Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 332
Filter
Add more filters

Publication year range
1.
Am J Hum Genet ; 111(9): 1953-1969, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39116879

ABSTRACT

While it is widely thought that de novo mutations (DNMs) occur randomly, we previously showed that some DNMs are enriched because they are positively selected in the testes of aging men. These "selfish" mutations cause disorders with a shared presentation of features, including exclusive paternal origin, significant increase of the father's age, and high apparent germline mutation rate. To date, all known selfish mutations cluster within the components of the RTK-RAS-MAPK signaling pathway, a critical modulator of testicular homeostasis. Here, we demonstrate the selfish nature of the SMAD4 DNMs causing Myhre syndrome (MYHRS). By analyzing 16 informative trios, we show that MYHRS-causing DNMs originated on the paternally derived allele in all cases. We document a statistically significant epidemiological paternal age effect of 6.3 years excess for fathers of MYHRS probands. We developed an ultra-sensitive assay to quantify spontaneous MYHRS-causing SMAD4 variants in sperm and show that pathogenic variants at codon 500 are found at elevated level in sperm of most men and exhibit a strong positive correlation with donor's age, indicative of a high apparent germline mutation rate. Finally, we performed in vitro assays to validate the peculiar functional behavior of the clonally selected DNMs and explored the basis of the pathophysiology of the different SMAD4 sperm-enriched variants. Taken together, these data provide compelling evidence that SMAD4, a gene operating outside the canonical RAS-MAPK signaling pathway, is associated with selfish spermatogonial selection and raises the possibility that other genes/pathways are under positive selection in the aging human testis.


Subject(s)
Germ-Line Mutation , Intellectual Disability , Smad4 Protein , Humans , Male , Smad4 Protein/genetics , Intellectual Disability/genetics , Contracture/genetics , Adult , Facies , Spermatozoa/metabolism , Spermatozoa/pathology , Cryptorchidism/genetics , Growth Disorders/genetics , Hand Deformities, Congenital/genetics , Selection, Genetic , Alleles , Paternal Age , Testis/pathology , Testis/metabolism
2.
Acc Chem Res ; 57(13): 1827-1838, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38905487

ABSTRACT

ConspectusChemists have long been inspired by biological photosynthesis, wherein a series of excited-state electron transfer (ET) events facilitate the conversion of low energy starting materials such as H2O and CO2 into higher energy products in the form of carbohydrates and O2. While this model for utilizing light-driven charge transfer to drive catalytic reactions thermodynamically "uphill" has been extensively adapted for small molecule activation, molecular machines, photoswitches, and solar fuel chemistry, its application in organic synthesis has been less systematically developed. However, the potential benefits of these approaches are significant, both in enabling transformations that cannot be readily achieved using conventional thermal chemistry and in accessing distinct selectivity regimes that are uniquely enabled by excited-state mechanisms. In this Account, we present work from our group that highlights the ability of visible light photoredox catalysis to drive useful organic transformations away from their equilibrium positions, addressing a number of long-standing synthetic challenges.We first discuss how excited-state ET enabled the first general methods for the catalytic anti-Markovnikov hydroamination of unactivated alkenes with alkyl amines. In these reactions, an excited-state iridium(III) photocatalyst reversibly oxidizes secondary amine substrates to their corresponding aminium radical cations (ARCs). These electrophilic N-centered radicals can then react with olefins to furnish valuable tertiary amine products with complete anti-Markovnikov regioselectivity. Notably, some of these products are less thermodynamically stable than their corresponding amine and alkene starting materials. We next present a strategy for light-driven C-C bond cleavage within various aliphatic alcohols mediated by homolytic activation of alcohol O-H bonds by excited-state proton-coupled electron transfer (PCET). The resulting alkoxy radical intermediates then undergo C-C ß-scission to ultimately provide isomeric linear carbonyl products that are often higher in energy than their cyclic alcohol precursors. Applications of this chemistry for the light-driven depolymerization of lignin biomass, commercial phenoxy resin, hydroxylated polyolefin derivatives, and thermoset polymers are presented as well. We then describe a method for the contrathermodynamic positional isomerization of highly substituted olefins by means of cooperative photoredox and chromium(II) catalysis. In this work, generation of an allylchromium(III) species that can undergo highly regioselective in situ protodemetalation enables access to a less substituted and thermodynamically less stable positional isomer. Product selectivity in this reaction is determined by the large differential in oxidation potentials between differently substituted olefin isomers. Lastly, we discuss a light-driven deracemization reaction developed in collaboration with the Miller group, wherein a racemic urea substrate undergoes spontaneous optical enrichment upon visible light irradiation in the presence of an iridium(III) chromophore, a chiral Brønsted base, and a chiral peptide thiol. Excellent levels of enantioselectivity are achieved via sequential and synergistic proton transfer (PT) and H atom transfer (HAT) steps. Taken together, these examples highlight the ability of excited-state ET events to enable access to nonequilibrium product distributions across a wide range of catalytic, redox-neutral transformations in which photons are the only stoichiometric reagents.

3.
Proc Natl Acad Sci U S A ; 119(26): e2119602119, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35733255

ABSTRACT

Seadragons are a remarkable lineage of teleost fishes in the family Syngnathidae, renowned for having evolved male pregnancy. Comprising three known species, seadragons are widely recognized and admired for their fantastical body forms and coloration, and their specific habitat requirements have made them flagship representatives for marine conservation and natural history interests. Until recently, a gap has been the lack of significant genomic resources for seadragons. We have produced gene-annotated, chromosome-scale genome models for the leafy and weedy seadragon to advance investigations of evolutionary innovation and elaboration of morphological traits in seadragons as well as their pipefish and seahorse relatives. We identified several interesting features specific to seadragon genomes, including divergent noncoding regions near a developmental gene important for integumentary outgrowth, a high genome-wide density of repetitive DNA, and recent expansions of transposable elements and a vesicular trafficking gene family. Surprisingly, comparative analyses leveraging the seadragon genomes and additional syngnathid and outgroup genomes revealed striking, syngnathid-specific losses in the family of fibroblast growth factors (FGFs), which likely involve reorganization of highly conserved gene regulatory networks in ways that have not previously been documented in natural populations. The resources presented here serve as important tools for future evolutionary studies of developmental processes in syngnathids and hold value for conservation of the extravagant seadragons and their relatives.


Subject(s)
Genome , Repetitive Sequences, Nucleic Acid , Smegmamorpha , Animals , Fibroblast Growth Factors/genetics , Genomics , Male , Phylogeny , Smegmamorpha/anatomy & histology , Smegmamorpha/classification , Smegmamorpha/genetics
4.
Article in English | MEDLINE | ID: mdl-39243984

ABSTRACT

BACKGROUND: Myhre syndrome is an exceedingly rare yet increasingly diagnosed genetic disorder arising from germline variants in the SMAD4 gene. Its core manifestation is the progression of stiffness and fibrosis across multiple organs. Individuals with Myhre syndrome exhibit a propensity for upper respiratory tract remodeling and infections. The molecular and cellular mechanisms underlying this phenotype remain unclear. OBJECTIVE: We sought to investigate how SMAD4 pathogenic variants associated with Myhre syndrome affect SMAD4 protein levels, activation, and physiological functions in patient-derived nasal epithelial cells. METHODS: Clinical observations were conducted on a cohort of 47 patients recruited at Massachusetts General Hospital from 2016 to 2023. Nasal epithelial basal cells were isolated and cultured from inferior turbinate brushings of healthy subjects (n = 8) and patients with Myhre syndrome (n = 3; SMAD4-Ile500Val, Arg496Cys, and Ile500Thr). Transcriptomic analysis and functional assays were performed to assess SMAD4 levels, transcriptional activity, and epithelial cell host defense functions, including cell proliferation, mucociliary differentiation, and bacterial elimination. RESULTS: Clinical observations revealed a prevalent history of otitis media and sinusitis among most individuals with Myhre syndrome. Analyses of nasal epithelial cells indicated that SMAD4 mutations do not alter SMAD4 protein stability or upstream regulatory SMAD phosphorylation but enhance signaling transcriptional activity, supporting a gain-of-function mechanism, likely attributable to increased protein-protein interaction of the SMAD complex. Consequently, Myhre syndrome nasal basal cells exhibit reduced potential in cell proliferation and mucociliary differentiation. Furthermore, Myhre syndrome nasal epithelia are impaired in bacterial killing. CONCLUSIONS: Compromised innate immunity originating from epithelial cells in Myhre syndrome may contribute to increased susceptibility to upper respiratory tract infections.

5.
Am J Med Genet C Semin Med Genet ; : e32104, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39351863

ABSTRACT

Advocacy support groups grow into national and international organizations, but they all begin with personal experiences. As the parents to a newly diagnosed two-year-old son with Myhre syndrome, my husband and I were overwhelmed with the journey ahead. Thanks to networking, primarily through social media, we located other families living with Myhre syndrome and were quickly immersed in the challenges and joy of this community. Myhre syndrome, caused by pathogenic missense variants in SMAD4, is a rare connective tissue disease characterized by short stature, hearing loss, neurodevelopmental challenges, and fibroproliferation. This personal essay, written with physician partners, describes the development of a global advocacy group for patients with Myhre syndrome. I have the honor of serving as the founding Executive Director and reflect proudly on the great strides that our marvelous support group has made. We empower the global community impacted by this rare condition by providing meaningful and accessible data, educational opportunities, and connections with others going through similar experiences. Utilizing the expertise of our Board of Directors and my corporate expertise, we discuss how we have been able to elevate our ultra-rare community into a broader, more comprehensive network.

6.
Am J Med Genet A ; : e63638, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38779990

ABSTRACT

Myhre syndrome is an increasingly diagnosed ultrarare condition caused by recurrent germline autosomal dominant de novo variants in SMAD4. Detailed multispecialty evaluations performed at the Massachusetts General Hospital (MGH) Myhre Syndrome Clinic (2016-2023) and by collaborating specialists have facilitated deep phenotyping, genotyping and natural history analysis. Of 47 patients (four previously reported), most (81%) patients returned to MGH at least once. For patients followed for at least 5 years, symptom progression was observed in all. 55% were female and 9% were older than 18 years at diagnosis. Pathogenic variants in SMAD4 involved protein residues p.Ile500Val (49%), p.Ile500Thr (11%), p.Ile500Leu (2%), and p.Arg496Cys (38%). Individuals with the SMAD4 variant p.Arg496Cys were less likely to have hearing loss, growth restriction, and aortic hypoplasia than the other variant groups. Those with the p.Ile500Thr variant had moderate/severe aortic hypoplasia in three patients (60%), however, the small number (n = 5) prevented statistical comparison with the other variants. Two deaths reported in this cohort involved complex cardiovascular disease and airway stenosis, respectively. We provide a foundation for ongoing natural history studies and emphasize the need for evidence-based guidelines in anticipation of disease-specific therapies.

7.
Environ Sci Technol ; 58(3): 1648-1658, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38175212

ABSTRACT

The semiconductor industry has claimed that perfluorooctanesulfonate (PFOS), a persistent per- and polyfluoroalkyl substance (PFAS), has been eliminated from semiconductor production; however, information about the use of alternative compounds remains limited. This study aimed to develop a nontarget approach to discovering diverse PFAS substitutions used in semiconductor manufacturing. A distinct fragment-based approach has been established to identify the hydrophobic and hydrophilic features of acidic and neutral fluorosurfactants through fragments and neutral losses, including those outside the homologous series. Ten sewage samples from 5 semiconductor plants were analyzed with target and nontarget analysis. Among the 20 identified PFAS spanning 12 subclasses, 15 were reported in semiconductor sewage for the first time. The dominant identified PFAS compounds were C4 sulfonamido derivatives, including perfluorobutane sulfonamido ethanol (FBSE), perfluorobutane sulfonamide (FBSA), and perfluorobutane sulfonamido diethanol (FBSEE diol), with maximum concentrations of 482 µg/L, 141 µg/L, and 83.5 µg/L in sewage, respectively. Subsequently, three ultrashort chain perfluoroalkyl acids (PFAAs) were identified in all samples, ranging from 0.004 to 19.9 µg/L. Three effluent samples from the associated industrial wastewater treatment plants (WWTPs) were further analyzed. This finding, that the C4 sulfonamido acetic acid series constitutes a significant portion (65%-82%) of effluents from WWTP3 and WWTP4, emphasizes the conversion of fluorinated alcohols to fluorinated acids during aerobic treatment. The identification of the intermediate metabolites of FBSEE diol, further supported by our laboratory batch studies, prompts the proposal of a novel metabolic pathway for FBSEE diol. The total amount of perfluorobutane sulfonamido derivatives reached 1934 µg/L (90%), while that of PFAAs, which have typically received attention, was only 205 µg/L (10%). This suggests that perfluorobutane sulfonamido derivatives are emerging as a new trend in fluorosurfactants used in the semiconductor industry, serving as PFAS precursors and contributing to the release of their metabolites into the environment.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Sewage/chemistry , Surface-Active Agents , Water Pollutants, Chemical/analysis , Fluorocarbons/analysis
8.
J Am Chem Soc ; 145(6): 3606-3614, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36748883

ABSTRACT

Carotenoids are a class of biobased conjugated molecules that bear a resemblance to the substructure of polyacetylene, a well-known conductive but insoluble polymer. Solubility is an important physical attribute for processing materials using different techniques. To impart solubility in polymers, alkyl side chains are often included in the molecular design. While these design strategies are well explored in conjugated systems, they have not been implemented with carotenoids as a building block in polymers. Here, we show a series of carotenoid-based polymers with varying side chain lengths to tune solubility. Using carotenoid and p-phenylenediamine-based monomers, degradable and biobased poly(azomethine)s were synthesized via imine polycondensation. Maximum solubilities corresponding to the varying alkyl chain lengths were quantitatively determined by ultraviolet-visible (UV-vis) absorption spectroscopy. Since carotenoids are biobased with known degradation products, the effect of acidic and artificial sunlight-promoted degradation was systematically investigated using UV-vis spectroscopy, 1H nuclear magnetic resonance (NMR) spectroscopy, infrared (IR) spectroscopy, gel permeation chromatography (GPC), and high-resolution mass spectroscopy (HRMS). Our polymer system was found to have two modes of on-demand degradation, with acid hydrolysis accelerating the rate of polymer degradation and artificial sunlight generating additional degradation products. This work highlights carotenoid monomers as viable candidates in the design of biobased, degradable, and conjugated polymers.

9.
J Am Chem Soc ; 145(1): 413-421, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36542862

ABSTRACT

Genome mining of cryptic natural products (NPs) remains challenging, especially in filamentous fungi, owing to their complex genetic regulation. Increasing evidence indicates that several epigenetic modifications often act cooperatively to control fungal gene transcription, yet the ability to predictably manipulate multiple genes simultaneously is still largely limited. Here, we developed a multiplex base-editing (MBE) platform that significantly improves the capability and throughput of fungal genome manipulation, leading to the simultaneous inactivation of up to eight genes using a single transformation. We then employed MBE to inactivate three negative epigenetic regulators combinatorially in Aspergillus nidulans, enabling the activation of eight cryptic gene clusters compared to the wild-type strains. A group of novel NPs harboring unique cichorine and polyamine hybrid chemical scaffolds were identified, which were not reported previously. We envision that our scalable and efficient MBE platform can be readily applied in other filamentous fungi for the genome mining of novel NPs, providing a powerful approach for the exploitation of fungal chemical diversity.


Subject(s)
Aspergillus nidulans , Biological Products , Epigenesis, Genetic , Genes, Fungal , Genome, Fungal , Fungi/genetics , Aspergillus nidulans/genetics , Multigene Family
10.
J Pediatr ; 257: 113366, 2023 06.
Article in English | MEDLINE | ID: mdl-36858148

ABSTRACT

OBJECTIVE: To describe trends in delayed diagnosis of critical congenital heart defects (CCHDs) with prenatal and postnatal screening advances. STUDY DESIGN: We evaluated a retrospective cohort of live births with CCHD delivered between 2004 and 2018 from a statewide, population-based birth defects surveillance system in Massachusetts. Demographic information were obtained from vital records. We estimated timely (prenatal or birth/transfer hospital) and delayed diagnosis (after discharge) proportions by year and time periods coinciding with the transition to mandatory pulse oximetry in 2015. RESULTS: We identified 1524 eligible CCHD cases among 1 087 027 live births. By 2018, 92% of cases received a timely diagnosis, most prenatally. From 2004 to 2018, prenatal diagnosis increased from 46% to 76% of cases, while hospital diagnosis decreased from 38% to 17%, and delayed diagnosis declined from 16% to 7%. These trends were consistent across all characteristics evaluated. Among cases without a prenatal diagnosis, the proportion with delayed diagnosis did not change over time, even after implementation of mandatory pulse oximetry screening. Prenatal detection increased the most among severe cases (treated or died in first month of life). Well-appearing newborns without prenatal diagnosis made up 79% of delayed diagnosis cases by 2015-2018. Delayed diagnosis was most common for coarctation. CONCLUSIONS: While prenatal diagnosis of CCHD increased dramatically, there was no reduction in delayed diagnosis among postnatally diagnosed infants, even after pulse oximetry screening became mandatory. Pulse oximetry may not reduce delayed diagnosis in settings with high prenatal detection, and other strategies are needed to ensure timely diagnosis of well-appearing newborns.


Subject(s)
Delayed Diagnosis , Heart Defects, Congenital , Infant , Pregnancy , Female , Infant, Newborn , Humans , Retrospective Studies , Neonatal Screening , Heart Defects, Congenital/diagnosis , Heart Defects, Congenital/epidemiology , Prenatal Diagnosis , Oximetry
SELECTION OF CITATIONS
SEARCH DETAIL