Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Proc Natl Acad Sci U S A ; 108(31): E392-401, 2011 Aug 02.
Article in English | MEDLINE | ID: mdl-21712437

ABSTRACT

The protein machinery of neurotransmitter exocytosis requires efficient orchestration in space and time, for speed and precision of neurotransmission and also for synaptic ontogeny and plasticity. However, its spatial organization in situ is virtually unknown. Aczonin/Piccolo is a putative organizer protein of mammalian active zones. We determined by immunogold electron microscopy (EM) (i) the spatial arrangement (i.e., topology) of 11 segments of the Aczonin polypeptide in situ, and correlated it to (ii) the positioning of Aczonin-interacting domains of Bassoon, CAST/ELKS, Munc13, and RIM and (iii) the ultrastructurally defined presynaptic macromolecular aggregates known as dense projections and synaptic ribbons. At conventional synapses, Aczonin assumes a compact molecular topology within a layer 35 to 80 nm parallel to the plasma membrane (PM), with a "trunk" sitting on the dense projection top and a C-terminal "arm" extending down toward the PM and sideward to the dense projection periphery. At ribbon synapses, Aczonin occupies the whole ribbon area. Bassoon colocalizes with Aczonin at conventional synapses but not at ribbon synapses. At both conventional and ribbon synapses, CAST, Munc13, and RIM are segregated from Aczonin, closer to the PM, and Aczonin is positioned such that it may control the access of neurotransmitter vesicles to the fusion site.


Subject(s)
Cytoskeletal Proteins/metabolism , Neuropeptides/metabolism , Neurotransmitter Agents/metabolism , Synapses/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Binding Sites , Cell Membrane/metabolism , Cell Membrane/ultrastructure , GTP-Binding Proteins/metabolism , Immunoblotting , Microscopy, Immunoelectron , Multiprotein Complexes/metabolism , Multiprotein Complexes/ultrastructure , Nerve Tissue Proteins/metabolism , Protein Binding , Rats , Rats, Sprague-Dawley , Synapses/ultrastructure
2.
J Neurosci ; 29(40): 12584-96, 2009 Oct 07.
Article in English | MEDLINE | ID: mdl-19812333

ABSTRACT

Multidomain scaffolding proteins organize the molecular machinery of neurotransmitter vesicle dynamics during synaptogenesis and synaptic activity. We find that domains of five active zone proteins converge on an interaction node that centers on the N-terminal region of Munc13-1 and includes the zinc-finger domain of Rim1, the C-terminal region of Bassoon, a segment of CAST1/ELKS2, and the third coiled-coil domain (CC3) of either Aczonin/Piccolo or Bassoon. This multidomain complex may constitute a center for the physical and functional integration of the protein machinery at the active zone. An additional connection between Aczonin and Bassoon is mediated by the second coiled-coil domain of Aczonin. Recombinant Aczonin-CC3, expressed in cultured neurons as a green fluorescent protein fusion protein, is targeted to synapses and suppresses vesicle turnover, suggesting involvements in synaptic assembly as well as activity. Our findings show that Aczonin, Bassoon, CAST1, Munc13, and Rim are closely and multiply interconnected, they indicate that Aczonin-CC3 can actively participate in neurotransmitter vesicle dynamics, and they highlight the N-terminal region of Munc13-1 as a hub of protein interactions by adding three new binding partners to its mechanistic potential in the control of synaptic vesicle priming.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Brain/metabolism , Cytoskeletal Proteins/metabolism , Nerve Tissue Proteins/metabolism , Neuropeptides/metabolism , Animals , Base Sequence , Mice , Molecular Sequence Data , Neurotransmitter Agents/metabolism , Synapses/metabolism
3.
J Neurosci Res ; 88(11): 2338-49, 2010 Aug 15.
Article in English | MEDLINE | ID: mdl-20623533

ABSTRACT

During embryonic development of the peripheral nervous system (PNS), the adhesion molecule neuronal cadherin (N-cadherin) is expressed by Schwann cell precursors and associated with axonal growth cones. N-cadherin expression levels decrease as precursors differentiate into Schwann cells. In this study, we investigated the distribution of N-cadherin in the developing postnatal and adult rat peripheral nervous system. N-cadherin was found primarily in ensheathing glia throughout development, concentrated at neuron-glial or glial-glial contacts of the sciatic nerve, dorsal root ganglia (DRG), and myenteric plexi. In the sciatic nerve, N-cadherin decreases with age and progress of myelination. In adult animals, N-cadherin was found exclusively in nonmyelinating Schwann cells. The distribution of N-cadherin in developing E17 DRG primary cultures is similar to what was observed in vivo. Functional studies of N-cadherin in these cultures, using the antagonist peptide INPISGQ, show a disruption of the attachment between Schwann cells, but no interference in the initial or long-term contact between Schwann cells and axons. We suggest that N-cadherin acts primarily in the adhesion between glial cells during postnatal development. It may form adherents/junctions between nonmyelinating glia, which contribute to the stable tubular structure encapsulating thin caliber axons and thus stabilize the nerve structure as a whole.


Subject(s)
Cadherins/metabolism , Cadherins/physiology , Schwann Cells/metabolism , Schwann Cells/physiology , Aging/physiology , Animals , Blotting, Western , Cadherins/antagonists & inhibitors , Cell Adhesion/physiology , Cells, Cultured , Female , Ganglia, Spinal/cytology , Ganglia, Spinal/metabolism , Ganglia, Spinal/physiology , Image Processing, Computer-Assisted , Immunohistochemistry , Microscopy, Immunoelectron , Myenteric Plexus/cytology , Myenteric Plexus/metabolism , Neuroglia/physiology , Peripheral Nervous System/growth & development , Peripheral Nervous System/physiology , Pregnancy , Rats , Stellate Ganglion/cytology , Stellate Ganglion/physiology
4.
Biol Psychiatry ; 77(6): 526-36, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25176177

ABSTRACT

BACKGROUND: The neuromodulatory transmitters, biogenic amines, have profound effects on multiple neurons and are essential for normal behavior and mental health. Here we report that the orphan transporter SLC10A4, which in the brain is exclusively expressed in presynaptic vesicles of monoaminergic and cholinergic neurons, has a regulatory role in dopamine homeostasis. METHODS: We used a combination of molecular and behavioral analyses, pharmacology, and in vivo amperometry to assess the role of SLC10A4 in dopamine-regulated behaviors. RESULTS: We show that SLC10A4 is localized on the same synaptic vesicles as either vesicular acetylcholine transporter or vesicular monoamine transporter 2. We did not find evidence for direct transport of dopamine by SLC10A4; however, synaptic vesicle preparations lacking SLC10A4 showed decreased dopamine vesicular uptake efficiency. Furthermore, we observed an increased acidification in synaptic vesicles isolated from mice overexpressing SLC10A4. Loss of SLC10A4 in mice resulted in reduced striatal serotonin, noradrenaline, and dopamine concentrations and a significantly higher dopamine turnover ratio. Absence of SLC10A4 led to slower dopamine clearance rates in vivo, which resulted in accumulation of extracellular dopamine. Finally, whereas SLC10A4 null mutant mice were slightly hypoactive, they displayed hypersensitivity to administration of amphetamine and tranylcypromine. CONCLUSIONS: Our results demonstrate that SLC10A4 is a vesicular monoaminergic and cholinergic associated transporter that is important for dopamine homeostasis and neuromodulation in vivo. The discovery of SLC10A4 and its role in dopaminergic signaling reveals a novel mechanism for neuromodulation and represents an unexplored target for the treatment of neurological and mental disorders.


Subject(s)
Dopamine/metabolism , Homeostasis/physiology , Nerve Tissue Proteins/metabolism , Vesicular Transport Proteins/metabolism , Amphetamine/pharmacology , Animals , Brain/drug effects , Brain/metabolism , Dopamine Uptake Inhibitors/pharmacology , Mice, Transgenic , Monoamine Oxidase Inhibitors/pharmacology , Motor Activity/drug effects , Motor Activity/physiology , Nerve Tissue Proteins/genetics , Norepinephrine/metabolism , RNA, Messenger/metabolism , Serotonin/metabolism , Spinal Cord/drug effects , Spinal Cord/metabolism , Symporters , Synaptic Vesicles/metabolism , Tranylcypromine/pharmacology , Vesicular Acetylcholine Transport Proteins/metabolism , Vesicular Monoamine Transport Proteins/metabolism , Vesicular Transport Proteins/genetics
5.
Planta ; 227(5): 1101-14, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18193275

ABSTRACT

We provide a 3D ultrastructural analysis of the membrane systems involved in tip growth of rhizoids of the green alga Chara. Electron tomography of cells preserved by high-pressure freeze fixation has enabled us to distinguish six different types of vesicles in the apical cytoplasm where the tip growth machinery is accommodated. The vesicle types are: dark and light secretory vesicles, plasma membrane-associated clathrin-coated vesicles (PM-CCVs), Spitzenkoerper-associated clathrin-coated vesicles (Sp-CCVs) and coated vesicles (Sp-CVs), and microvesicles. Each of these vesicle types exhibits a distinct distribution pattern, which provides insights into their possible function for tip growth. The PM-CCVs are confined to the cytoplasm adjacent to the apical plasma membrane. Within this space they are arranged in clusters often surrounding tubular plasma membrane invaginations from which CCVs bud. This suggests that endocytosis and membrane recycling are locally confined to specialized apical endocytosis sites. In contrast, exocytosis of secretory vesicles occurs over the entire membrane area of the apical dome. The Sp-CCVs and the Sp-CVs are associated with the aggregate of endoplasmic reticulum membranes in the center of the growth-organizing Spitzenkoerper complex. Here, Sp-CCVs are seen to bud from undefined tubular membranes. The subapical region of rhizoids contains a vacuolar reticulum that extends along the longitudinal cell axis and consists of large, vesicle-like segments interconnected by thin tubular domains. The tubular domains are encompassed by thin filamentous structures resembling dynamin spirals which could drive peristaltic movements of the vacuolar reticulum similar to those observed in fungal hyphae. The vacuolar reticulum appears to serve as a lytic compartment into which multivesicular bodies deliver their internal vesicles for molecular recycling and degradation.


Subject(s)
Chara/metabolism , Tomography/methods , Vacuoles/metabolism , Chara/ultrastructure , Clathrin-Coated Vesicles/metabolism , Clathrin-Coated Vesicles/ultrastructure , Microscopy, Electron, Transmission , Tomography/instrumentation , Vacuoles/ultrastructure
6.
Plant Physiol ; 139(2): 1030-40, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16183834

ABSTRACT

Early processes underlying plant gravity sensing were investigated in rhizoids of Chara globularis under microgravity conditions provided by parabolic flights of the A300-Zero-G aircraft and of sounding rockets. By applying centrifugal forces during the microgravity phases of sounding rocket flights, lateral accelerations of 0.14 g, but not of 0.05 g, resulted in a displacement of statoliths. Settling of statoliths onto the subapical plasma membrane initiated the gravitropic response. Since actin controls the positioning of statoliths and restricts sedimentation of statoliths in these cells, it can be calculated that lateral actomyosin forces in a range of 2 x 10(-14) n act on statoliths to keep them in place. These forces represent the threshold value that has to be exceeded by any lateral acceleration stimulus for statolith sedimentation and gravisensing to occur. When rhizoids were gravistimulated during parabolic plane flights, the curvature angles of the flight samples, whose sedimented statoliths became weightless for 22 s during the 31 microgravity phases, were not different from those of in-flight 1g controls. However, in ground control experiments, curvature responses were drastically reduced when the contact of statoliths with the plasma membrane was intermittently interrupted by inverting gravistimulated cells for less than 10 s. Increasing the weight of sedimented statoliths by lateral centrifugation did not enhance the gravitropic response. These results provide evidence that graviperception in characean rhizoids requires contact of statoliths with membrane-bound receptor molecules rather than pressure or tension exerted by the weight of statoliths.


Subject(s)
Chara/physiology , Gravity Sensing/physiology , Acceleration , Actins/physiology , Aircraft , Cell Membrane/physiology , Gravitropism/physiology , Time Factors , Weightlessness
7.
Planta ; 219(3): 379-88, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15060825

ABSTRACT

Polar organization and gravity-oriented, polarized growth of characean rhizoids are dependent on the actin cytoskeleton. In this report, we demonstrate that the prominent center of the Spitzenkörper serves as the apical actin polymerization site in the extending tip. After cytochalasin D-induced disruption of the actin cytoskeleton, the regeneration of actin microfilaments (MFs) starts with the reappearance of a flat, brightly fluorescing actin array in the outermost tip. The actin array rounds up, produces actin MFs that radiate in all directions and is then relocated into its original central position in the center of the Spitzenkörper. The emerging actin MFs rearrange and cross-link to form the delicate, subapical meshwork, which then controls the statolith positioning, re-establishes the tip-high calcium gradient and mediates the reorganization of the Spitzenkörper with its central ER aggregate and the accumulation of secretory vesicles. Tip growth and gravitropic sensing, which includes control of statolith positioning and gravity-induced sedimentation, are not resumed until the original polar actin organization is completely restored. Immunolocalization of the actin-binding proteins, actin-depolymerizing factor (ADF) and profilin, which both accumulate in the center of the Spitzenkörper, indicates high actin turnover and gives additional support for the actin-polymerizing function of this central, apical area. Association of villin immunofluorescence with two populations of thick undulating actin cables with uniform polarity underlying rotational cytoplasmic streaming in the basal region suggests that villin is the major actin-bundling protein in rhizoids. Our results provide evidence that the precise coordination of apical actin polymerization and dynamic remodeling of actin MFs by actin-binding proteins play a fundamental role in cell polarization, gravity sensing and gravity-oriented polarized growth of characean rhizoids.


Subject(s)
Actins/metabolism , Chara/metabolism , Plant Proteins/metabolism , Actin Depolymerizing Factors , Actins/chemistry , Carrier Proteins/metabolism , Chara/drug effects , Chara/growth & development , Contractile Proteins/metabolism , Cytochalasin D/pharmacology , Destrin , Fluorescent Antibody Technique , Gravitation , Microfilament Proteins/metabolism , Microscopy, Electron , Plant Proteins/chemistry , Profilins
SELECTION OF CITATIONS
SEARCH DETAIL