Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 187
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Org Chem ; 89(7): 4503-4511, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38502929

ABSTRACT

Tetrahydroisoquinoline (THIQ) derivatives stand out as a promising class of compounds due to their diverse range of biological activities, making them particularly valuable in drug discovery. To enhance their structural diversity, an Rh-catalyzed denitrogenative annulation method has been introduced for synthesizing these derivatives. An intriguing aspect of this method is the ability of the Brønsted acid to prevent further annulation while facilitating the production of the desired THIQ derivatives, achieving impressive yields of up to 86%. This synthetic approach was subsequently leveraged to create an analogue of cyclocelabenzine, a compound showing potential as an anti-inflammatory agent.

2.
Int J Med Sci ; 21(7): 1257-1264, 2024.
Article in English | MEDLINE | ID: mdl-38818460

ABSTRACT

Background: Ferroptosis is an iron-driven cell-death mechanism that plays a central role in various diseases. Recent studies have suggested that baicalein inhibits ferroptosis, making it a promising therapeutic candidate. Materials and Methods: Fibroblast cultures were treated with different agents to determine the effects of baicalein on ferroptosis. Ferroptosis-related gene expression, lipid peroxidation, and post-treatment cellular structural changes were measured using real-time quantitative polymerase chain reaction, C11-BODIPY dye, and transmission electron microscopy, respectively. Results: Baicalein significantly inhibited rat sarcoma virus selective lethal 3-induced ferroptosis in fibroblasts. Moreover, in baicalein-treated groups, reduced ferroptosis-related gene expression, decreased lipid peroxidation, and maintained cell structure was observed when compared with those of the controls. Discussion: The ability of baicalein to counteract RSL3-induced ferroptosis underscores its potential protective effects, especially in diseases characterized by oxidative stress and iron overload in fibroblasts. Conclusion: Baicalein may serve as a potent therapeutic agent against conditions in which ferroptosis is harmful. The compound's efficacy in halting RSL3-triggered ferroptosis in fibroblasts paves the way for further in vivo experiments and clinical trials.


Subject(s)
Ferroptosis , Fibroblasts , Flavanones , Lipid Peroxidation , Ferroptosis/drug effects , Flavanones/pharmacology , Flavanones/therapeutic use , Fibroblasts/drug effects , Fibroblasts/metabolism , Lipid Peroxidation/drug effects , Humans , Animals , Oxidative Stress/drug effects , Rats , Iron/metabolism , Carbolines
3.
Int J Med Sci ; 21(7): 1302-1306, 2024.
Article in English | MEDLINE | ID: mdl-38818474

ABSTRACT

Background: Hyperopia is a significant refractive error in children, often leading to vision impairment. This study aimed to investigate whether partial or full spectacle correction is benefit for hyperopia in preschool-aged children. Methods: A retrospective study was conducted on hyperopic children visited to teaching medical center outpatient clinic between October 2011 and October 2018, and were categorized into three groups: full correction, overcorrection, and undercorrection. The study was approved by the institutional ethical committee of Tri-Service General Hospital. Results: Following a minimum of one-year follow-up period, no statistically significant differences were observed in best-corrected visual acuity (BCVA) among children receiving full, over, or under spectacle correction. Notably, the overcorrection group exhibited a significant reduction in spherical equivalent (SE) compared to both the full and under correction groups, indicating a better SE with spectacle overcorrection. Conclusions: Spectacle overcorrection may offer potential benefits for enhancing SE in preschool children with hyperopia. Nevertheless, further investigation through randomized controlled trials is warranted to establish the validity of this approach and its impact on visual outcomes in this hyperopic pediatric population.


Subject(s)
Eyeglasses , Hyperopia , Visual Acuity , Humans , Hyperopia/therapy , Hyperopia/physiopathology , Retrospective Studies , Child, Preschool , Female , Male , Refraction, Ocular/physiology , Child , Treatment Outcome , Follow-Up Studies
4.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Article in English | MEDLINE | ID: mdl-33408129

ABSTRACT

Spatially concentrating and manipulating biotherapeutic agents within the circulatory system is a longstanding challenge in medical applications due to the high velocity of blood flow, which greatly limits drug leakage and retention of the drug in the targeted region. To circumvent the disadvantages of current methods for systemic drug delivery, we propose tornado-inspired acoustic vortex tweezer (AVT) that generates net forces for noninvasive intravascular trapping of lipid-shelled gaseous microbubbles (MBs). MBs are used in a diverse range of medical applications, including as ultrasound contrast agents, for permeabilizing vessels, and as drug/gene carriers. We demonstrate that AVT can be used to successfully trap MBs and increase their local concentration in both static and flow conditions. Furthermore, MBs signals within mouse capillaries could be locally improved 1.7-fold and the location of trapped MBs could still be manipulated during the initiation of AVT. The proposed AVT technique is a compact, easy-to-use, and biocompatible method that enables systemic drug administration with extremely low doses.

5.
Skeletal Radiol ; 53(6): 1111-1118, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38057435

ABSTRACT

OBJECTIVE: To investigate and quantify age-related changes in lower limb muscle stiffness in typically developing children and adolescents using acoustic radiation force impulse shear wave elastography. MATERIALS AND METHODS: Shear wave velocities of bilateral rectus femoris, tibialis anterior, and medial gastrocnemius muscles at rest were obtained in typically developing children and adolescents aged 3 to 18 years. The participants were classified into three age groups: Group 1 (children), 3 to 7 years old; Group 2, 8 to 12 (pre-adolescent); and Group 3 (adolescent), 13 to 18. The shear wave velocities of muscle were compared across the three age groups, as well as compared between right- and left-side limbs. The correlation between shear wave velocities and body weight or body mass index was assessed. RESULTS: Of the 47 participants, 21 were in Group 1, 17 in Group 2, and 9 in Group 3. There were no significant differences among the three age groups' shear wave velocities of bilateral lower limb muscles, and no significant differences between right and left sides. There was no correlation between muscle stiffness and body weight or body mass index. CONCLUSION: The present pilot study applied acoustic radiation force impulse shear wave elastography to quantify lower limb muscle stiffness in typically developing children and adolescents aged 3 to 18 years, suggesting no marked change in muscle stiffness occurs as they develop.


Subject(s)
Elasticity Imaging Techniques , Child , Humans , Adolescent , Child, Preschool , Pilot Projects , Muscle, Skeletal/diagnostic imaging , Lower Extremity/diagnostic imaging , Body Weight , Acoustics
6.
J Formos Med Assoc ; 123 Suppl 1: S61-S69, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37061399

ABSTRACT

Coronavirus disease 2019 (COVID-19) has caused tremendous morbidity and mortality worldwide. The large number of post-COVID survivors has drawn attention to the management of post-COVID condition, known as long COVID. This review examines current knowledge of long COVID, regarding its epidemiology, mechanism, and clinical presentations in both adults and children. We also review the rehabilitation principles, modules, and effects, and share Taiwan's efforts to provide a top-down, nationwide care framework for long COVID patients. Dyspnea, chronic cough, and fatigue are the most commonly reported symptoms in the first 6 months after infection, but cognitive impairment and psychological symptoms may persist beyond this time. Several possible mechanisms behind these symptoms were proposed, but remained unconfirmed. These symptoms negatively impact individuals' function, activities, participation and quality of life. Rehabilitation is a key element of management to achieve functional improvement. Early management should start with comprehensive evaluation and identification of red flags. Exercise-based therapy, an essential part of management of long COVID, can be conducted with different modules, including telerehabilitation. Post-exertional symptom exacerbation and orthostatic hypotension should be carefully monitored during exercise. Randomized control trials with a large sample size are needed to determine the optimal timing, dosage, and modules.


Subject(s)
COVID-19 , Post-Acute COVID-19 Syndrome , Adult , Child , Humans , Quality of Life , Exercise Therapy , Dyspnea
7.
J Magn Reson Imaging ; 58(3): 894-904, 2023 09.
Article in English | MEDLINE | ID: mdl-36573963

ABSTRACT

BACKGROUND: Contrast-enhanced computed tomography angiography (CTA) and magnetic resonance angiography (MRA) are the primary modalities to assess donors' vessels before transplant surgery. Radiation and contrast medium are potentially harmful to donors. PURPOSE: To compare the image quality and visualization scores of hepatic arteries on CTA and balanced steady-state free-precession (bSSFP) non-contrast-enhanced MRA (NC-MRA), and to evaluate if bSSFP NC-MRA can potentially be a substitute for CTA. STUDY TYPE: Prospective. POPULATION: Fifty-six consecutive potential living-related liver donors (30.9 ± 8.4 years; 31 men). FIELD STRENGTH/SEQUENCE: 1.5T; four bSSFP NC-MRA sequences: respiratory-triggered (Inhance inflow inversion recovery [IFIR]) and three breath-hold (BH); and CTA. ASSESSMENT: The artery-to-liver contrast (Ca-l) was quantified. Three radiologists independently assigned visualization scores using a four-point scale to potential origins, segments, and branches of the hepatic arteries, determined the anatomical variants based on Hiatt's classification, and assessed the image quality of NC-MRA sequences. STATISTICAL TESTS: Fleiss' kappa to evaluate the readers' agreement. Repeat measured ANOVA or Friedman test to compare Ca-l of each NC-MRA. Friedman test to compare overall image quality and visualization scores; post hoc analysis using Wilcoxon signed-rank test. P-value <0.05 was considered statistically significant. RESULTS: Inhance IFIR Ca-l was significantly higher than all BH bSSFP Ca-l (0.56 [0.45-0.64] vs. 0.37 [0.29-0.47] to 0.41 [0.23-0.51]). Overall image quality score of BH bSSFP TI1200 was significantly higher than other NC-MRA (4 [4-4] vs. 4 [3 to 4-4]). The median visualization scores of almost all arteries on CTA were significantly higher than on NC-MRA (4 [3 to 4-4] vs. 1 [1-2] to 4 [4-4]). The median visualization scores were all 4 [4-4 ] on Inhance IFIR with >92.3% observed scores ≥3, except the segment 4 branch (3 [1-4], 53.6%). The identification rates of arterial variants were 92.9%-97% on Inhance IFIR. DATA CONCLUSIONS: Although CTA is superior to the NC-MRA, all NC-MRA depict the donor arterial anatomy well. Inhance IFIR can potentially be an alternative image modality for CTA to evaluate the arterial variants of living donors. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.


Subject(s)
Contrast Media , Living Donors , Male , Humans , Prospective Studies , Liver/diagnostic imaging , Liver/blood supply , Magnetic Resonance Angiography/methods , Tomography, X-Ray Computed , Reproducibility of Results
8.
Int J Behav Nutr Phys Act ; 20(1): 44, 2023 04 17.
Article in English | MEDLINE | ID: mdl-37069626

ABSTRACT

BACKGROUND: Promoting physical activity (PA) in different populations experiencing sleep disturbance may increase population PA levels and improve sleep. This scoping review aimed to examine the effect of various PA intervention strategies on sleep across different populations, identify key sleep outcomes, and analyze knowledge gaps by mapping the relevant literature. METHODS: For this study, we systematically searched articles published till March 2022 from PubMed, Web of Science, Cochrane Library, and Embase databases for randomized clinical trials (RCTs) regarding the effect of physical activity on sleep. Two authors extracted key data and descriptively analyzed the data. Thematic analysis was used to categorize the results into themes by all authors. Arksey and O'Malley's scoping review framework was used to present the findings. RESULTS: Twenty-one randomized controlled trials out of 3052 studies were finally included with 3677 participants (2852 females (78%)). Five trials were conducted in healthy working-age adults with sleep disturbance but without the diagnosis of insomnia, five in healthy older adults, two in perinatal women, four in patients with cancer, three in mental illness related subjects, and another two in other disease-related areas. PA interventions were diverse, including walking, resistance training, aerobic exercise, housework, water exercise, basketball, smartphone/tablet "apps", web, online videos or wearable actigraphy, and self-determined exercise. Three major themes were identified: (1) Sleep environment may be important to address prior to instituting PA interventions, (2) All types of PA were effective for improving sleep in all populations studied, (3) Self-tolerated PA is safe for improving sleep in the elderly and in co-morbid or perinatal populations. CONCLUSIONS: PA is effective and safe for improving sleep in both healthy and co-morbid populations with sleep disturbance by increasing daily activity levels using a variety of strategies, even low intensity, such as housekeeping, sit-to-stand repetitions, along with encouraging PA through web pages, videos, and self-goal setting apps. In addition, this scoping review identifies the need for further therapeutic research and future exploration in populations with sleep initiation or sleep maintenance disturbance.


Subject(s)
Exercise , Neoplasms , Aged , Female , Humans , Randomized Controlled Trials as Topic , Sleep , Walking
9.
J Biol Chem ; 296: 100809, 2021.
Article in English | MEDLINE | ID: mdl-34023382

ABSTRACT

Oligosaccharyltransferase (OST) catalyzes the central step in N-linked protein glycosylation, the transfer of a preassembled oligosaccharide from its lipid carrier onto asparagine residues of secretory proteins. The prototypic hetero-octameric OST complex from the yeast Saccharomyces cerevisiae exists as two isoforms that contain either Ost3p or Ost6p, both noncatalytic subunits. These two OST complexes have different protein substrate specificities in vivo. However, their detailed biochemical mechanisms and the basis for their different specificities are not clear. The two OST complexes were purified from genetically engineered strains expressing only one isoform. The kinetic properties and substrate specificities were characterized using a quantitative in vitro glycosylation assay with short peptides and different synthetic lipid-linked oligosaccharide (LLO) substrates. We found that the peptide sequence close to the glycosylation sequon affected peptide affinity and turnover rate. The length of the lipid moiety affected LLO affinity, while the lipid double-bond stereochemistry had a greater influence on LLO turnover rates. The two OST complexes had similar affinities for both the peptide and LLO substrates but showed significantly different turnover rates. These data provide the basis for a functional analysis of the Ost3p and Ost6p subunits.


Subject(s)
Hexosyltransferases/metabolism , Membrane Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Hexosyltransferases/chemistry , Kinetics , Membrane Proteins/chemistry , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Substrate Specificity
10.
Anal Chem ; 94(48): 16579-16586, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36414482

ABSTRACT

Chlorine, as a dual-use chemical, is an essential industrial chemical which has been used as a chemical weapon in the past due to its toxicity and availability. The retrospective verification of chlorine intoxication is often especially challenging, and unambiguous markers are still missing. In this study, the effects of different chlorinating and oxidizing agents on human hair were investigated. Samples were exposed to a variety of chlorinating chemicals for a short time and then completely hydrolyzed by a HBr solution to break down their keratin proteins into individual amino acids. After derivatization and targeted liquid chromatography-mass spectrometry analysis, 3-chlorotyrosine and 3,5-dichlorotyrosine were unambiguously identified from human hair exposed to chlorine, hypochlorite, and sulfuryl chloride. Our results show long-term stability of these markers in the biological matrix, as the chlorotyrosines can still be found 10 months post-exposure at the same levels. Finally, an untargeted analysis was able to discriminate between some of the different intoxicants.


Subject(s)
Chlorine , Hair , Humans , Chlorine/chemistry , Retrospective Studies , Mass Spectrometry , Hair/metabolism , Biomarkers
11.
Virol J ; 19(1): 59, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35361235

ABSTRACT

BACKGROUND: Soluble programmed death-1 (sPD-1) is a novel immune markers and possibly predictive of chronic hepatitis B (CHB) outcome. However, results were inconsistent by different ELISA kits. This study aims to compare the characteristics and correlations with other markers for sPD-1 measured by MyBioSource (MB) and R&D (RD) kits. METHODS: A total of 254 untreated CHB patients from three sites were assayed with sPD-1 by MB and RD kits at the same time. Spearman's correlations between the kits, and those with viral markers and ALT levels were calculated. Multivariate linear regression analysis was applied for independent factors associated with the sPD-1 levels. RESULTS: There's no correlation between sPD-1 level using MB and RD assays. sPD-1 by MB correlated profoundly with HBsAg (r = 0.8311, P < 0.0001), HBV DNA (r = 0.3896, P < 0.0001), and ALT levels (r = 0.1604, P = 0.0105) while an opposite trend by RD kit (r = - 0.0644, P = 0.3109; r = 0.2554, P < 0.0001; r = 0.4417, P < 0.0001, respectively for the 3 markers). In the multivariate linear regression analysis, HBsAg and ALT levels was the major factor associated with sPD-1 levels by MB and RD, respectively. CONCLUSIONS: The characteristics and correlations with host/viral markers of sPD-1 by the two kits are different and leading to different associations on clinical outcomes of CHB.


Subject(s)
Hepatitis B, Chronic , Biological Assay , Biomarkers , Hepatitis B Surface Antigens , Humans
12.
J Cell Mol Med ; 25(15): 7436-7450, 2021 08.
Article in English | MEDLINE | ID: mdl-34235869

ABSTRACT

Exosomes are secreted into the extracellular space by most cell types and contain various molecular constituents, which play roles in many biological processes. Adipose-derived mesenchymal stem cells (ADSCs) can differentiate into a variety of cell types and secrete a series of paracrine factors through exosomes. ADSC-derived exosomes have shown diagnostic and therapeutic potential in many clinical diseases. The molecular components are critical for their mechanisms. Several methods have been developed for exosome purification, including ultracentrifugation, ultrafiltration, density gradient purification, size-based isolation, polymer precipitation and immuno-affinity purification. Thus, we employed four methods to isolate exosomes from the hADSC culture medium, including ultracentrifugation, size exclusion chromatography, ExoQuick-TC precipitation and ExoQuick-TC ULTRA isolation. Following exosome isolation, we performed quantitative proteomic analysis of the exosome proteins using isobaric tags for relative and absolute quantification (iTRAQ) labelling, combined with 2D-LC-MS/MS. There were 599 universal and 138 stably expressed proteins in hADSC-derived exosomes. We proved that these proteins were potential hADSC-derived exosomes markers, including CD109, CD166, HSPA4, TRAP1, RAB2A, RAB11B and RAB14. From the quantitative proteomic analysis, we demonstrated that hADSC-derived exosome protein expression varied, with lipopolysaccharide (LPS) treatment, in the different isolation methods. Pathway analysis and proliferation, migration and endothelial tube formation assays showed varying effects in cells stimulated with hADSC-derived exosomes from different isolation methods. Our study revealed that different isolation methods might introduce variations in the protein composition in exosomes, which reflects their effects on biological function. The pros and cons of these methods are important points to consider for downstream research applications.


Subject(s)
Cell Fractionation/methods , Exosomes/chemistry , Mesenchymal Stem Cells/chemistry , Proteome/chemistry , Proteomics/methods , Adipocytes/chemistry , Cells, Cultured , Exosomes/metabolism , Human Umbilical Vein Endothelial Cells/chemistry , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Mesenchymal Stem Cells/metabolism , Metabolic Networks and Pathways
13.
Glycobiology ; 31(12): 1604-1615, 2021 12 30.
Article in English | MEDLINE | ID: mdl-34974622

ABSTRACT

The oligosaccharyltransferase (OST) is the central enzyme in the N-glycosylation pathway. It transfers a defined oligosaccharide from a lipid-linker onto the asparagine side chain of proteins. The yeast OST consists of eight subunits and exists in two catalytically distinct isoforms that differ in one subunit, Ost3p or Ost6p. The cryo-electron microscopy structure of the Ost6p containing complex was found to be highly similar to the Ost3p containing OST. OST enzymes with altered Ost3p/Ost6p subunits were generated and functionally analyzed. The three C-terminal transmembrane helices were responsible for the higher turnover-rate of the Ost3p vs. the Ost6p containing enzyme in vitro and the more severe hypoglycosylation in Ost3p lacking strains in vivo. Glycosylation of specific OST target sites required the N-terminal thioredoxin domain of Ost3p or Ost6p. This Ost3p/Ost6p dependence was glycosylation site but not protein specific. We concluded that the Ost3p/Ost6p subunits modulate the catalytic activity of OST and provide additional specificity for OST substrate recognition.


Subject(s)
Hexosyltransferases , Saccharomyces cerevisiae Proteins , Cryoelectron Microscopy , Hexosyltransferases/metabolism , Membrane Proteins , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
14.
Appl Microbiol Biotechnol ; 105(3): 1123-1131, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33417041

ABSTRACT

Many studies have established the functional properties of Lacticaseibacillus rhamnosus GG, previously known as Lactobacillus rhamnosus GG, marketed worldwide as a probiotic. The extraordinary capacity of L. rhamnosus GG to bind to human mucus and influence the immune system especially stand out. Earlier, we have shown the key role of its SpaCBA sortase-dependent pili encoded by the spaCBA-srtC1 gene cluster herein. These heterotrimeric pili consist of a shaft pilin SpaA, a basal pilin SpaB, and tip pilin SpaC that contains a mucus-binding domain. Here, we set out to characterize a food-grade non-GMO mutant of L. rhamnosus GG, strain PA11, which secretes its pilins, rather than coupling them to the cell surface, due to a defect in the housekeeping sortase A. The sortase-negative strain PA11 was extensively characterized using functional genomics and biochemical approaches and found to secrete the SpaCBA pili into the supernatant. Given the functional importance and uniqueness of the mucus-binding pili of L. rhamnosus GG, strain PA11 offers novel opportunities towards the characterization and further therapeutic application of SpaCBA pili and their low-cost, large-scale production. KEY POINTS: •Creation of pilus-secreting mutant (PA11) of the key probiotic LGG. •Strain PA11 is defective in a functional housekeeping sortase SrtA. •Strain PA11 opens novel biotherapeutic application avenues. Graphical abstract.


Subject(s)
Lacticaseibacillus rhamnosus , Probiotics , Bacterial Proteins/genetics , Fimbriae Proteins , Fimbriae, Bacterial/genetics , Humans , Lacticaseibacillus rhamnosus/genetics , Mucus
15.
Int J Med Sci ; 18(4): 1058-1066, 2021.
Article in English | MEDLINE | ID: mdl-33456364

ABSTRACT

The heterogeneity of exosome populations presents a great challenge to their study. The current study was designed to investigate the potential heterogeneity miRNA contents in circulating exosomes purified via different exosomal markers. In this study, exosomes from the serum of C57BL/6 mice after cecum ligation and perforation (CLP) or sham operation were isolated by precipitation using ExoQuick-TC and affinity purified with anti-Rab5b, anti-CD9, anti-CD31, and anti-CD44 antibodies using the Exo-Flow Exosome Capture kit to collect exosome subpopulations. RNA extracted from the exosomes isolated by ExoQuick-TC were profiled by next-generation sequencing (NGS). Real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) was also employed to determine the expression profiles of four representative exosomal miRNAs (mmu-miR-486-5p, mmu-miR-10a-5p, mmu-miR-143-3p, and mmu-miR-25-3p) selected from the NGS analysis. The results revealed that the expression patterns of these miRNAs in exosomes isolated by ExoQuick-TC as determined by RT-qPCR and NGS were similar, showing upregulation of mmu-miR-10a-5p and mmu-miR-143-3p but downregulation of mmu-miR-25-3p and mmu-miR-486-5p following CLP when compared to the levels in exosomes from sham control mice. However, their expression levels in the antibody-captured exosome subpopulations varied. The miRNAs in the exosomes captured by anti-Rab5b or anti-CD9 antibodies were more similar to those isolated by ExoQuick-TC than to those captured by anti-CD44 antibodies. However, there were no significant differences in these four miRNAs in CD31-captured exosomes. This study demonstrated that purification with different exosomal markers allows the collection of different exosome subpopulations with various miRNA contents. The results of this study demonstrate the heterogeneity of circulating exosomes and suggest the importance of stratifying exosome subpopulations when using circulating exosomes as biomarkers or investigating exosome function. In addition, this study also emphasized the necessity of using a consistent exosome marker across different samples as detecting biomarkers.


Subject(s)
Circulating MicroRNA/analysis , Exosomes/metabolism , Sepsis/diagnosis , Animals , Biomarkers/blood , Biomarkers/metabolism , Circulating MicroRNA/blood , Circulating MicroRNA/metabolism , Disease Models, Animal , Humans , Male , Mice , Sepsis/blood , Sepsis/genetics
16.
Int J Mol Sci ; 22(17)2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34502537

ABSTRACT

Macrophages emerge in the milieu around innervated neurons after nerve injuries. Following nerve injury, autophagy is induced in macrophages and affects the regulation of inflammatory responses. It is closely linked to neuroinflammation, while the immunosuppressive drug tacrolimus (FK506) enhances nerve regeneration following nerve crush injury and nerve allotransplantation with additional neuroprotective and neurotrophic functions. The combined use of FK506 and adipose-derived stem cells (ADSCs) was employed in cell therapy for organ transplantation and vascularized composite allotransplantation. This study aimed to investigate the topical application of exosomes secreted by ADSCs following FK506 treatment (ADSC-F-exo) to the injured nerve in a mouse model of sciatic nerve crush injury. Furthermore, isobaric tags for relative and absolute quantitation (iTRAQ) were used to profile the potential exosomal proteins involved in autophagy. Immunohistochemical analysis revealed that nerve crush injuries significantly induced autophagy in the dorsal root ganglia and dorsal horn of the spinal segments. Locally applied ADSC-F-exo significantly reduced autophagy of macrophages in the spinal segments after nerve crush injury. Proteomic analysis showed that of the 22 abundant exosomal proteins detected in ADSC-F-exo, heat shock protein family A member 8 (HSPA8) and eukaryotic translation elongation factor 1 alpha 1 (EEF1A1) are involved in exosome-mediated autophagy reduction.


Subject(s)
Autophagy/drug effects , Crush Injuries/complications , Exosomes/metabolism , Macrophages/drug effects , Spinal Injuries/metabolism , Stem Cells/drug effects , Tacrolimus/pharmacology , Adipose Tissue/cytology , Adipose Tissue/metabolism , Animals , Cells, Cultured , Chromatography, Liquid/methods , Exosomes/ultrastructure , Immunosuppressive Agents/pharmacology , Macrophages/metabolism , Mice, Inbred C57BL , Microscopy, Electron, Transmission , Protein Interaction Maps , Proteome/metabolism , Proteomics/methods , Spinal Injuries/etiology , Stem Cells/metabolism , Tandem Mass Spectrometry/methods
17.
Int J Mol Sci ; 22(16)2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34445251

ABSTRACT

Exosomes secreted by adipose-derived stem cells (ADSC-exo) reportedly improve nerve regeneration after peripheral nerve injury. Herein, we investigated whether pretreatment of ADSCs with FK506, an immunosuppressive drug that enhances nerve regeneration, could secret exosomes (ADSC-F-exo) that further augment nerve regeneration. Designed exosomes were topically applied to injured nerve in a mouse model of sciatic nerve crush injury to assess the nerve regeneration efficacy. Outcomes were determined by histomorphometric analysis of semi-thin nerve sections stained with toluidine blue, mouse neurogenesis PCR array, and neurotrophin expression in distal nerve segments. Isobaric tags for relative and absolute quantitation (iTRAQ) were used to profile potential exosomal proteins facilitating nerve regeneration. We observed that locally applied ADSC-exo and ADSC-F-exo significantly enhanced nerve regeneration after nerve crush injury. Pretreatment of ADSCs with FK506 failed to produce exosomes possessing more potent molecules for enhanced nerve regeneration. Proteomic analysis revealed that of 192 exosomal proteins detected in both ADSC-exo and ADSC-F-exo, histone deacetylases (HDACs), amyloid-beta A4 protein (APP), and integrin beta-1 (ITGB1) might be involved in enhancing nerve regeneration.


Subject(s)
Adipose Tissue/metabolism , Exosomes , Nerve Regeneration , Peripheral Nerve Injuries/therapy , Peripheral Nerves/physiology , Stem Cells/metabolism , Tacrolimus/pharmacology , Animals , Exosomes/metabolism , Exosomes/transplantation , Mice , Peripheral Nerve Injuries/metabolism
18.
Int J Mol Sci ; 22(16)2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34445582

ABSTRACT

Exosomes secreted by adipose-derived stem cells (ADSCs) enhance angiogenesis and wound healing. However, in clinical settings, wounds may be infected by various bacteria or pathogens. We investigated whether human ADSCs stimulated with lipopolysaccharide (LPS) secrete exosomes (ADSC-LPS-exo) that augment the angiogenesis of human umbilical vein endothelial cells (HUVECs). ExoQuick-TC exosome precipitation solution was used to purify exosomes from human ADSC culture media in the presence or absence of 1 µg/mL LPS treatment for 24 h. The uptake of ADSC-LPS-exo significantly induced the activation of cAMP response element binding protein (CREB), activating protein 1 (AP-1), and nuclear factor-κB (NF-κB) signaling pathways and increased the migration of and tube formation in HUVECs. RNA interference with CREB, AP-1, or NF-κB1 significantly reduced the migration of and tube formation in HUVECs treated with ADSC-LPS-exo. An experiment with an antibody array for 25 angiogenesis-related proteins revealed that only interleukin-8 expression was significantly upregulated in HUVECs treated with ADSC-LPS-exo. In addition, proteomic analysis revealed that eukaryotic translation initiation factor 4E, amyloid beta A4 protein, integrin beta-1, and ras-related C3 botulinum toxin substrate 1 may be potential candidates involved in ADSC-LPS-exo-mediated enhanced angiogenesis.


Subject(s)
Cell Movement , Exosomes/physiology , Human Umbilical Vein Endothelial Cells/physiology , Lipopolysaccharides/pharmacology , Mesenchymal Stem Cells/physiology , Neovascularization, Physiologic , Cell Proliferation , Cells, Cultured , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Signal Transduction
19.
Cerebellum ; 19(4): 487-500, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32270465

ABSTRACT

Spinocerebellar ataxia (SCA) is a hereditary neurodegenerative disease. We have generated SCA17 transgenic mice bearing human TBP with 109 CAG repeats under the Purkinje cell-specific L7/pcp2 promoter. These mice recapitulate the patients' phenotypes and are suitable for the study of the SCA17 pathomechanism. Magnetic resonance imaging (MRI) and immunostainings were performed to identify the neuroimaging spectrum during disease progression. The results indicate that despite an overall normal appearance at birth, postnatal brain damage takes place rapidly in SCA17. Cerebellar atrophy, fourth-ventricle enlargement, and reduced cerebellar N-acetylaspartate levels were detected at the presymptomatic stage, when the mice were juvenile. The aberrations, which included reductions in body weight; cerebral size; striatal size; and the mean, radial, and axial diffusivities of the cerebellum, became more salient as the disease progressed to the old, late-symptomatic stage. Phosphorylated H2A histone family, member X (γH2AX) immunostaining revealed that the cerebellum underwent severe cell senescence in the old stage while the striatum appeared relatively unaffected by aging. Morphometric analysis indicated that the cerebellar atrophy occurred in all subregions with aging. The data establish that the SCA17 mouse brain appears normal at birth but becomes aberrant at the presymptomatic/juvenile stage. More widespread deficits add to the pathological spectrum at the old stage. The study provides information for the expression and expansion of L7/pcp2 promoter and implies the disease progression of SCA17 patients.


Subject(s)
Brain/pathology , Spinocerebellar Ataxias/pathology , Animals , Disease Models, Animal , Disease Progression , Humans , Magnetic Resonance Imaging , Mice , Mice, Transgenic , Neuroimaging/methods
20.
Entropy (Basel) ; 22(7)2020 Jun 28.
Article in English | MEDLINE | ID: mdl-33286487

ABSTRACT

Information entropy of ultrasound imaging recently receives much attention in the diagnosis of Duchenne muscular dystrophy (DMD). DMD is the most common muscular disorder; patients lose their ambulation in the later stages of the disease. Ultrasound imaging enables routine examinations and the follow-up of patients with DMD. Conventionally, the probability distribution of the received backscattered echo signals can be described using statistical models for ultrasound parametric imaging to characterize muscle tissue. Small-window entropy imaging is an efficient nonmodel-based approach to analyzing the backscattered statistical properties. This study explored the feasibility of using ultrasound small-window entropy imaging in evaluating the severity of DMD. A total of 85 participants were recruited. For each patient, ultrasound scans of the gastrocnemius were performed to acquire raw image data for B-mode and small-window entropy imaging, which were compared with clinical diagnoses of DMD by using the receiver operating characteristic curve. The results indicated that entropy imaging can visualize changes in the information uncertainty of ultrasound backscattered signals. The median with interquartile range (IQR) of the entropy value was 4.99 (IQR: 4.98-5.00) for the control group, 5.04 (IQR: 5.01-5.05) for stage 1 patients, 5.07 (IQR: 5.06-5.07) for stage 2 patients, and 5.07 (IQR: 5.06-5.07) for stage 3 patients. The diagnostic accuracies were 89.41%, 87.06%, and 72.94% for ≥stage 1, ≥stage 2, and ≥stage 3, respectively. Comparisons with previous studies revealed that the small-window entropy imaging technique exhibits higher diagnostic performance than conventional methods. Its further development is recommended for potential use in clinical evaluations and the follow-up of patients with DMD.

SELECTION OF CITATIONS
SEARCH DETAIL