Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters

Publication year range
1.
Nucleic Acids Res ; 50(11): e66, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35288753

ABSTRACT

Alternative polyadenylation increases transcript diversities at the 3' end, regulating biological processes including cell differentiation, embryonic development and cancer progression. Here, we present a Bayesian method SCAPE, which enables de novo identification and quantification of polyadenylation (pA) sites at single-cell level by utilizing insert size information. We demonstrated its accuracy and robustness and identified 31 558 sites from 36 mouse organs, 43.8% (13 807) of which were novel. We illustrated that APA isoforms were associated with miRNAs binding and regulated in tissue-, cell type-and tumor-specific manners where no difference was found at gene expression level, providing an extra layer of information for cell clustering. Furthermore, we found genome-wide dynamic changes of APA usage during erythropoiesis and induced pluripotent stem cell (iPSC) differentiation, suggesting APA contributes to the functional flexibility and diversity of single cells. We expect SCAPE to aid the analyses of cellular dynamics and diversities in health and disease.


Subject(s)
Induced Pluripotent Stem Cells , MicroRNAs , 3' Untranslated Regions/genetics , Animals , Bayes Theorem , Cell Differentiation/genetics , Induced Pluripotent Stem Cells/metabolism , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Polyadenylation
2.
Nucleic Acids Res ; 49(D1): D144-D150, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33084905

ABSTRACT

Alternative splicing is widespread throughout eukaryotic genomes and greatly increases transcriptomic diversity. Many alternative isoforms have functional roles in developmental processes and are precisely temporally regulated. To facilitate the study of alternative splicing in a developmental context, we created MeDAS, a Metazoan Developmental Alternative Splicing database. MeDAS is an added-value resource that re-analyses publicly archived RNA-seq libraries to provide quantitative data on alternative splicing events as they vary across the time course of development. It has broad temporal and taxonomic scope and is intended to assist the user in identifying trends in alternative splicing throughout development. To create MeDAS, we re-analysed a curated set of 2232 Illumina polyA+ RNA-seq libraries that chart detailed time courses of embryonic and post-natal development across 18 species with a taxonomic range spanning the major metazoan lineages from Caenorhabditis elegans to human. MeDAS is freely available at https://das.chenlulab.com both as raw data tables and as an interactive browser allowing searches by species, tissue, or genomic feature (gene, transcript or exon ID and sequence). Results will provide details on alternative splicing events identified for the queried feature and can be visualised at the gene-, transcript- and exon-level as time courses of expression and inclusion levels, respectively.


Subject(s)
Alternative Splicing , Databases, Genetic , Gene Expression Regulation, Developmental , Genome , RNA, Messenger/genetics , Transcriptome , Amphibians/genetics , Amphibians/growth & development , Amphibians/metabolism , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Cephalochordata/genetics , Cephalochordata/growth & development , Cephalochordata/metabolism , Exons , High-Throughput Nucleotide Sequencing , Humans , Internet , Introns , Mammals/genetics , Mammals/growth & development , Mammals/metabolism , RNA, Messenger/metabolism , Reptiles/genetics , Reptiles/growth & development , Reptiles/metabolism , Software , Urochordata/genetics , Urochordata/growth & development , Urochordata/metabolism , Zebrafish/genetics , Zebrafish/growth & development , Zebrafish/metabolism
3.
Int J Mol Sci ; 24(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36834656

ABSTRACT

Acute pancreatitis is a common gastrointestinal disease with increasing incidence worldwide. COVID-19 is a potentially life-threatening contagious disease spread throughout the world, caused by severe acute respiratory syndrome coronavirus 2. More severe forms of both diseases exhibit commonalities with dysregulated immune responses resulting in amplified inflammation and susceptibility to infection. Human leucocyte antigen (HLA)-DR, expressed on antigen-presenting cells, acts as an indicator of immune function. Research advances have highlighted the predictive values of monocytic HLA-DR (mHLA-DR) expression for disease severity and infectious complications in both acute pancreatitis and COVID-19 patients. While the regulatory mechanism of altered mHLA-DR expression remains unclear, HLA-DR-/low monocytic myeloid-derived suppressor cells are potent drivers of immunosuppression and poor outcomes in these diseases. Future studies with mHLA-DR-guided enrollment or targeted immunotherapy are warranted in more severe cases of patients with acute pancreatitis and COVID-19.


Subject(s)
COVID-19 , Pancreatitis , Humans , Acute Disease , HLA-DR Antigens , Monocytes , Immunity
4.
BMC Med ; 17(1): 60, 2019 03 13.
Article in English | MEDLINE | ID: mdl-30862316

ABSTRACT

BACKGROUND: There are over 200 million reported cases of malaria each year, and most children living in endemic areas will experience multiple episodes of clinical disease before puberty. We set out to understand how frequent clinical malaria, which elicits a strong inflammatory response, affects the immune system and whether these modifications are observable in the absence of detectable parasitaemia. METHODS: We used a multi-dimensional approach comprising whole blood transcriptomic, cellular and plasma cytokine analyses on a cohort of children living with endemic malaria, but uninfected at sampling, who had been under active surveillance for malaria for 8 years. Children were categorised into two groups depending on the cumulative number of episodes experienced: high (≥ 8) or low (< 5). RESULTS: We observe that multiple episodes of malaria are associated with modification of the immune system. Children who had experienced a large number of episodes demonstrated upregulation of interferon-inducible genes, a clear increase in circulating levels of the immunoregulatory cytokine IL-10 and enhanced activation of neutrophils, B cells and CD8+ T cells. CONCLUSION: Transcriptomic analysis together with cytokine and immune cell profiling of peripheral blood can robustly detect immune differences between children with different numbers of prior malaria episodes. Multiple episodes of malaria are associated with modification of the immune system in children. Such immune modifications may have implications for the initiation of subsequent immune responses and the induction of vaccine-mediated protection.


Subject(s)
Immune System Diseases/immunology , Malaria/immunology , Child , Child, Preschool , Humans
5.
PLoS Pathog ; 13(9): e1006586, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28922424

ABSTRACT

Proteases have been implicated in a variety of developmental processes during the malaria parasite lifecycle. In particular, invasion and egress of the parasite from the infected hepatocyte and erythrocyte, critically depend on protease activity. Although falcipain-1 was the first cysteine protease to be characterized in P. falciparum, its role in the lifecycle of the parasite has been the subject of some controversy. While an inhibitor of falcipain-1 blocked erythrocyte invasion by merozoites, two independent studies showed that falcipain-1 disruption did not affect growth of blood stage parasites. To shed light on the role of this protease over the entire Plasmodium lifecycle, we disrupted berghepain-1, its ortholog in the rodent parasite P. berghei. We found that this mutant parasite displays a pronounced delay in blood stage infection after inoculation of sporozoites. Experiments designed to pinpoint the defect of berghepain-1 knockout parasites found that it was not due to alterations in gliding motility, hepatocyte invasion or liver stage development and that injection of berghepain-1 knockout merosomes replicated the phenotype of delayed blood stage growth after sporozoite inoculation. We identified an additional role for berghepain-1 in preparing blood stage merozoites for infection of erythrocytes and observed that berghepain-1 knockout parasites exhibit a reticulocyte restriction, suggesting that berghepain-1 activity broadens the erythrocyte repertoire of the parasite. The lack of berghepain-1 expression resulted in a greater reduction in erythrocyte infectivity in hepatocyte-derived merozoites than it did in erythrocyte-derived merozoites. These observations indicate a role for berghepain-1 in processing ligands important for merozoite infectivity and provide evidence supporting the notion that hepatic and erythrocytic merozoites, though structurally similar, are not identical.


Subject(s)
Cysteine Endopeptidases/metabolism , Hepatocytes/metabolism , Malaria/metabolism , Merozoites/metabolism , Plasmodium falciparum/metabolism , Animals , Cysteine Proteinase Inhibitors/pharmacology , Erythrocytes/parasitology , Hepatocytes/parasitology , Liver/metabolism , Malaria/parasitology , Plasmodium falciparum/genetics , Protozoan Proteins/metabolism
6.
Malar J ; 16(1): 185, 2017 05 03.
Article in English | MEDLINE | ID: mdl-28468674

ABSTRACT

BACKGROUND: Parasite cytoadherence within the microvasculature of tissues and organs of infected individuals is implicated in the pathogenesis of several malaria syndromes. Multiple host receptors may mediate sequestration. The identity of the host receptor(s), or the parasite ligand(s) responsible for sequestration of Plasmodium species other than Plasmodium falciparum is largely unknown. The rodent malaria parasites may be useful to model interactions of parasite species, which lack the var genes with their respective hosts, as other multigene families are shared between the species. The role of the endothelial receptors ICAM-1 and CD36 in cytoadherence and in the development of pathology was investigated in a Plasmodium chabaudi infection in C57BL/6 mice lacking these receptors. The schizont membrane-associated cytoadherence (SMAC) protein of Plasmodium berghei has been shown to exhibit reduced CD36-associated cytoadherence in P. berghei ANKA-infected mice. METHODS: Parasite tissue sequestration and the development of acute stage pathology in P. chabaudi infections of mice lacking CD36 or ICAM-1, their respective wild type controls, and in infections with mutant P. chabaudi parasites lacking the smac gene were compared. Peripheral blood parasitaemia, red blood cell numbers and weight change were monitored throughout the courses of infection. Imaging of bioluminescent parasites in isolated tissues (spleen, lungs, liver, kidney and gut) was used to measure tissue parasite load. RESULTS: This study shows that neither the lack of CD36 nor the deletion of the smac gene from P. chabaudi significantly impacted on acute-stage pathology or parasite sequestration. By contrast, in the absence of ICAM-1, infected animals experience less anaemia and weight loss, reduced parasite accumulation in both spleen and liver and higher peripheral blood parasitaemia during acute stage malaria. The reduction in parasite tissue sequestration in infections of ICAM-1 null mice is maintained after mosquito transmission. CONCLUSIONS: These results indicate that ICAM-1-mediated cytoadherence is important in the P. chabaudi model of malaria and suggest that for rodent malarias, as for P. falciparum, there may be multiple host and parasite molecules involved in sequestration.


Subject(s)
CD36 Antigens/genetics , Intercellular Adhesion Molecule-1/genetics , Malaria/parasitology , Plasmodium chabaudi/physiology , Protozoan Proteins/genetics , Animals , CD36 Antigens/metabolism , Female , Intercellular Adhesion Molecule-1/metabolism , Mice , Mice, Inbred C57BL , Plasmodium chabaudi/genetics , Protozoan Proteins/metabolism
7.
FASEB J ; 28(5): 2158-70, 2014 May.
Article in English | MEDLINE | ID: mdl-24509910

ABSTRACT

The 10 Plasmodium 6-Cys proteins have critical roles throughout parasite development and are targets for antimalaria vaccination strategies. We analyzed the conserved 6-cysteine domain of this family and show that only the last 4 positionally conserved cysteine residues are diagnostic for this domain and identified 4 additional "6-Cys family-related" proteins. Two of these, sequestrin and B9, are critical to Plasmodium liver-stage development. RT-PCR and immunofluorescence assays show that B9 is translationally repressed in sporozoites and is expressed after hepatocyte invasion where it localizes to the parasite plasma membrane. Mutants lacking B9 expression in the rodent malaria parasites P. berghei and P. yoelii and the human parasite P. falciparum developmentally arrest in hepatocytes. P. berghei mutants arrest in the livers of BALB/c (100%) and C57BL6 mice (>99.9%), and in cultures of Huh7 human-hepatoma cell line. Similarly, P. falciparum mutants while fully infectious to primary human hepatocytes abort development 3 d after infection. This growth arrest is associated with a compromised parasitophorous vacuole membrane a phenotype similar to, but distinct from, mutants lacking the 6-Cys sporozoite proteins P52 and P36. Our results show that 6-Cys proteins have critical but distinct roles in establishment and maintenance of a parasitophorous vacuole and subsequent liver-stage development.


Subject(s)
Gene Expression Regulation , Hepatocytes/parasitology , Plasmodium/metabolism , Protozoan Proteins/metabolism , Animals , Cell Line , Computational Biology , Cysteine/metabolism , Female , Genotype , Green Fluorescent Proteins/metabolism , Malaria/parasitology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mutation , Phenotype , Plasmodium berghei/metabolism , Plasmodium falciparum/metabolism , Plasmodium yoelii/metabolism , Protein Biosynthesis , Sporozoites/growth & development
8.
Infect Immun ; 82(11): 4654-65, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25156724

ABSTRACT

Model antigens are frequently introduced into pathogens to study determinants that influence T-cell responses to infections. To address whether an antigen's subcellular location influences the nature and magnitude of antigen-specific T-cell responses, we generated Plasmodium berghei parasites expressing the model antigen ovalbumin (OVA) either in the parasite cytoplasm or on the parasitophorous vacuole membrane (PVM). For cytosolic expression, OVA alone or conjugated to mCherry was expressed from a strong constitutive promoter (OVAhsp70 or OVA::mCherryhsp70); for PVM expression, OVA was fused to HEP17/EXP1 (OVA::Hep17hep17). Unexpectedly, OVA expression in OVAhsp70 parasites was very low, but when OVA was fused to mCherry (OVA::mCherryhsp70), it was highly expressed. OVA expression in OVA::Hep17hep17 parasites was strong but significantly less than that in OVA::mCherryhsp70 parasites. These transgenic parasites were used to examine the effects of antigen subcellular location and expression level on the development of T-cell responses during blood-stage infections. While all OVA-expressing parasites induced activation and proliferation of OVA-specific CD8(+) T cells (OT-I) and CD4(+) T cells (OT-II), the level of activation varied: OVA::Hep17hep17 parasites induced significantly stronger splenic and intracerebral OT-I and OT-II responses than those of OVA::mCherryhsp70 parasites, but OVA::mCherryhsp70 parasites promoted stronger OT-I and OT-II responses than those of OVAhsp70 parasites. Despite lower OVA expression levels, OVA::Hep17hep17 parasites induced stronger T-cell responses than those of OVA::mCherryhsp70 parasites. These results indicate that unconjugated cytosolic OVA is not stably expressed in Plasmodium parasites and, importantly, that its cellular location and expression level influence both the induction and magnitude of parasite-specific T-cell responses. These parasites represent useful tools for studying the development and function of antigen-specific T-cell responses during malaria infection.


Subject(s)
Gene Expression Regulation/physiology , Malaria/parasitology , Ovalbumin/metabolism , Plasmodium berghei/metabolism , Protein Transport/physiology , Animals , Female , Malaria/blood , Mice , Organisms, Genetically Modified , Ovalbumin/genetics , Plasmodium berghei/genetics , Spleen/cytology , T-Lymphocytes/physiology
9.
Mol Microbiol ; 88(2): 318-38, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23490234

ABSTRACT

Rhomboid-like proteases cleave membrane-anchored proteins within their transmembrane domains. In apicomplexan parasites substrates include molecules that function in parasite motility and host cell invasion. While two Plasmodium rhomboids, ROM1 and ROM4, have been examined, the roles of the remaining six rhomboids during the malaria parasite's life cycle are unknown. We present systematic gene deletion analyses of all eight Plasmodium rhomboid-like proteins as a means to discover stage-specific phenotypes and potential functions in the rodent malaria model, P. berghei. Four rhomboids (ROM4, 6, 7 and 8) are refractory to gene deletion, suggesting an essential role during asexual blood stage development. In contrast ROM1, 3, 9 and 10 were dispensable for blood stage development and exhibited no, subtle or severe defects in mosquito or liver development. Parasites lacking ROM9 and ROM10 showed no major phenotypic defects. Parasites lacking ROM1 presented a delay in blood stage patency following liver infection, but in contrast to a previous study blood stage parasites had similar growth and virulence characteristics as wild type parasites. Parasites lacking ROM3 in mosquitoes readily established oocysts but failed to produce sporozoites. ROM3 is the first apicomplexan rhomboid identified to play a vital role in sporogony.


Subject(s)
Peptide Hydrolases/metabolism , Plasmodium berghei/enzymology , Plasmodium berghei/physiology , Protozoan Proteins/metabolism , Animals , Blood/parasitology , Culicidae/parasitology , Female , Gene Deletion , Life Cycle Stages , Liver/parasitology , Malaria/parasitology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Peptide Hydrolases/genetics , Plasmodium berghei/genetics , Plasmodium berghei/pathogenicity , Protozoan Proteins/genetics , Sporozoites/physiology , Virulence
10.
Am J Respir Cell Mol Biol ; 48(5): 589-600, 2013 May.
Article in English | MEDLINE | ID: mdl-23328641

ABSTRACT

Malaria-associated acute respiratory distress syndrome (MA-ARDS) is a deadly complication of malaria, and its pathophysiology is insufficiently understood. Both in humans and in murine models, MA-ARDS is characterized by marked pulmonary inflammation. We investigated the role of hemozoin in MA-ARDS in C57Bl/6 mice infected with Plasmodium berghei NK65, P. berghei ANKA, and P. chabaudi AS. By quantifying hemozoin in the lungs and measuring the disease parameters of MA-ARDS, we demonstrated a highly significant correlation between pulmonary hemozoin concentrations, lung weights, and alveolar edema. Histological analysis of the lungs demonstrated that hemozoin is localized in phagocytes and infected erythrocytes, and only occasionally in granulocytes. Species-specific differences in hemozoin production, as measured among individual schizonts, were associated with variations in pulmonary pathogenicity. Furthermore, both pulmonary hemozoin and lung pathology were correlated with the number of infiltrating inflammatory cells, an increased pulmonary expression of cytokines, chemokines, and enzymes, and concentrations of alveolar vascular endothelial growth factor. The causal relationship between hemozoin and inflammation was investigated by injecting P. falciparum-derived hemozoin intravenously into malaria-free mice. Hemozoin potently induced the pulmonary expression of proinflammatory chemokines (interferon-γ inducible protein-10/CXC-chemokine ligand (CXCL)10, monocyte chemotactic protein-1/CC-chemokine ligand 2, and keratinocyte-derived chemokine/CXCL1), cytokines (IL-1ß, IL-6, IL-10, TNF, and transforming growth factor-ß), and other inflammatory mediators (inducible nitric oxide synthase, heme oxygenase-1, nicotinamide adenine dinucleotide phosphate- oxidase-2, and intercellular adhesion molecule-1). Thus, hemozoin correlates with MA-ARDS and induces pulmonary inflammation.


Subject(s)
Hemeproteins/metabolism , Malaria/metabolism , Plasmodium berghei/metabolism , Plasmodium chabaudi/metabolism , Pneumonia/parasitology , Respiratory Distress Syndrome/metabolism , Animals , Bronchoalveolar Lavage Fluid/chemistry , CD4 Lymphocyte Count , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Erythrocytes/metabolism , Erythrocytes/parasitology , Gene Expression , Hemeproteins/physiology , Host-Parasite Interactions , Humans , Interleukin-10/genetics , Interleukin-10/metabolism , Lung/immunology , Lung/metabolism , Lung/parasitology , Macrophages/metabolism , Macrophages/parasitology , Malaria/complications , Malaria/parasitology , Mice , Mice, Inbred C57BL , Organ Size , Plasmodium berghei/immunology , Plasmodium berghei/physiology , Plasmodium chabaudi/immunology , Plasmodium chabaudi/physiology , Pneumonia/immunology , Pneumonia/metabolism , Respiratory Distress Syndrome/etiology , Schizonts/immunology , Schizonts/metabolism , Schizonts/physiology , Species Specificity , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
11.
Int J Nurs Stud ; 140: 104454, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36841192

ABSTRACT

BACKGROUND: Infertile individuals desire support, as they are highly vulnerable to multi-dimensional distress. However, support from family, friends and professionals has been found to be inadequate for their needs. Online peer support communities are avenues where infertile individuals come together virtually to share experiences and provide peer support. Though they are known to fulfil the major need of understanding and sharing experiences, little is known about their actual role in supporting individuals struggling with infertility. OBJECTIVE: To systematically consolidate and explore the role of online peer support communities for infertile individuals. DESIGN: This is a systematic mixed-studies review. METHODS: Eight published and unpublished databases were screened for English studies from inception to October 2022: PubMed, EMBASE, Cochrane, PsycINFO, CINAHL, Scopus and ProQuest. Forty-nine studies were included, and quality was appraised using the Mixed Methods Appraisal Tool. Data-based convergent qualitative (narrative and thematic) synthesis was conducted. RESULTS: An overarching theme titled: Online peer support, a 'double-edged sword' and four themes were identified: 1) Receiving varied types of support with mutual benefits; 2) convenient and "safe haven" with diverse options for struggling couples; 3) herd mentality and negative collective emotions; and 4) credibility, confidentiality, and misinformation. The online communities were mainly utilised by couples in their late 20s to early 30s and the users were predominantly females. Online communities were mostly on forums and popular social media sites, public and unmoderated. Findings revealed that there were two-way benefits for both providers and receivers of peer support. Online communities were also found to be convenient and "safe haven" with diverse options for struggling couples. Conversely for some couples, online communities led to negative collective emotions and feelings of "unrelatedness" despite being among "similar others". Lastly, some couples raised concerns around the credibility, confidentiality, and misinformation from the online communities. CONCLUSIONS: Whilst online communities are crucial in the individuals' journey through infertility, they can act as a 'double-edged' sword if not managed by professionals. Healthcare professionals can monitor online communities to improve fertility care for individuals; advice individuals to use online communities with caution, rain peer volunteers and develop expert-moderated peer support online communities. REGISTRATION NUMBER: PROSPERO [CRD42022291461]. TWEETABLE ABSTRACT: Online peer-to-peer support communities may be a double-edged sword for infertile individuals.


Subject(s)
Counseling , Infertility , Female , Humans , Male , Counseling/methods , Emotions , Health Personnel , Infertility/therapy , Peer Group
12.
Eukaryot Cell ; 10(9): 1257-63, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21803864

ABSTRACT

Coordinated regulation of gene expression is a hallmark of the Plasmodium falciparum asexual blood-stage development cycle. We report that carbon catabolite repressor protein 4 (CCR4)-associated factor 1 (CAF1) is critical in regulating more than 1,000 genes during malaria parasites' intraerythrocytic stages, especially egress and invasion proteins. CAF1 knockout results in mistimed expression, aberrant accumulation and localization of proteins involved in parasite egress, and invasion of new host cells, leading to premature release of predominantly half-finished merozoites, drastically reducing the intraerythrocytic growth rate of the parasite. This study demonstrates that CAF1 of the CCR4-Not complex is a significant gene regulatory mechanism needed for Plasmodium development within the human host.


Subject(s)
Erythrocytes/parasitology , Gene Deletion , Gene Expression , Host-Parasite Interactions/genetics , Plasmodium falciparum/genetics , Plasmodium falciparum/pathogenicity , Transcription Factors/genetics , Animals , Cell Proliferation , Erythrocytes/pathology , Gene Expression Regulation , Gene Knockout Techniques , Humans , Life Cycle Stages , Malaria, Falciparum/parasitology , Merozoites/metabolism , Oligonucleotide Array Sequence Analysis/methods , Plasmodium falciparum/growth & development , Transcription Factors/metabolism
13.
Medicine (Baltimore) ; 101(42): e31065, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36281118

ABSTRACT

We aimed to identify long non-coding RNAs (lncRNAs) aberrantly expressed in peripheral blood mononuclear cells (PBMCs) triggered by active tuberculosis (ATB), latent tuberculosis infection (LTBI), and healthy controls (HC). We examined lncRNAs expression in PBMCs isolated from children with ATB and LTBI, and from HC using RNA sequencing. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were used to explore the biological processes and signaling pathways of aberrantly expressed mRNAs. A total of 348 and 205 lncRNAs were differentially expressed in the ATB and LTBI groups, respectively, compared to the HC group. Compared to the LTBI group, 125 lncRNAs were differentially expressed in the ATB group. Compared to the HC group, 2317 mRNAs were differentially expressed in the ATB group, and 1093 mRNAs were differentially expressed in the LTBI group. Compared to the LTBI group, 2328 mRNAs were differentially expressed in the ATB group. The upregulated mRNAs were mainly enriched in neutrophil activation, neutrophil-mediated biological processes, and positive regulation of immune response in tuberculosis (TB), whereas the downregulated mRNAs were enriched in signaling pathways and structural processes, such as the Wnt signaling pathway and rDNA heterochromatin assembly. This is the first study on the differential expression of lncRNAs in PBMCs of children with TB. We identified significant differences in the expression profiles of lncRNAs and mRNAs in the PBMCs of children with ATB, LTBI, and HC, which has important implications for exploring lncRNAs as novel biomarkers for the diagnosis of TB. In addition, further experimental identification and validation of lncRNA roles could help elucidate the underlying mechanisms of Mycobacterium tuberculosis infection in children.


Subject(s)
Latent Tuberculosis , RNA, Long Noncoding , Tuberculosis , Child , Humans , RNA, Long Noncoding/metabolism , Leukocytes, Mononuclear/metabolism , Heterochromatin/metabolism , Gene Expression Profiling , Tuberculosis/genetics , Latent Tuberculosis/genetics , Latent Tuberculosis/diagnosis , RNA, Messenger/metabolism , Biomarkers/metabolism , DNA, Ribosomal
14.
Front Immunol ; 13: 1062849, 2022.
Article in English | MEDLINE | ID: mdl-36578487

ABSTRACT

Acute pancreatitis is a common gastrointestinal disease characterized by inflammation of the exocrine pancreas and manifesting itself through acute onset of abdominal pain. It is frequently associated with organ failure, pancreatic necrosis, and death. Mounting evidence describes monocytes - phagocytic, antigen presenting, and regulatory cells of the innate immune system - as key contributors and regulators of the inflammatory response and subsequent organ failure in acute pancreatitis. This review highlights the recent advances of dynamic change of numbers, phenotypes, and functions of circulating monocytes as well as their underling regulatory mechanisms with a special focus on the role of lipid modulation during acute pancreatitis.


Subject(s)
Monocytes , Pancreatitis, Acute Necrotizing , Humans , Acute Disease , Inflammation
15.
Signal Transduct Target Ther ; 7(1): 9, 2022 01 14.
Article in English | MEDLINE | ID: mdl-35027529

ABSTRACT

Lung adenocarcinoma (LUAD) and squamous carcinoma (LUSC) are two major subtypes of non-small cell lung cancer with distinct pathologic features and treatment paradigms. The heterogeneity can be attributed to genetic, transcriptional, and epigenetic parameters. Here, we established a multi-omics atlas, integrating 52 single-cell RNA sequencing and 2342 public bulk RNA sequencing. We investigated their differences in genetic amplification, cellular compositions, and expression modules. We revealed that LUAD and LUSC contained amplifications occurring selectively in subclusters of AT2 and basal cells, and had distinct cellular composition modules associated with poor survival of lung cancer. Malignant and stage-specific gene analyses further uncovered critical transcription factors and genes in tumor progression. Moreover, we identified subclusters with proliferating and differentiating properties in AT2 and basal cells. Overexpression assays of ten genes, including sub-cluster markers AQP5 and KPNA2, further indicated their functional roles, providing potential targets for early diagnosis and treatment in lung cancer.


Subject(s)
Adenocarcinoma of Lung , Biomarkers, Tumor , Gene Expression Regulation, Neoplastic , Lung Neoplasms , Sequence Analysis, RNA , Single-Cell Analysis , Transcription, Genetic , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Biomarkers, Tumor/biosynthesis , Biomarkers, Tumor/genetics , Lung Neoplasms/genetics , Lung Neoplasms/metabolism
16.
J Biol Chem ; 285(43): 33054-33064, 2010 Oct 22.
Article in English | MEDLINE | ID: mdl-20702404

ABSTRACT

Plasmodium falciparum, the causative agent of the most deadly form of human malaria, is unable to salvage pyrimidines and must rely on de novo biosynthesis for survival. Dihydroorotate dehydrogenase (DHODH) catalyzes the rate-limiting step in the pyrimidine biosynthetic pathway and represents a potential target for anti-malarial therapy. A high throughput screen and subsequent medicinal chemistry program identified a series of N-alkyl-5-(1H-benzimidazol-1-yl)thiophene-2-carboxamides with low nanomolar in vitro potency against DHODH from P. falciparum, P. vivax, and P. berghei. The compounds were selective for the parasite enzymes over human DHODH, and x-ray structural data on the analog Genz-667348, demonstrated that species selectivity could be attributed to amino acid differences in the inhibitor-binding site. Compounds from this series demonstrated in vitro potency against the 3D7 and Dd2 strains of P. falciparum, good tolerability and oral exposure in the mouse, and ED(50) values in the 4-day murine P. berghei efficacy model of 13-21 mg/kg/day with oral twice-daily dosing. In particular, treatment with Genz-667348 at 100 mg/kg/day resulted in sterile cure. Two recent analogs of Genz-667348 are currently undergoing pilot toxicity testing to determine suitability as clinical development candidates.


Subject(s)
Antimalarials/pharmacology , Enzyme Inhibitors/pharmacology , Malaria, Falciparum/drug therapy , Malaria, Falciparum/enzymology , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Plasmodium falciparum/enzymology , Protozoan Proteins/antagonists & inhibitors , Animals , Cell Line , Dihydroorotate Dehydrogenase , Disease Models, Animal , Drug Evaluation, Preclinical , Humans , Imidazoles/pharmacology , Mice , Mice, Inbred NOD , Mice, SCID , Plasmodium berghei/enzymology , Plasmodium vivax/enzymology , Rats
17.
Antimicrob Agents Chemother ; 55(6): 2612-22, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21422215

ABSTRACT

This study characterizes aminoindole molecules that are analogs of Genz-644442. Genz-644442 was identified as a hit in a screen of ~70,000 compounds in the Broad Institute's small-molecule library and the ICCB-L compound collection at Harvard Medical School. Genz-644442 is a potent inhibitor of Plasmodium falciparum in vitro (50% inhibitory concentrations [IC50s], 200 to 285 nM) and inhibits P. berghei in vivo with an efficacy of > 99% in an adapted version of Peters' 4-day suppressive test (W. Peters, Ann. Trop. Med. Parasitol. 69:155-171, 1975). Genz-644442 became the focus of medicinal chemistry optimization; 321 analogs were synthesized and were tested for in vitro potency against P. falciparum and for in vitro absorption, distribution, metabolism, and excretion (ADME) properties. This yielded compounds with IC50s of approximately 30 nM. The lead compound, Genz-668764, has been characterized in more detail. It is a single enantiomer with IC50s of 28 to 65 nM against P. falciparum in vitro. In the 4-day P. berghei model, when it was dosed at 100 mg/kg of body weight/day, no parasites were detected on day 4 postinfection. However, parasites recrudesced by day 9. Dosing at 200 mg/kg/day twice a day resulted in cures of 3/5 animals. The compound had comparable activity against P. falciparum blood stages in a human-engrafted NOD-scid mouse model. Genz-668764 had a terminal half-life of 2.8 h and plasma trough levels of 41 ng/ml when it was dosed twice a day orally at 55 mg/kg/day. Seven-day rat safety studies showed a no-observable-adverse-effect level (NOAEL) at 200 mg/kg/day; the compound was not mutagenic in Ames tests, did not inhibit the hERG channel, and did not have potent activity against a broad panel of receptors and enzymes. Employing allometric scaling and using in vitro ADME data, the predicted human minimum efficacious dose of Genz-668764 in a 3-day once-daily dosing regimen was 421 mg/day/70 kg, which would maintain plasma trough levels above the IC90 against P. falciparum for at least 96 h after the last dose. The predicted human therapeutic index was approximately 3, on the basis of the exposure in rats at the NOAEL. We were unable to select for parasites with >2-fold decreased sensitivity to the parent compound, Genz-644442, over 270 days of in vitro culture under drug pressure. These characteristics make Genz-668764 a good candidate for preclinical development.


Subject(s)
Antimalarials/pharmacology , Indoles/pharmacology , Plasmodium falciparum/drug effects , Animals , Antimalarials/administration & dosage , Antimalarials/pharmacokinetics , Dogs , Female , Humans , Indoles/pharmacokinetics , Male , Mice , Plasmodium berghei/drug effects , Rats
18.
Sci Data ; 8(1): 309, 2021 11 29.
Article in English | MEDLINE | ID: mdl-34845251

ABSTRACT

Hematopoietic stem cells (HSCs) lie at the top of the differentiation hierarchy. Although HSC and their immediate downstream, multipotent progenitors (MPP) have full multilineage differentiation capacity, only long-term (LT-) HSC has the capacity of long-term self-renewal. The heterogeneity within the HSC population is gradually acknowledged with the development of single-cell RNA sequencing and lineage tracing technologies. Transcriptional and post-transcriptional regulations play important roles in controlling the differentiation and self-renewal capacity within HSC population. Here we report a dataset comprising short- and long-read RNA sequencing for mouse long- and short-term HSC and MPP at bulk and single-cell levels. We demonstrate that integrating short- and long-read sequencing can facilitate the identification and quantification of known and unannotated isoforms. Thus, this dataset provides a groundwork for comprehensive and comparative studies on transcriptional diversity and heterogeneity within different HSC cell types.


Subject(s)
Cell Differentiation/genetics , Hematopoietic Stem Cells/cytology , Sequence Analysis, RNA , Animals , Female , Hematopoiesis , Mice , Mice, Inbred C57BL
19.
Curr Res Immunol ; 2: 104-119, 2021.
Article in English | MEDLINE | ID: mdl-34532703

ABSTRACT

Natural infection with Plasmodium parasites, the causative agents of malaria, occurs via mosquito vectors. However, most of our knowledge of the immune response to the blood stages of Plasmodium is from infections initiated by injection of serially blood-passaged infected red blood cells, resulting in an incomplete life cycle in the mammalian host. Vector transmission of the rodent malaria parasite, Plasmodium chabaudi chabaudi AS has been shown to give rise to a more attenuated blood-stage infection in C57Bl/6J mice, when compared to infections initiated with serially blood-passaged P. chabaudi-infected red blood cells. In mouse models, the host immune response induced by parasites derived from natural mosquito transmission is likely to more closely resemble the immune responses to Plasmodium infections in humans. It is therefore important to determine how the host response differs between the two types of infections. As the spleen is considered to be a major contributor to the protective host response to P. chabaudi, we carried out a comparative transcriptomic analysis of the splenic response to recently mosquito-transmitted and serially blood-passaged parasites in C57Bl/6J mice. The attenuated infection arising from recently mosquito-transmitted parasites is characterised by an earlier and stronger myeloid- and IFNγ-related response. Analyses of spleen lysates from the two infections similarly showed stronger or earlier inflammatory cytokine and chemokine production in the recently mosquito-transmitted blood-stage infections. Furthermore, tissue macrophages, including red pulp macrophages, and IFNγ-signalling in myeloid cells, are required for the early control of P. chabaudi recently mosquito-transmitted parasites, thus contributing to the attenuation of mosquito-transmitted infections. The molecules responsible for this early activation response to recently-transmitted blood-stage parasites in mice would be important to identify, as they may help to elucidate the nature of the initial interactions between blood-stage parasites and the host immune system in naturally transmitted malaria.

20.
Signal Transduct Target Ther ; 6(1): 289, 2021 07 29.
Article in English | MEDLINE | ID: mdl-34326311

ABSTRACT

Pregnant women are generally more susceptible to viral infection. Although the impact of SARS-CoV-2 in pregnancy remains to be determined, evidence indicates that the risk factors for severe COVID-19 are similar in pregnancy to the general population. Here we systemically analyzed the clinical characteristics of pregnant and non-pregnant female COVID-19 patients who were hospitalized during the same period and found that pregnant patients developed marked lymphopenia and higher inflammation evident by higher C-reactive protein and IL-6. To elucidate the pathways that might contribute to immunopathology or protective immunity against COVID-19 during pregnancy, we applied single-cell mRNA sequencing to profile peripheral blood mononuclear cells from four pregnant and six non-pregnant female patients after recovery along with four pregnant and three non-pregnant healthy donors. We found normal clonal expansion of T cells in the pregnant patients, heightened activation and chemotaxis in NK, NKT, and MAIT cells, and differential interferon responses in the monocyte compartment. Our data present a unique feature in both innate and adaptive immune responses in pregnant patients recovered from COVID-19.


Subject(s)
Adaptive Immunity , COVID-19/immunology , Immunity, Innate , Lymphocytes/immunology , Pregnancy Complications, Infectious/immunology , SARS-CoV-2/immunology , Adult , C-Reactive Protein/immunology , Female , Humans , Interleukin-6/immunology , Pregnancy , Retrospective Studies , Sequence Analysis, RNA , Single-Cell Analysis
SELECTION OF CITATIONS
SEARCH DETAIL