Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
BMC Cancer ; 24(1): 418, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580939

ABSTRACT

BACKGROUND: This study aimed to develop and validate a machine learning (ML)-based fusion model to preoperatively predict Ki-67 expression levels in patients with head and neck squamous cell carcinoma (HNSCC) using multiparametric magnetic resonance imaging (MRI). METHODS: A total of 351 patients with pathologically proven HNSCC from two medical centers were retrospectively enrolled in the study and divided into training (n = 196), internal validation (n = 84), and external validation (n = 71) cohorts. Radiomics features were extracted from T2-weighted images and contrast-enhanced T1-weighted images and screened. Seven ML classifiers, including k-nearest neighbors (KNN), support vector machine (SVM), logistic regression (LR), random forest (RF), linear discriminant analysis (LDA), naive Bayes (NB), and eXtreme Gradient Boosting (XGBoost) were trained. The best classifier was used to calculate radiomics (Rad)-scores and combine clinical factors to construct a fusion model. Performance was evaluated based on calibration, discrimination, reclassification, and clinical utility. RESULTS: Thirteen features combining multiparametric MRI were finally selected. The SVM classifier showed the best performance, with the highest average area under the curve (AUC) of 0.851 in the validation cohorts. The fusion model incorporating SVM-based Rad-scores with clinical T stage and MR-reported lymph node status achieved encouraging predictive performance in the training (AUC = 0.916), internal validation (AUC = 0.903), and external validation (AUC = 0.885) cohorts. Furthermore, the fusion model showed better clinical benefit and higher classification accuracy than the clinical model. CONCLUSIONS: The ML-based fusion model based on multiparametric MRI exhibited promise for predicting Ki-67 expression levels in HNSCC patients, which might be helpful for prognosis evaluation and clinical decision-making.


Subject(s)
Head and Neck Neoplasms , Multiparametric Magnetic Resonance Imaging , Humans , Bayes Theorem , Ki-67 Antigen/genetics , Radiomics , Retrospective Studies , Squamous Cell Carcinoma of Head and Neck/diagnostic imaging , Machine Learning , Head and Neck Neoplasms/diagnostic imaging
2.
Br J Radiol ; 97(1154): 439-450, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38308028

ABSTRACT

OBJECTIVES: Accurate axillary evaluation plays an important role in prognosis and treatment planning for breast cancer. This study aimed to develop and validate a dynamic contrast-enhanced (DCE)-MRI-based radiomics model for preoperative evaluation of axillary lymph node (ALN) status in early-stage breast cancer. METHODS: A total of 410 patients with pathologically confirmed early-stage invasive breast cancer (training cohort, N = 286; validation cohort, N = 124) from June 2018 to August 2022 were retrospectively recruited. Radiomics features were derived from the second phase of DCE-MRI images for each patient. ALN status-related features were obtained, and a radiomics signature was constructed using SelectKBest and least absolute shrinkage and selection operator regression. Logistic regression was applied to build a combined model and corresponding nomogram incorporating the radiomics score (Rad-score) with clinical predictors. The predictive performance of the nomogram was evaluated using receiver operator characteristic (ROC) curve analysis and calibration curves. RESULTS: Fourteen radiomic features were selected to construct the radiomics signature. The Rad-score, MRI-reported ALN status, BI-RADS category, and tumour size were independent predictors of ALN status and were incorporated into the combined model. The nomogram showed good calibration and favourable performance for discriminating metastatic ALNs (N + (≥1)) from non-metastatic ALNs (N0) and metastatic ALNs with heavy burden (N + (≥3)) from low burden (N + (1-2)), with the area under the ROC curve values of 0.877 and 0.879 in the training cohort and 0.859 and 0.881 in the validation cohort, respectively. CONCLUSIONS: The DCE-MRI-based radiomics nomogram could serve as a potential non-invasive technique for accurate preoperative evaluation of ALN burden, thereby assisting physicians in the personalized axillary treatment for early-stage breast cancer patients. ADVANCES IN KNOWLEDGE: This study developed a potential surrogate of preoperative accurate evaluation of ALN status, which is non-invasive and easy-to-use.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , Retrospective Studies , Lymphatic Metastasis/diagnostic imaging , Lymphatic Metastasis/pathology , Feasibility Studies , Radiomics , Lymph Nodes/diagnostic imaging , Lymph Nodes/pathology , Nomograms , Magnetic Resonance Imaging/methods
3.
Acad Radiol ; 31(1): 142-156, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37280128

ABSTRACT

RATIONALE AND OBJECTIVES: This study aimed to develop and validate a dual-energy CT (DECT)-based model for preoperative prediction of the number of central lymph node metastases (CLNMs) in clinically node-negative (cN0) papillary thyroid carcinoma (PTC) patients. MATERIALS AND METHODS: Between January 2016 and January 2021, 490 patients who underwent lobectomy or thyroidectomy, CLN dissection, and preoperative DECT examinations were enrolled and randomly allocated into the training (N = 345) and validation cohorts (N = 145). The patients' clinical characteristics and quantitative DECT parameters obtained on primary tumors were collected. Independent predictors of> 5 CLNMs were identified and integrated to construct a DECT-based prediction model, for which the area under the curve (AUC), calibration, and clinical usefulness were assessed. Risk group stratification was performed to distinguish patients with different recurrence risks. RESULTS: More than 5 CLNMs were found in 75 (15.3%) cN0 PTC patients. Age, tumor size, normalized iodine concentration (NIC), normalized effective atomic number (nZeff) and the slope of the spectral Hounsfield unit curve (λHu) in the arterial phase were independently associated with> 5 CLNMs. The DECT-based nomogram that incorporated predictors demonstrated favorable performance in both cohorts (AUC: 0.842 and 0.848) and significantly outperformed the clinical model (AUC: 0.688 and 0.694). The nomogram showed good calibration and added clinical benefit for predicting> 5 CLNMs. The KaplanMeier curves for recurrence-free survival showed that the high- and low-risk groups stratified by the nomogram were significantly different. CONCLUSION: The nomogram based on DECT parameters and clinical factors could facilitate preoperative prediction of the number of CLNMs in cN0 PTC patients.


Subject(s)
Thyroid Neoplasms , Humans , Thyroid Cancer, Papillary/diagnostic imaging , Thyroid Cancer, Papillary/surgery , Thyroid Cancer, Papillary/pathology , Thyroid Neoplasms/diagnostic imaging , Thyroid Neoplasms/surgery , Thyroid Neoplasms/pathology , Lymphatic Metastasis/diagnostic imaging , Lymphatic Metastasis/pathology , Thyroidectomy , Nomograms , Retrospective Studies , Tomography, X-Ray Computed , Lymph Nodes/pathology
4.
Acad Radiol ; 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38490840

ABSTRACT

RATIONALE AND OBJECTIVES: This study aimed to construct a machine learning radiomics-based model using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) images to evaluate non-sentinel lymph node (NSLN) metastasis in Chinese breast cancer (BC) patients who underwent total mastectomy (TM) and had 1-2 positive sentinel lymph nodes (SLNs). MATERIALS AND METHODS: In total, 494 patients were retrospectively enrolled from two hospitals, and were divided into the training (n = 286), internal validation (n = 122), and external validation (n = 86) cohorts. Features were extracted from DCE-MRI images for each patient and screened. Six ML classifies were trained and the best classifier was evaluated to calculate radiomics (Rad)-scores. A combined model was developed based on Rad-scores and clinical risk factors, then the calibration, discrimination, reclassification, and clinical usefulness were evaluated. RESULTS: 14 radiomics features were ultimately selected. The random forest (RF) classifier showed the best performance, with the highest average area under the curve (AUC) of 0.833 in the validation cohorts. The combined model incorporating RF-based Rad-scores, tumor size, lymphovascular invasion, and proportion of positive SLNs resulted in the best discrimination ability, with AUCs of 0.903, 0.890, and 0.836 in the training, internal validation, and external validation cohorts, respectively. Furthermore, the combined model significantly improved the classification accuracy and clinical benefit for NSLN metastasis prediction. CONCLUSION: A RF-based combined model using DCE-MRI images exhibited a promising performance for predicting NSLN metastasis in Chinese BC patients who underwent TM and had 1-2 positive SLNs, thereby aiding in individualized clinical treatment decisions.

5.
Technol Cancer Res Treat ; 22: 15330338231195494, 2023.
Article in English | MEDLINE | ID: mdl-37650153

ABSTRACT

Background: Hypoxia is known to play a critical role in tumor occurrence, progression, prognosis, and therapy resistance. However, few studies have investigated hypoxia markers for diagnosing and predicting prognosis in colon adenocarcinoma (COAD). This study aims to identify a hypoxia genes-based biomarker for predicting COAD patients' prognosis and response to immunotherapy on an individual basis. Methods: Hypoxia-related genes were extracted from the Molecular Signatures Database. Gene expression, clinical data, and mutation data of COAD were collected retrospectively from the Cancer Genome Atlas, the Gene Expression Omnibus, and the International Cancer Genome Consortium databases. Univariate and multivariate cox regression, and the least absolute shrinkage and selection operator method were used to select the genes most associated with the prognosis of COAD patients. Kaplan-Meier survival analysis, receiver operating characteristic curves, calibration curves, and decision curve analyses were performed to validate the efficacy of the signature in predicting the prognosis of COAD patients. EdU incorporation assays, cell survival assays, western blot assays, and trans-well invasion assays were performed to further confirm the function of the screened genes in tumorigenesis. Results: ENO3 and KDM3A were identified as key genes for constructing prognostic and diagnostic signatures, which were found to be independent risk factors for predicting the prognosis and diagnosis of COAD patients. Using these signatures, COAD patients could be stratified into high-risk and low-risk groups, with the latter exhibiting better overall survival outcomes. Moreover, the high-risk group displayed elevated levels of immune checkpoint genes and tumor mutation burden, indicating that these patients may benefit from immune checkpoint inhibitor therapy. Conclusion: The signature developed in this study demonstrates excellent efficacy in prognosticating the outcomes of COAD patients. Moreover, it can serve as a valuable tool for clinicians to identify COAD patients who are suitable for ICI therapy.


Subject(s)
Adenocarcinoma , Colonic Neoplasms , Humans , Colonic Neoplasms/diagnosis , Colonic Neoplasms/genetics , Adenocarcinoma/diagnosis , Adenocarcinoma/genetics , Retrospective Studies , Prognosis , Hypoxia , Tumor Microenvironment/genetics , Jumonji Domain-Containing Histone Demethylases
6.
Front Neurol ; 14: 1233784, 2023.
Article in English | MEDLINE | ID: mdl-37928165

ABSTRACT

Purpose: Diagnosis of acute isolated brainstem infarction is challenging owing to non-specific, variable symptoms, and the effectiveness of non-contrast computed tomography (NCCT) is poor owing to limited spatial resolution and artifacts. Computed tomography perfusion (CTP) imaging parameters are significantly associated with functional outcomes in posterior circulation acute ischemic stroke; however, the role of CTP in isolated brainstem infarction remains unclear. We aimed to determine the value of CTP imaging parameters in predicting functional outcomes for affected patients. Methods: In total, 116 consecutive patients with isolated pontine/midbrain hypoperfusion who underwent CTP and follow-up by magnetic resonance imaging (MRI) between January 2018 and March 2022, were retrospectively analyzed. Perfusion deficit volumes on all maps, and the final infarction volume (FIV) on MRI were quantified. "Good" functional outcome was defined as a 90-day modified Rankin Scale score of 0 and 1. Statistical analysis included uni- and multivariate regression analyses, binary logistic regressions, and receiver operating characteristics (ROC) analyses. Results: In total, 113 patients had confirmed isolated pontine/midbrain infarction on follow-up MRI. Onset-to-scan time, visibility of ischemic lesions on NCCT, the baseline National Institutes of Health Stroke Scale (NIHSS) score, and perfusion deficit volumes on all CTP maps were significantly associated with FIV (p < 0.05). In a multivariate linear regression model, adjusted for age, sex, NIHSS score, onset-to-scan time, and visibility of NCCT, perfusion deficit volumes remained significantly associated with FIV. In binary logistic regression analyses, perfusion deficit volumes on all CTP maps remained independent predictors of a good functional outcome. In ROC analyses, the cerebral blood flow deficit volume showed a slightly higher discriminatory value with the largest area under the curve being 0.683 [(95% CI, 0.587-0.780), p = 0.001]. Conclusion: Perfusion deficit volumes of CTP imaging could reflect the FIV and contain prognostic information on functional outcomes in patients with acute isolated brainstem infarction.

7.
Int J Gynaecol Obstet ; 162(2): 639-650, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36728539

ABSTRACT

OBJECTIVE: To develop and validate a clinicoradiomic nomogram based on sagittal T2WI images to predict placenta accreta spectrum (PAS). METHODS: Between October 2016 and April 2022, women suspected of PAS by ultrasound were enrolled. After taking into account exclusion criteria, 132 women were retrospectively included in the study. The variance threshold SelectKBest and the least absolute shrinkage and selection operator were applied to select radiomic features, which was further used to calculate the Rad-score. Multivariable logistic regression was used to screen clinical factor. RESULTS: Based on 13 radiomic features, five radiomic models were constructed. A clinical factor of intraplacental T2-hypointense bands was obtained by multivariate logistic regression. The area under the curve (AUC) value of the stochastic gradient descent (SGD) radiomic model was 0.82 in the training cohort and 0.78 in the test cohort. After adding clinical factors to the SGD radiomic model, the AUC value of the clinicoradiomic model was significantly increased from 0.82 and 0.78 to 0.84 in both the training and test cohorts. The nomogram of the clinicoradiomic model was constructed, which had good performance verified by calibration and a decision curve. CONCLUSION: The presented nomogram could be useful for predicting PAS.


Subject(s)
Nomograms , Placenta Accreta , Pregnancy , Humans , Female , Placenta Accreta/diagnostic imaging , Retrospective Studies , Area Under Curve
8.
EClinicalMedicine ; 63: 102176, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37662514

ABSTRACT

Background: For patients with sentinel lymph node (SLN) metastasis and low risk of residual non-SLN (NSLN) metastasis, axillary lymph node (ALN) dissection could lead to overtreatment. This study aimed to develop and validate an automated preoperative deep learning-based tool to predict the risk of SLN and NSLN metastasis in patients with breast cancer (BC) using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) images. Methods: In this machine learning study, we retrospectively enrolled 988 women with BC from three hospitals in Zhejiang, China between June 1, 2013 to December 31, 2021, June 1, 2017 to December 31, 2021, and January 1, 2019 to June 30, 2023, respectively. Patients were divided into the training set (n = 519), internal validation set (n = 129), external test set 1 (n = 296), and external test set 2 (n = 44). A convolutional neural network (CNN) model was proposed to predict the SLN and NSLN metastasis and was compared with clinical and radiomics approaches. The performance of different models to detect ALN metastasis was measured by the area under the curve (AUC), accuracy, sensitivity, and specificity. This study is registered at ChiCTR, ChiCTR2300070740. Findings: For SLN prediction, the top-performing model (i.e., the CNN algorithm) achieved encouraging predictive performance in the internal validation set (AUC 0.899, 95% CI, 0.887-0.911), external test set 1 (AUC 0.885, 95% CI, 0.867-0.903), and external test set 2 (AUC 0.768, 95% CI, 0.738-0.798). For NSLN prediction, the CNN-based model also exhibited satisfactory performance in the internal validation set (AUC 0.800, 95% CI, 0.783-0.817), external test set 1 (AUC 0.763, 95% CI, 0.732-0.794), and external test set 2 (AUC 0.728, 95% CI, 0.719-0.738). Based on the subgroup analysis, the CNN model performed well in tumour group smaller than 2.0 cm, with the AUC of 0.801 (internal validation set) and 0.823 (external test set 1). Of 469 patients with BC, the false positive rate of SLN prediction declined from 77.9% to 32.9% using CNN model. Interpretation: The CNN model can predict the SLN status of any detectable lesion size and condition of NSLN in patients with BC. Overall, the CNN model, employing ready DCE-MRI images could serve as a potential technique to assist surgeons in the personalized axillary treatment of in patients with BC non-invasively. Funding: National Key Research and Development projects intergovernmental cooperation in science and technology of China, National Natural Science Foundation of China, Natural Science Foundation of Zhejiang Province, and Zhejiang Medical and Health Science Project.

SELECTION OF CITATIONS
SEARCH DETAIL