Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Rheumatology (Oxford) ; 60(12): 5538-5548, 2021 12 01.
Article in English | MEDLINE | ID: mdl-33724344

ABSTRACT

OBJECTIVES: The rationale of autologous haematopoietic stem cell transplantation (AHSCT) for autoimmune diseases is that high-dose immunosuppression eradicates autoreactive T and B cells and the infused autologous haematopoietic stem cells promote reconstitution of a naïve and self-tolerant immune system. The aim of this study was to evaluate the reconstitution of different B cell subsets, both quantitatively and functionally, in SSc patients treated with AHSCT. METHODS: Peripheral blood was harvested from 22 SSc patients before transplantation and at 30, 60, 120, 180 and 360 days post-AHSCT. Immunophenotyping of B cell subsets, B cell cytokine production, signalling pathways and suppressive capacity of regulatory B cells (Bregs) were assessed by flow cytometry. RESULTS: Naïve B cell frequencies increased from 60 to 360 days post-AHSCT compared with pre-transplantation. Conversely, memory B cell frequencies decreased during the same period. Plasma cell frequencies transiently decreased at 60 days post-AHSCT. IL-10-producing Bregs CD19+CD24hiCD38hi and CD19+CD24hiCD27+ frequencies increased at 180 days. Moreover, the phosphorylation of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase increased in B cells reconstituted post-AHSCT. Notably, CD19+CD24hiCD38hi Bregs recovered their ability to suppress production of Th1 cytokines by CD4+ T cells at 360 days post-AHSCT. Finally, IL-6 and TGF-ß1-producing B cells decreased following AHSCT. CONCLUSION: Taken together, these results suggest improvements in immunoregulatory and anti-fibrotic mechanisms after AHSCT for SSc, which may contribute to re-establishment of self-tolerance and clinical remission.


Subject(s)
B-Lymphocytes, Regulatory/immunology , Hematopoietic Stem Cell Transplantation/methods , Memory B Cells/immunology , Scleroderma, Systemic/therapy , Adolescent , Adult , B-Lymphocytes, Regulatory/pathology , Cells, Cultured , Cytokines/metabolism , Female , Flow Cytometry , Follow-Up Studies , Humans , Immunophenotyping , Lymphocyte Count , Male , Memory B Cells/pathology , Middle Aged , Retrospective Studies , Scleroderma, Systemic/immunology , Scleroderma, Systemic/pathology , Time Factors , Transplantation, Autologous , Treatment Outcome , Young Adult
3.
Arthritis Res Ther ; 24(1): 95, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35488348

ABSTRACT

BACKGROUND: Autologous hematopoietic stem cell transplantation (AHSCT) treats patients with severe and progressive systemic sclerosis (SSc). However, basic mechanisms associated with the therapeutic efficacy of the procedure are not entirely understood. We aimed to evaluate how AHSCT affects skin fibrosis in SSc patients. METHODS: Clinical data, serum, and skin samples from 39 SSc patients who underwent AHSCT were retrospectively evaluated. Skin biopsies were analyzed by immunohistochemistry with anti-MMP-1, -MMP-2, -MMP-3, -MMP-9, -TIMP-1, -α-SMA, -TGF-ß, and -NF-κB p65 antibodies, and stained with hematoxylin and eosin and picrosirius red to assess skin thickness and collagen density, respectively. Serum samples were evaluated by Multiplex Assay for COL1A1, COL4A1, FGF-1, MMP-1, MMP-3, MMP-12, MMP-13, PDGF-AA, PDGF-BB, S100A9, and TIMP-1 levels and compared to healthy controls. RESULTS: After AHSCT, SSc patients showed clinical improvement in skin involvement, assessed by modified Rodnan's skin score (mRSS). Histologically, collagen density and skin thickness decreased after AHSCT. Immunohistochemical analyses showed increased expression of MMP-2, MMP-3, MMP-9, and TIMP-1 after AHSCT, whereas expression of NF-κB p65 decreased. At baseline, serum levels of COL4A1 and S100A9 were higher than in healthy controls. Serum levels of S100A9 normalized after AHCST in SSc patients compared to controls. Serum levels of PDGF-AA, PDGF-BB, TIMP-1, and MMP-1 decreased, while COL1A1 increased after AHSCT in SSc patients. No changes were detected in MMP-3, MMP-12, MMP-13, and FGF-1 serum levels after AHSCT. CONCLUSIONS: Our results suggest that the therapeutic effects of AHSCT on skin fibrosis are related to changes in molecules associated with connective tissue maintenance and inflammation in SSc.


Subject(s)
Hematopoietic Stem Cell Transplantation , Scleroderma, Systemic , Becaplermin , Connective Tissue/metabolism , Connective Tissue/pathology , Fibroblast Growth Factor 1 , Fibrosis , Hematopoietic Stem Cell Transplantation/methods , Humans , Matrix Metalloproteinase 1 , Matrix Metalloproteinase 12 , Matrix Metalloproteinase 13 , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 3 , Matrix Metalloproteinase 9/metabolism , NF-kappa B , Retrospective Studies , Scleroderma, Systemic/surgery , Tissue Inhibitor of Metalloproteinase-1
4.
Ther Adv Musculoskelet Dis ; 14: 1759720X221084845, 2022.
Article in English | MEDLINE | ID: mdl-35368373

ABSTRACT

Objective: Autologous hematopoietic stem cell transplantation (AHSCT) is a therapeutic option for patients with severe and progressive systemic sclerosis (SSc). Here, we aimed to investigate how AHSCT affects the vasculopathy of SSc patients. Methods: Twenty-seven SSc patients were retrospectively assessed, before and after AHSCT, for vessel morphology (nailfold capillaroscopy), skin expression of endothelial markers and serum levels of markers of inflammation, angiogenesis and endothelial activation. Skin biopsies were analyzed by immunohistochemistry (IHC) for expression of CD31, VE-cadherin, E-selectin, angiopoietin-1 (Ang1), angiopoietin-2 (Ang2), Tie-2, vascular endothelial growth factor A (VEGFA), vascular endothelial growth factor receptor 2 (VEGFR2), and endothelin-1 before and 12 months post-AHSCT. Serum samples from SSc patients were assessed before and up to 36 months after AHSCT for IL-6, von Willebrand factor (vWF), CXC Motif Chemokine Ligand 8 (CXCL8), Endothelin-1, epidermal growth factor (EGF), VEGFA, Pentraxin-3, Intercellular Adhesion Molecule 1 (ICAM-1), E-selectin, P-selectin, Thrombomodulin and IL-18 levels, and compared to healthy control samples. Results: On nailfold capillaroscopy, the number of capillaries increased at 1 year, while giant capillaries decreased at 6 months and 1 year after AHSCT. In the skin biopsies, expression of E-selectin notably decreased and Ang1 increased after AHSCT. At baseline, all vascular markers evaluated in the serum were significantly higher in SSc patients when compared to healthy controls, except for ICAM-1. When compared at different time points after AHSCT, Thrombomodulin, Pentraxin-3, vWF, and IL-18 levels remained generally stable at high levels until 36 months after AHSCT. Conclusion: Our results suggest that AHSCT contributes to improvements of the vessel morphology and dermal microvasculopathy, but does not normalize elevated levels of serum vascular markers in SSc patients. Additional vascular therapeutic approaches might contribute to more effectively treat the endothelial injury.

5.
Bone Marrow Transplant ; 53(10): 1319-1327, 2018 10.
Article in English | MEDLINE | ID: mdl-29670207

ABSTRACT

In the months that follow autologous hematopoietic stem cell transplantation (AHSCT), lymphopenia drives homeostatic proliferation, leading to oligoclonal expansion of residual cells. Here we evaluated how replicative senescent and exhausted cells associated with clinical outcomes of 25 systemic sclerosis (SSc) patients who underwent AHSCT. Patients were clinically monitored for skin (modified Rodnan's skin score, mRSS) and internal organ involvement and had blood samples collected before and semiannually, until 3 years post-AHSCT, for quantification of telomere length, CD8+CD28- and PD-1+ cells, and serum cytokines. Patients were retrospectively classified as responders (n = 19) and non-responders (n = 6), according to clinical outcomes. At 6 months post-AHSCT, mRSS decreased (P < 0.001) and the pulmonary function stabilized, when compared with pre-transplant measures. In parallel, inflammatory cytokine (IL-6 and IL-1ß) levels and telomere lengths decreased, whereas PD-1 expression on T-cells and the number of CD8+CD28- cells expressing CD57 and FoxP3 increased. After AHSCT, responder patients presented higher PD-1 expression on T- (P < 0.05) and B- (P < 0.01) cells, and lower TGF-ß, IL-6, G-CSF (P < 0.01), and IL-1ß, IL-17A, MIP-1α, and IL-12 (P < 0.05) levels than non-responders. Homeostatic proliferation after AHSCT results in transient telomere attrition and increased numbers of senescent and exhausted cells. High PD-1 expression is associated with better clinical outcomes after AHSCT.


Subject(s)
Cell Proliferation , Hematopoietic Stem Cell Transplantation , Programmed Cell Death 1 Receptor/blood , Scleroderma, Systemic , Telomere Homeostasis , Telomere/metabolism , Adult , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/pathology , Cytokines/blood , Female , Follow-Up Studies , Humans , Male , Middle Aged , Prospective Studies , Scleroderma, Systemic/blood , Scleroderma, Systemic/pathology , Scleroderma, Systemic/therapy , Transplantation, Autologous
6.
Blood Adv ; 2(2): 126-141, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29365321

ABSTRACT

To evaluate the immunological mechanisms associated with clinical outcomes after autologous hematopoietic stem cell transplantation (AHSCT), focusing on regulatory T- (Treg) and B- (Breg) cell immune reconstitution, 31 systemic sclerosis (SSc) patients underwent simultaneous clinical and immunological evaluations over 36-month posttransplantation follow-up. Patients were retrospectively grouped into responders (n = 25) and nonresponders (n = 6), according to clinical response after AHSCT. Thymic function and B-cell neogenesis were respectively assessed by quantification of DNA excision circles generated during T- and B-cell receptor rearrangements. At the 1-year post-AHSCT evaluation of the total set of transplanted SSc patients, thymic rebound led to renewal of the immune system, with higher T-cell receptor (TCR) diversity, positive correlation between recent thymic emigrant and Treg counts, and higher expression of CTLA-4 and GITR on Tregs, when compared with pretransplant levels. In parallel, increased bone marrow output of newly generated naive B-cells, starting at 6 months after AHSCT, renovated the B-cell populations in peripheral blood. At 6 and 12 months after AHSCT, Bregs increased and produced higher interleukin-10 levels than before transplant. When the nonresponder patients were evaluated separately, Treg and Breg counts did not increase after AHSCT, and high TCR repertoire overlap between pre- and posttransplant periods indicated maintenance of underlying disease mechanisms. These data suggest that clinical improvement of SSc patients is related to increased counts of newly generated Tregs and Bregs after AHSCT as a result of coordinated thymic and bone marrow rebound.


Subject(s)
Hematopoietic Stem Cell Transplantation/methods , Immune System/physiology , Scleroderma, Systemic/therapy , Adult , B-Lymphocytes/cytology , Bone Marrow/physiology , Female , Humans , Immune System/cytology , Lymphocyte Count , Male , Middle Aged , Prognosis , Retrospective Studies , Scleroderma, Systemic/immunology , Scleroderma, Systemic/mortality , T-Lymphocytes, Regulatory/cytology , Thymus Gland/cytology , Thymus Gland/physiology , Transplantation, Autologous/methods , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL