facilitate biomarker extraction and automated detection of key lesions. Herein, we evaluated the application of machine learning in conjunction with Raman spectroscopy as an innovative low-cost technique for the automated computational detection of disease activity in anti-neutrophil cytoplasmic autoantibody (ANCA)-associated glomerulonephritis (AAGN). Consecutive patients with active AAGN and those in disease remission were recruited from a single UK centre. In those with active disease, renal biopsy samples were collected together with a paired urine sample. Urine samples were collected immediately prior to biopsy. Amongst those in remission at the time of recruitment, archived renal tissue samples representative of biopsies taken during an active disease period were obtained. In total, twenty-eight tissue samples were included in the analysis. Following supervised classification according to recorded histological data, spectral data from unstained tissue samples were able to discriminate disease activity with a high degree of accuracy on blind predictive modelling: F-score 95% for >25% interstitial fibrosis and tubular atrophy (sensitivity 100%, specificity 90%, area under ROC 0.98), 100% for necrotising glomerular lesions (sensitivity 100%, specificity 100%, area under ROC 1) and 100% for interstitial infiltrate (sensitivity 100%, specificity 100%, area under ROC 0.97). Corresponding spectrochemical changes in paired urine samples were limited. Future larger study is required, inclusive of assigned variables according to novel non-invasive biomarkers as well as the application of forward feature extraction algorithms to predict clinical outcomes based on spectral features.


Subject(s)
Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis , Glomerulonephritis , Kidney Diseases , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/pathology , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/urine , Antibodies, Antineutrophil Cytoplasmic , Biomarkers/urine , Biopsy , Glomerulonephritis/diagnosis , Glomerulonephritis/pathology , Humans , Kidney/pathology , Kidney Diseases/pathology , Pilot Projects , Spectrum Analysis, Raman
4.
Bioinformatics ; 35(24): 5257-5263, 2019 12 15.
Article in English | MEDLINE | ID: mdl-31116391

ABSTRACT

MOTIVATION: Data splitting is a fundamental step for building classification models with spectral data, especially in biomedical applications. This approach is performed following pre-processing and prior to model construction, and consists of dividing the samples into at least training and test sets; herein, the training set is used for model construction and the test set for model validation. Some of the most-used methodologies for data splitting are the random selection (RS) and the Kennard-Stone (KS) algorithms; here, the former works based on a random splitting process and the latter is based on the calculation of the Euclidian distance between the samples. We propose an algorithm called the Morais-Lima-Martin (MLM) algorithm, as an alternative method to improve data splitting in classification models. MLM is a modification of KS algorithm by adding a random-mutation factor. RESULTS: RS, KS and MLM performance are compared in simulated and six real-world biospectroscopic applications using principal component analysis linear discriminant analysis (PCA-LDA). MLM generated a better predictive performance in comparison with RS and KS algorithms, in particular regarding sensitivity and specificity values. Classification is found to be more well-equilibrated using MLM. RS showed the poorest predictive response, followed by KS which showed good accuracy towards prediction, but relatively unbalanced sensitivities and specificities. These findings demonstrate the potential of this new MLM algorithm as a sample selection method for classification applications in comparison with other regular methods often applied in this type of data. AVAILABILITY AND IMPLEMENTATION: MLM algorithm is freely available for MATLAB at https://doi.org/10.6084/m9.figshare.7393517.v1.


Subject(s)
Algorithms , Mutation , Discriminant Analysis , Principal Component Analysis
5.
Anal Bioanal Chem ; 412(17): 4077-4087, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32333079

ABSTRACT

Raman spectroscopy is a fast and sensitive technique able to identify molecular changes in biological specimens. Herein, we report on three cases where Raman microspectroscopy was used to distinguish normal vs. oesophageal adenocarcinoma (OAC) (case 1) and Barrett's oesophagus vs. OAC (cases 2 and 3) in a non-destructive and highly accurate fashion. Normal and OAC tissues were discriminated using principal component analysis plus linear discriminant analysis (PCA-LDA) with 97% accuracy (94% sensitivity and 100% specificity) (case 1); Barrett's oesophagus vs. OAC tissues were discriminated with accuracies ranging from 98 to 100% (97-100% sensitivity and 100% specificity). Spectral markers responsible for class differentiation were obtained through the difference-between-mean spectrum for each group and the PCA loadings, where C-O-C skeletal mode in ß-glucose (900 cm-1), lipids (967 cm-1), phosphodioxy (1296 cm-1), deoxyribose (1456 cm-1) and collagen (1445, 1665 cm-1) were associated with normal and OAC tissue differences. Phenylalanine (1003 cm-1), proline/collagen (1066, 1445 cm-1), phospholipids (1130 cm-1), CH2 angular deformation (1295 cm-1), disaccharides (1462 cm-1) and proteins (amide I, 1672/5 cm-1) were associated with Barrett's oesophagus and OAC tissue differences. These findings show the potential of using Raman microspectroscopy imaging for fast and accurate diagnoses of oesophageal pathologies and establishing subtle molecular changes predisposing to adenocarcinoma in a clinical setting. Graphical abstract Graphical abstract demonstrating how oesophageal tissue is processed through Raman mapping analysis in order to detect spectral differences between stages of oesophageal transformation to adenocarcinoma.


Subject(s)
Adenocarcinoma/chemistry , Esophageal Neoplasms/chemistry , Esophagus/chemistry , Spectrum Analysis, Raman/methods , Adenocarcinoma/diagnosis , Adenocarcinoma/pathology , Aged , Discriminant Analysis , Esophageal Neoplasms/diagnosis , Esophageal Neoplasms/pathology , Esophagus/pathology , Female , Humans , Male , Principal Component Analysis
6.
Proc Natl Acad Sci U S A ; 114(38): E7929-E7938, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28874525

ABSTRACT

The progressive aging of the world's population makes a higher prevalence of neurodegenerative diseases inevitable. The necessity for an accurate, but at the same time, inexpensive and minimally invasive, diagnostic test is urgently required, not only to confirm the presence of the disease but also to discriminate between different types of dementia to provide the appropriate management and treatment. In this study, attenuated total reflection FTIR (ATR-FTIR) spectroscopy combined with chemometric techniques were used to analyze blood plasma samples from our cohort. Blood samples are easily collected by conventional venepuncture, permitting repeated measurements from the same individuals to monitor their progression throughout the years or evaluate any tested drugs. We included 549 individuals: 347 with various neurodegenerative diseases and 202 age-matched healthy individuals. Alzheimer's disease (AD; n = 164) was identified with 70% sensitivity and specificity, which after the incorporation of apolipoprotein ε4 genotype (APOE ε4) information, increased to 86% when individuals carried one or two alleles of ε4, and to 72% sensitivity and 77% specificity when individuals did not carry ε4 alleles. Early AD cases (n = 14) were identified with 80% sensitivity and 74% specificity. Segregation of AD from dementia with Lewy bodies (DLB; n = 34) was achieved with 90% sensitivity and specificity. Other neurodegenerative diseases, such as frontotemporal dementia (FTD; n = 30), Parkinson's disease (PD; n = 32), and progressive supranuclear palsy (PSP; n = 31), were included in our cohort for diagnostic purposes. Our method allows for both rapid and robust diagnosis of neurodegeneration and segregation between different dementias.


Subject(s)
Alzheimer Disease/blood , Alzheimer Disease/diagnosis , Apolipoprotein E4/blood , Adult , Aged , Aged, 80 and over , Alleles , Alzheimer Disease/genetics , Apolipoprotein E4/genetics , Female , Genotype , Humans , Male , Middle Aged , Sensitivity and Specificity , Spectroscopy, Fourier Transform Infrared/methods
7.
Br J Neurosurg ; 34(1): 40-45, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31642351

ABSTRACT

Introduction: In order for brain tumours to be successfully treated, maximal resection is beneficial. A method to detect infiltrative tumour edges intraoperatively, improving on current methods would be clinically useful. Vibrational spectroscopy offers the potential to provide a handheld, reagent-free method for tumour detection.Purpose: This study was designed to determine the ability of both Raman and Fourier-transform infrared (FTIR) spectroscopy towards differentiating between normal brain tissue, glioma or meningioma.Method: Unfixed brain tissue, which had previously only been frozen, comprising normal, glioma or meningioma tissue was placed onto calcium fluoride slides for analysis using Raman and attenuated total reflection (ATR)-FTIR spectroscopy. Matched haematoxylin and eosin slides were used to confirm tumour areas. Analyses were then conducted to generate a classification model.Results: This study demonstrates the ability of both Raman and ATR-FTIR spectroscopy to discriminate tumour from non-tumour fresh frozen brain tissue with 94% and 97.2% of cases correctly classified, with sensitivities of 98.8% and 100%, respectively. This decreases when spectroscopy is used to determine tumour type.Conclusion: The study demonstrates the ability of both Raman and ATR-FTIR spectroscopy to detect tumour tissue from non-tumour brain tissue with a high degree of accuracy. This demonstrates the ability of spectroscopy when targeted for a cancer diagnosis. However, further improvement would be required for a classification model to determine tumour type using this technology, in order to make this tool clinically viable.


Subject(s)
Brain Neoplasms/diagnosis , Brain Neoplasms/surgery , Neurosurgical Procedures/methods , Brain Neoplasms/classification , Diagnosis, Differential , Glioma/classification , Glioma/diagnosis , Humans , Meningioma/classification , Meningioma/diagnosis , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Tissue Preservation
8.
Analyst ; 144(24): 7447-7456, 2019 Dec 02.
Article in English | MEDLINE | ID: mdl-31696873

ABSTRACT

Diagnostic tools for the detection of early-stage oesophageal adenocarcinoma (OAC) are urgently needed. Our aim was to develop an accurate and inexpensive method using biofluids (plasma, serum, saliva or urine) for detecting oesophageal stages through to OAC (squamous; inflammatory; Barrett's; low-grade dysplasia; high-grade dysplasia; OAC) using attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy. ATR-FTIR spectroscopy coupled with variable selection methods, with successive projections or genetic algorithms (GA) combined with quadratic discriminant analysis (QDA) were employed to identify spectral biomarkers in biofluids for accurate diagnosis in a hospital setting of different stages through to OAC. Quality metrics (Accuracy, Sensitivity, Specificity and F-score) and biomarkers of disease were computed for each model. For plasma, GA-QDA models using 15 wavenumbers achieved 100% classification for four classes. For saliva, PCA-QDA models achieved 100% for the inflammatory stage and high-quality metrics for other classes. For serum, GA-QDA models achieved 100% performance for the OAC stage using 13 wavenumbers. For urine, PCA-QDA models achieved 100% performance for all classes. Selected wavenumbers using a Student's t-test (95% confidence interval) identified a differentiation of the stages on each biofluid: plasma (929 cm-1 to 1431 cm-1, associated with DNA/RNA and proteins); saliva (1000 cm-1 to 1150 cm-1, associated with DNA/RNA region); serum (1435 cm-1 to 1573 cm-1, associated with methyl groups of proteins and Amide II absorption); and, urine (1681 cm-1 to 1777 cm-1, associated with a high frequency vibration of an antiparallel ß-sheet of Amide I and stretching vibration of lipids). Our methods have demonstrated excellent efficacy for a rapid, cost-effective method of diagnosis for specific stages to OAC. These findings suggest a potential diagnostic tool for oesophageal cancer and could be translated into clinical practice.


Subject(s)
Adenocarcinoma/diagnosis , Blood Chemical Analysis/methods , Esophageal Neoplasms/diagnosis , Saliva/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Urine/chemistry , Adenocarcinoma/blood , Adenocarcinoma/urine , Algorithms , Discriminant Analysis , Esophageal Neoplasms/blood , Esophageal Neoplasms/urine , Humans , Neoplasm Staging , Principal Component Analysis
9.
Anal Bioanal Chem ; 411(11): 2301-2315, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30798340

ABSTRACT

Adulteration is a recurrent issue found in fuel screening. Commercial diesel contamination by kerosene is highly difficult to be detected via physicochemical methods applied in market. Although the contamination may affect diesel quality and storage stability, there is a lack of efficient methodologies for this evaluation. This paper assessed the use of IR spectroscopies (MIR and NIR) coupled with partial least squares (PLS) regression, support vector machine regression (SVR), and multivariate curve resolution with alternating least squares (MCR-ALS) calibration models for quantifying and identifying the presence of kerosene adulterant in commercial diesel. Moreover, principal component analysis (PCA), successive projections algorithm (SPA), and genetic algorithm (GA) tools coupled to linear discriminant analysis were used to observe the degradation behavior of 60 samples of pure and kerosene-added diesel fuel in different concentrations over 60 days of storage. Physicochemical properties of commercial diesel with 15% kerosene remained within conformity with Brazilian screening specifications; in addition, specified tests were not able to identify changes in the blends' performance over time. By using multivariate classification, the samples of pure and contaminated fuel were accurately classified by aging level into two well-defined groups, and some spectral features related to fuel degradation products were detected. PLS and SVR were accurate to quantify kerosene in the 2.5-40% (v/v) range, reaching RMSEC < 2.59% and RMSEP < 5.56%, with high correlation between real and predicted concentrations. MCR-ALS with correlation constraint was able to identify and recover the spectral profile of commercial diesel and kerosene adulterant from the IR spectra of contaminated blends.

10.
Analyst ; 143(13): 3156-3163, 2018 Jun 25.
Article in English | MEDLINE | ID: mdl-29878018

ABSTRACT

The current lack of an accurate, cost-effective and non-invasive test that would allow for screening and diagnosis of gynaecological carcinomas, such as endometrial and ovarian cancer, signals the necessity for alternative approaches. The potential of spectroscopic techniques in disease investigation and diagnosis has been previously demonstrated. Here, we used attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy to analyse urine samples from women with endometrial (n = 10) and ovarian cancer (n = 10), as well as from healthy individuals (n = 10). After applying multivariate analysis and classification algorithms, biomarkers of disease were pointed out and high levels of accuracy were achieved for both endometrial (95% sensitivity, 100% specificity; accuracy: 95%) and ovarian cancer (100% sensitivity, 96.3% specificity; accuracy 100%). The efficacy of this approach, in combination with the non-invasive method for urine collection, suggest a potential diagnostic tool for endometrial and ovarian cancers.


Subject(s)
Endometrial Neoplasms/diagnosis , Ovarian Neoplasms/diagnosis , Spectroscopy, Fourier Transform Infrared , Urinalysis/methods , Diagnostic Tests, Routine , Endometrial Neoplasms/urine , Female , Humans , Multivariate Analysis , Ovarian Neoplasms/urine , Sensitivity and Specificity
11.
Analyst ; 143(24): 5959-5964, 2018 Dec 03.
Article in English | MEDLINE | ID: mdl-30183030

ABSTRACT

Alzheimer's disease (AD) is currently under-diagnosed and is predicted to affect a great number of people in the future, due to the unrestrained aging of the population. An accurate diagnosis of AD at an early stage, prior to (severe) symptomatology, is of crucial importance as it would allow the subscription of effective palliative care and/or enrolment into specific clinical trials. Today, new analytical methods and research initiatives are being developed for the on-time diagnosis of this devastating disorder. During the last decade, spectroscopic techniques have shown great promise in the robust diagnosis of various pathologies, including neurodegenerative diseases and dementia. In the current study, blood plasma samples were analysed with near-infrared (NIR) spectroscopy as a minimally-invasive method to distinguish patients with AD (n = 111) from non-demented volunteers (n = 173). After applying multivariate classification models (principal component analysis with quadratic discriminant analysis - PCA-QDA), AD individuals were correctly identified with 92.8% accuracy, 87.5% sensitivity and 96.1% specificity. Our results show the potential of NIR spectroscopy as a simple and cost-effective diagnostic tool for AD. Robust and early diagnosis may be a first step towards tackling this disease by allowing timely intervention.


Subject(s)
Alzheimer Disease/diagnosis , Blood Chemical Analysis/methods , Spectroscopy, Near-Infrared/methods , Aged , Discriminant Analysis , Female , Humans , Male , Middle Aged , Principal Component Analysis
12.
Anal Bioanal Chem ; 410(18): 4541-4554, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29740671

ABSTRACT

The cyclical process of regeneration of the endometrium suggests that it may contain a cell population that can provide daughter cells with high proliferative potential. These cell lineages are clinically significant as they may represent clonogenic cells that may also be involved in tumourigenesis as well as endometriotic lesion development. To determine whether the putative stem cell location within human uterine tissue can be derived using vibrational spectroscopy techniques, normal endometrial tissue was interrogated by two spectroscopic techniques. Paraffin-embedded uterine tissues containing endometrial glands were sectioned to 10-µm-thick parallel tissue sections and were floated onto BaF2 slides for synchrotron radiation-based Fourier-transform infrared (SR-FTIR) microspectroscopy and globar focal plane array-based FTIR spectroscopy. Different spectral characteristics were identified depending on the location of the glands examined. The resulting infrared spectra were subjected to multivariate analysis to determine associated biophysical differences along the length of longitudinal and crosscut gland sections. Comparison of the epithelial cellular layer of transverse gland sections revealed alterations indicating the presence of putative transient-amplifying-like cells in the basalis and mitotic cells in the functionalis. SR-FTIR microspectroscopy of the base of the endometrial glands identified the location where putative stem cells may reside at the same time pointing towards νsPO2- in DNA and RNA, nucleic acids and amide I and II vibrations as major discriminating factors. This study supports the view that vibration spectroscopy technologies are a powerful adjunct to our understanding of the stem cell biology of endometrial tissue. Graphical abstract ᅟ.


Subject(s)
Endometrium/chemistry , Epithelial Cells/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Stem Cells/chemistry , Adult , Endometrium/cytology , Epithelial Cells/cytology , Equipment Design , Female , Humans , Multivariate Analysis , Spectroscopy, Fourier Transform Infrared/instrumentation , Stem Cells/cytology , Synchrotrons
13.
Molecules ; 23(2)2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29462854

ABSTRACT

The present study aimed to characterize the chemical composition of pyroligneous acid (PA) obtained from slow pyrolysis of the clone GG100 of Eucalyptus urophylla × Eucalyptus grandis. The efficiency of extraction of organic compounds by using different solvents-dichloromethane (DCM), diethyl ether (DE) and ethyl acetate (EA)-was evaluated. Wood discs were collected and carbonized at a heating rate of 1.25 °C/min until 450 °C. Pyrolysis gases were trapped and condensed, yielding a crude liquid product (CLP), which was refined to obtain pure PA. Then liquid-liquid extraction was carried out. Each extracted fraction was analyzed by GC-MS and the chemical compounds were identified. Experimental results showed that a larger number of chemical compounds could be extracted by using DCM and EA in comparison to diethyl ether DE. A total number of 93 compounds were identified, with phenolic compounds being the major group, followed by aldehydes and ketones, furans, pyrans and esters. Higher contents of guaiacol, phenol, cresols and furfural seem to explain the antibacterial and antifungal activity shown by PA, as reported previously in the literature. Experimental data indicated that the organic phase extracted from GG100 PA consists of a mixture of compounds similar to liquid smokes regularly used in the food industry.


Subject(s)
Eucalyptus/chemistry , Phenols/chemistry , Solvents/chemistry , Terpenes/chemistry , Acetates/chemistry , Aldehydes/chemistry , Esters/chemistry , Ether/chemistry , Furans/chemistry , Gas Chromatography-Mass Spectrometry , Ketones/chemistry , Methylene Chloride/chemistry , Phenols/isolation & purification , Pyrans/chemistry , Terpenes/isolation & purification , Wood/chemistry
14.
Trends Analyt Chem ; 97: 244-256, 2017 Dec.
Article in English | MEDLINE | ID: mdl-32287542

ABSTRACT

This review presents a retrospective of the studies carried out in the last 10 years (2006-2016) using spectroscopic methods as a research tool in the field of virology. Spectroscopic analyses are sensitive to variations in the biochemical composition of the sample, are non-destructive, fast and require the least sample preparation, making spectroscopic techniques tools of great interest in biological studies. Herein important chemometric algorithms that have been used in virological studies are also evidenced as a good alternative for analyzing the spectra, discrimination and classification of samples. Techniques that have not yet been used in the field of virology are also suggested. This methodology emerges as a new and promising field of research, and may be used in the near future as diagnosis tools for detecting diseases caused by viruses.

15.
Analyst ; 141(16): 4833-47, 2016 Aug 02.
Article in English | MEDLINE | ID: mdl-27433557

ABSTRACT

This review focuses on chemometric techniques applied in MIR-biospectroscopy for cancer diagnosis and analysis over the last ten years of research. Experimental applications of chemometrics coupled with biospectroscopy are discussed throughout this work. The advantages and drawbacks of this association are also highlighted. Chemometric algorithms are evidenced as a powerful tool for cancer diagnosis, classification, and in different matrices. In fact, it is shown how chemometrics can be implemented along all different types of cancer analyses.


Subject(s)
Neoplasms/diagnostic imaging , Spectrum Analysis , Humans , Infrared Rays
16.
Analyst ; 141(2): 585-94, 2016 Jan 21.
Article in English | MEDLINE | ID: mdl-26090781

ABSTRACT

Surgical management of ovarian tumours largely depends on their histo-pathological diagnosis. Currently, screening for ovarian malignancy with tumour markers in conjunction with radiological investigations has a low specificity for discriminating benign from malignant tumours. Also, pre-operative biopsy of ovarian masses increases the risk of intra-peritoneal dissemination of malignancy. Intra-operative frozen section, although sufficiently accurate in differentiating tumours according to their histological type, increases operation times. This results in increased surgery-related risks to the patient and additional burden to resource allocation. We set out to determine whether attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy, combined with chemometric analysis can be applied to discriminate between normal, borderline and malignant ovarian tumours and classify ovarian carcinoma subtypes according to the unique spectral signatures of their molecular composition. Formalin-fixed, paraffin-embedded ovarian tissue blocks were de-waxed, mounted on Low-E slides and desiccated before being analysed using ATR-FTIR spectroscopy. Chemometric analysis in the form of principal component analysis (PCA), successive projection algorithm (SPA) and genetic algorithm (GA), followed by linear discriminant analysis (LDA) of the obtained spectra revealed clear segregation between benign versus borderline versus malignant tumours as well as segregation between different histological tumour subtypes, when these approaches are used in combination. ATR-FTIR spectroscopy coupled with chemometric analysis has the potential to provide a novel diagnostic approach in the accurate diagnosis of ovarian tumours assisting surgical decision making to avoid under-treatment or over-treatment, with minimal impact to the patient.


Subject(s)
Fourier Analysis , Informatics/methods , Ovarian Neoplasms/classification , Ovarian Neoplasms/pathology , Ovary/cytology , Ovary/pathology , Spectroscopy, Fourier Transform Infrared/methods , Algorithms , Carbohydrate Metabolism , DNA/metabolism , Discriminant Analysis , Female , Humans , Lipid Metabolism , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/metabolism , Ovary/metabolism , Phosphates/metabolism , Principal Component Analysis , Proteins/metabolism , RNA/metabolism
17.
Anal Bioanal Chem ; 408(21): 5829-5841, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27311955

ABSTRACT

Cyanobacteria are a group of photosynthetic, nitrogen-fixing bacteria present in a wide variety of habitats such as freshwater, marine, and terrestrial ecosystems. In this work, the effects of As(III), a major toxic environmental pollutant, on the lipidomic profiles of two cyanobacteria species (Anabaena and Planktothrix agardhii) were assessed by means of a recently proposed method based on the concept of regions of interest (ROI) in liquid chromatography mass spectroscopy (LC-MS) together with multivariate curve resolution alternating least squares (MCR-ALS). Cyanobacteria were exposed to two concentrations of As(III) for a week, and lipid extracts were analyzed by ultrahigh-performance liquid chromatography/time-of-flight mass spectrometry in full scan mode. The data obtained were compressed by means of the ROI strategy, and the resulting LC-MS data sets were analyzed by the MCR-ALS method. Comparison of profile peak areas resolved by MCR-ALS in control and exposed samples allowed the discrimination of lipids whose concentrations were changed due to As(III) treatment. The tentative identification of these lipids revealed an important reduction of the levels of some galactolipids such as monogalactosyldiacylglycerol, the pigment chlorophyll a and its degradation product, pheophytin a, as well as carotene compounds such as 3-hydroxycarotene and carotene-3,3'-dione, all of these compounds being essential in the photosynthetic process. These results suggested that As(III) induced important changes in the composition of lipids of cyanobacteria, which were able to compromise their energy production processes. Graphical abstract Steps of the proposed LC-MS + MCR-ALS procedure.


Subject(s)
Arsenic/metabolism , Chlorophyll/metabolism , Cyanobacteria/drug effects , Environmental Pollutants/metabolism , Lipid Metabolism/drug effects , Anabaena/drug effects , Anabaena/metabolism , Anabaena/ultrastructure , Chromatography, High Pressure Liquid/methods , Cyanobacteria/metabolism , Cyanobacteria/ultrastructure , Least-Squares Analysis , Mass Spectrometry/methods , Multivariate Analysis
18.
Front Chem ; 12: 1412288, 2024.
Article in English | MEDLINE | ID: mdl-39050373

ABSTRACT

Candida auris and Candida haemulonii are two emerging opportunistic pathogens that have caused an increase in clinical cases in the recent years worldwide. The differentiation of some Candida species is highly laborious, difficult, costly, and time-consuming depending on the similarity between the species. Thus, this study aimed to develop a new, faster, and less expensive methodology for differentiating between C. auris and C. haemulonii based on near-infrared (NIR) spectroscopy and multivariate analysis. C. auris CBS10913 and C. haemulonii CH02 were separated in 15 plates per species, and three isolated colonies of each plate were selected for Fourier transform near-infrared (FT-NIR) analysis, totaling 90 spectra. Subsequently, principal component analysis (PCA) and variable selection algorithms, including the successive projections algorithm (SPA) and genetic algorithm (GA) coupled with linear discriminant analysis (LDA), were employed to discern distinctive patterns among the samples. The use of PCA, SPA, and GA algorithms associated with LDA achieved 100% sensitivity and specificity for the discriminations. The SPA-LDA and GA-LDA algorithms were essential in selecting the variables (infrared wavelengths) of most importance for the models, which could be attributed to binding of cell wall structures such as polysaccharides, peptides, proteins, or molecules resulting from yeasts' metabolism. These results show the high potential of combined FT-NIR and multivariate analysis techniques for the classification of Candida-like fungi, which can contribute to faster and more effective diagnosis and treatment of patients affected by these microorganisms.

19.
J Pers Med ; 13(8)2023 Aug 20.
Article in English | MEDLINE | ID: mdl-37623527

ABSTRACT

This study presents ATR-FTIR (attenuated total reflectance Fourier-transform infrared) spectral analysis of ex vivo oesophageal tissue including all classifications to oesophageal adenocarcinoma (OAC). The article adds further validation to previous human tissue studies identifying the potential for ATR-FTIR spectroscopy in differentiating among all classes of oesophageal transformation to OAC. Tissue spectral analysis used principal component analysis quadratic discriminant analysis (PCA-QDA), successive projection algorithm quadratic discriminant analysis (SPA-QDA), and genetic algorithm quadratic discriminant analysis (GA-QDA) algorithms for variable selection and classification. The variables selected by SPA-QDA and GA-QDA discriminated tissue samples from Barrett's oesophagus (BO) to OAC with 100% accuracy on the basis of unique spectral "fingerprints" of their biochemical composition. Accuracy test results including sensitivity and specificity were determined. The best results were obtained with PCA-QDA, where tissues ranging from normal to OAC were correctly classified with 90.9% overall accuracy (71.4-100% sensitivity and 89.5-100% specificity), including the discrimination between normal and inflammatory tissue, which failed in SPA-QDA and GA-QDA. All the models revealed excellent results for distinguishing among BO, low-grade dysplasia (LGD), high-grade dysplasia (HGD), and OAC tissues (100% sensitivities and specificities). This study highlights the need for further work identifying potential biochemical markers using ATR-FTIR in tissue that could be utilised as an adjunct to histopathological diagnosis for early detection of neoplastic changes in susceptible epithelium.

20.
Sci Rep ; 13(1): 9686, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37322087

ABSTRACT

Among several complications related to physiotherapy, osteosarcopenia is one of the most frequent in elderly patients. This condition is limiting and quite harmful to the patient's health by disabling several basic musculoskeletal activities. Currently, the test to identify this health condition is complex. In this study, we use mid-infrared spectroscopy combined with chemometric techniques to identify osteosarcopenia based on blood serum samples. The purpose of this study was to evaluate the mid-infrared spectroscopy power to detect osteosarcopenia in community-dwelling older women (n = 62, 30 from patients with osteosarcopenia and 32 healthy controls). Feature reduction and selection techniques were employed in conjunction with discriminant analysis, where a principal component analysis with support vector machines (PCA-SVM) model achieved 89% accuracy to distinguish the samples from patients with osteosarcopenia. This study shows the potential of using infrared spectroscopy of blood samples to identify osteosarcopenia in a simple, fast and objective way.


Subject(s)
Chemometrics , Support Vector Machine , Humans , Female , Aged , Spectrophotometry, Infrared , Principal Component Analysis , Discriminant Analysis
SELECTION OF CITATIONS
SEARCH DETAIL