Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Mol Cell ; 55(1): 123-37, 2014 Jul 03.
Article in English | MEDLINE | ID: mdl-24910095

ABSTRACT

NCOA4 is a transcriptional coactivator of nuclear hormone receptors that undergoes gene rearrangement in human cancer. By combining studies in Xenopus laevis egg extracts and mouse embryonic fibroblasts (MEFs), we show here that NCOA4 is a minichromosome maintenance 7 (MCM7)-interacting protein that is able to control DNA replication. Depletion-reconstitution experiments in Xenopus laevis egg extracts indicate that NCOA4 acts as an inhibitor of DNA replication origin activation by regulating CMG (CDC45/MCM2-7/GINS) helicase. NCOA4(-/-) MEFs display unscheduled origin activation and reduced interorigin distance; this results in replication stress, as shown by the presence of fork stalling, reduction of fork speed, and premature senescence. Together, our findings indicate that NCOA4 acts as a regulator of DNA replication origins that helps prevent inappropriate DNA synthesis and replication stress.


Subject(s)
DNA Replication , Nuclear Receptor Coactivators/physiology , Replication Origin , Animals , Cells, Cultured , Cellular Senescence , HeLa Cells , Humans , Mice , Minichromosome Maintenance Complex Component 7/metabolism , Nuclear Receptor Coactivators/metabolism , Two-Hybrid System Techniques , Xenopus laevis
4.
Front Immunol ; 12: 695051, 2021.
Article in English | MEDLINE | ID: mdl-34413848

ABSTRACT

Adverse genetic risk acute myeloid leukemia (AML) includes a wide range of clinical-pathological entities with extremely poor outcomes; thus, novel therapeutic approaches are needed. Promising results achieved by engineered chimeric antigen receptor (CAR) T cells in other blood neoplasms have paved the way for the development of immune cell-based therapies for adverse genetic risk AML. Among these, adoptive cell immunotherapies with single/multiple CAR-T cells, CAR-natural killer (NK) cells, cytokine-induced killer cells (CIK), and NK cells are subjects of ongoing clinical trials. On the other hand, allogeneic hematopoietic stem cell transplantation (allo-HSCT) still represents the only curative option for adverse genetic risk AML patients. Unfortunately, high relapse rates (above 50%) and associated dismal outcomes (reported survival ~10-20%) even question the role of current allo-HSCT protocols and emphasize the urgency of adopting novel effective transplant strategies. We have recently demonstrated that haploidentical allo-HSCT combined with regulatory and conventional T cells adoptive immunotherapy (Treg-Tcon haplo-HSCT) is able to overcome disease-intrinsic chemoresistance, prevent leukemia-relapse, and improve survival of adverse genetic risk AML patients. In this Perspective, we briefly review the recent advancements with immune cell-based strategies against adverse genetic risk AML and discuss how such approaches could favorably impact on patients' outcomes.


Subject(s)
Cytokine-Induced Killer Cells/transplantation , Immunotherapy, Adoptive , Killer Cells, Natural/transplantation , Leukemia, Myeloid, Acute/therapy , T-Lymphocytes/transplantation , Biomarkers, Tumor/genetics , Cytokine-Induced Killer Cells/immunology , Diffusion of Innovation , Genetic Predisposition to Disease , Humans , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/mortality , Killer Cells, Natural/immunology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/mortality , Mutation , Phenotype , Receptors, Chimeric Antigen/genetics , Risk Assessment , Risk Factors , T-Lymphocytes/immunology , Time Factors , Treatment Outcome
5.
Blood Cancer Discov ; 2(3): 216-225, 2021 05.
Article in English | MEDLINE | ID: mdl-34164626

ABSTRACT

Clonal hematopoiesis predisposes to hematological malignancies. However, clonal hematopoiesis is understudied in classical Hodgkin lymphoma (cHL), a mature B-cell neoplasm exhibiting the most abundant microenvironment. We analyzed clonal hematopoiesis in 40 cHL cases by sequencing microdissected tumor cells and matched normal cells from blood and/or lymph nodes. Five patients had blood and/or tissue clonal hematopoiesis. In three of five patients (all failing first-line therapy), clonal hematopoiesis spread through the tissue microenvironment extensively, and featured mutant DNMT3AR882H , KRASG60D and DNMT3AR882H +TET2Q1274 * in 33%, 92% and 60% of non-neoplastic cells, respectively. In the latter case, DNMT3A/TET2-mutant clonal hematopoiesis seeded the neoplastic clone, which was infected by the Epstein-Barr virus and showed almost no other somatic mutations exome-wide. In the former case, DNMT3A-mutant clonal hematopoiesis did not originate the neoplastic clone despite dominating the blood and B-cell lineage (~94% leukocytes; ~96% mature blood B cells), yet led to NPM1-mutated acute myeloid leukemia 6 years after therapy for cHL. Our results expand to cHL the spectrum of hematologic malignancies associated with clonal hematopoiesis.


Subject(s)
Epstein-Barr Virus Infections , Hodgkin Disease , Clonal Hematopoiesis/genetics , Herpesvirus 4, Human , Hodgkin Disease/genetics , Humans , Mutation , Tumor Microenvironment
6.
Blood Adv ; 5(5): 1199-1208, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33646302

ABSTRACT

Allogeneic hematopoietic stem cell transplantation (HSCT) is the most effective treatment in eradicating high-risk acute myeloid leukemia (AML). Here, we present data from a novel HLA-haploidentical HSCT protocol that addressed the 2 remaining major unmet medical needs: leukemia relapse and chronic graft-versus-host disease (cGVHD). Fifty AML patients were enrolled in the study. The conditioning regimen included total body irradiation for patients up to age 50 years and total marrow/lymphoid irradiation for patients age 51 to 65 years. Irradiation was followed by thiotepa, fludarabine, and cyclophosphamide. Patients received an infusion of 2 × 106/kg donor regulatory T cells on day -4 followed by 1 × 106/kg donor conventional T cells on day -1 and a mean of 10.7 × 106 ± 3.4 × 106/kgpurified CD34+ hematopoietic progenitor cells on day 0. No pharmacological GVHD prophylaxis was administered posttransplantation. Patients achieved full donor-type engraftment. Fifteen patients developed grade ≥2 acute GVHD (aGVHD). Twelve of the 15 patients with aGVHD were alive and no longer receiving immunosuppressive therapy. Moderate/severe cGVHD occurred in only 1 patient. Nonrelapse mortality occurred in 10 patients. Only 2 patients relapsed. Consequently, at a median follow-up of 29 months, the probability of moderate/severe cGVHD/relapse-free survival was 75% (95% confidence interval, 71%-78%). A novel HLA-haploidentical HSCT strategy that combines an age-adapted myeloablative conditioning regimen with regulatory and conventional T-cell adoptive immunotherapy resulted in an unprecedented cGVHD/relapse-free survival rate in 50 AML patients with a median age of 53 years. This trial was registered with the Umbria Region Institutional Review Board Public Registry as identification code 02/14 and public registry #2384/14 and at www.clinicaltrials.gov as #NCT03977103.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Aged , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control , Humans , Leukemia, Myeloid, Acute/therapy , Middle Aged , Transplantation Conditioning , Whole-Body Irradiation
SELECTION OF CITATIONS
SEARCH DETAIL