Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 337
Filter
Add more filters

Publication year range
1.
Cell ; 185(1): 95-112.e18, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34995520

ABSTRACT

Fingerprints are of long-standing practical and cultural interest, but little is known about the mechanisms that underlie their variation. Using genome-wide scans in Han Chinese cohorts, we identified 18 loci associated with fingerprint type across the digits, including a genetic basis for the long-recognized "pattern-block" correlations among the middle three digits. In particular, we identified a variant near EVI1 that alters regulatory activity and established a role for EVI1 in dermatoglyph patterning in mice. Dynamic EVI1 expression during human development supports its role in shaping the limbs and digits, rather than influencing skin patterning directly. Trans-ethnic meta-analysis identified 43 fingerprint-associated loci, with nearby genes being strongly enriched for general limb development pathways. We also found that fingerprint patterns were genetically correlated with hand proportions. Taken together, these findings support the key role of limb development genes in influencing the outcome of fingerprint patterning.


Subject(s)
Dermatoglyphics , Fingers/growth & development , Organogenesis/genetics , Polymorphism, Single Nucleotide , Toes/growth & development , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Asian People/genetics , Body Patterning/genetics , Child , Cohort Studies , Female , Forelimb/growth & development , Genetic Loci , Genome-Wide Association Study , Humans , MDS1 and EVI1 Complex Locus Protein/genetics , Male , Mice , Middle Aged , Young Adult
2.
Cell ; 175(2): 347-359.e14, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30290141

ABSTRACT

We analyze whole-genome sequencing data from 141,431 Chinese women generated for non-invasive prenatal testing (NIPT). We use these data to characterize the population genetic structure and to investigate genetic associations with maternal and infectious traits. We show that the present day distribution of alleles is a function of both ancient migration and very recent population movements. We reveal novel phenotype-genotype associations, including several replicated associations with height and BMI, an association between maternal age and EMB, and between twin pregnancy and NRG1. Finally, we identify a unique pattern of circulating viral DNA in plasma with high prevalence of hepatitis B and other clinically relevant maternal infections. A GWAS for viral infections identifies an exceptionally strong association between integrated herpesvirus 6 and MOV10L1, which affects piwi-interacting RNA (piRNA) processing and PIWI protein function. These findings demonstrate the great value and potential of accumulating NIPT data for worldwide medical and genetic analyses.


Subject(s)
Asian People/genetics , Prenatal Diagnosis/methods , Adult , Alleles , China , DNA/genetics , Ethnicity/genetics , Female , Gene Frequency/genetics , Genetic Testing , Genetic Variation/genetics , Genetics, Population/methods , Genome-Wide Association Study/methods , Genomics/methods , Human Migration , Humans , Pregnancy , Sequence Analysis, DNA
3.
Nature ; 627(8003): 347-357, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38374256

ABSTRACT

Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P < 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care.


Subject(s)
Diabetes Mellitus, Type 2 , Disease Progression , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Adipocytes/metabolism , Chromatin/genetics , Chromatin/metabolism , Coronary Artery Disease/complications , Coronary Artery Disease/genetics , Diabetes Mellitus, Type 2/classification , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology , Diabetes Mellitus, Type 2/physiopathology , Diabetic Nephropathies/complications , Diabetic Nephropathies/genetics , Endothelial Cells/metabolism , Enteroendocrine Cells , Epigenomics , Genetic Predisposition to Disease/genetics , Islets of Langerhans/metabolism , Multifactorial Inheritance/genetics , Peripheral Arterial Disease/complications , Peripheral Arterial Disease/genetics , Single-Cell Analysis
4.
Nature ; 628(8006): 130-138, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38448586

ABSTRACT

Genome-wide association analyses using high-throughput metabolomics platforms have led to novel insights into the biology of human metabolism1-7. This detailed knowledge of the genetic determinants of systemic metabolism has been pivotal for uncovering how genetic pathways influence biological mechanisms and complex diseases8-11. Here we present a genome-wide association study for 233 circulating metabolic traits quantified by nuclear magnetic resonance spectroscopy in up to 136,016 participants from 33 cohorts. We identify more than 400 independent loci and assign probable causal genes at two-thirds of these using manual curation of plausible biological candidates. We highlight the importance of sample and participant characteristics that can have significant effects on genetic associations. We use detailed metabolic profiling of lipoprotein- and lipid-associated variants to better characterize how known lipid loci and novel loci affect lipoprotein metabolism at a granular level. We demonstrate the translational utility of comprehensively phenotyped molecular data, characterizing the metabolic associations of intrahepatic cholestasis of pregnancy. Finally, we observe substantial genetic pleiotropy for multiple metabolic pathways and illustrate the importance of careful instrument selection in Mendelian randomization analysis, revealing a putative causal relationship between acetone and hypertension. Our publicly available results provide a foundational resource for the community to examine the role of metabolism across diverse diseases.


Subject(s)
Biomarkers , Genome-Wide Association Study , Metabolomics , Female , Humans , Pregnancy , Acetone/blood , Acetone/metabolism , Biomarkers/blood , Biomarkers/metabolism , Cholestasis, Intrahepatic/blood , Cholestasis, Intrahepatic/genetics , Cholestasis, Intrahepatic/metabolism , Cohort Studies , Genome-Wide Association Study/methods , Hypertension/blood , Hypertension/genetics , Hypertension/metabolism , Lipoproteins/genetics , Lipoproteins/metabolism , Magnetic Resonance Spectroscopy , Mendelian Randomization Analysis , Metabolic Networks and Pathways/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics , Pregnancy Complications/blood , Pregnancy Complications/genetics , Pregnancy Complications/metabolism
5.
Nature ; 611(7934): 115-123, 2022 11.
Article in English | MEDLINE | ID: mdl-36180795

ABSTRACT

Previous genome-wide association studies (GWASs) of stroke - the second leading cause of death worldwide - were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.


Subject(s)
Drug Discovery , Genetic Predisposition to Disease , Ischemic Stroke , Humans , Brain Ischemia/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Ischemic Stroke/genetics , Molecular Targeted Therapy , Multifactorial Inheritance , Europe/ethnology , Asia, Eastern/ethnology , Africa/ethnology
6.
Nature ; 610(7933): 704-712, 2022 10.
Article in English | MEDLINE | ID: mdl-36224396

ABSTRACT

Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes1. Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel2) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10-20% (14-24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries.


Subject(s)
Body Height , Chromosome Mapping , Polymorphism, Single Nucleotide , Humans , Body Height/genetics , Gene Frequency/genetics , Genome, Human/genetics , Genome-Wide Association Study , Haplotypes/genetics , Linkage Disequilibrium/genetics , Polymorphism, Single Nucleotide/genetics , Europe/ethnology , Sample Size , Phenotype
7.
Nature ; 596(7872): 393-397, 2021 08.
Article in English | MEDLINE | ID: mdl-34349265

ABSTRACT

Reproductive longevity is essential for fertility and influences healthy ageing in women1,2, but insights into its underlying biological mechanisms and treatments to preserve it are limited. Here we identify 290 genetic determinants of ovarian ageing, assessed using normal variation in age at natural menopause (ANM) in about 200,000 women of European ancestry. These common alleles were associated with clinical extremes of ANM; women in the top 1% of genetic susceptibility have an equivalent risk of premature ovarian insufficiency to those carrying monogenic FMR1 premutations3. The identified loci implicate a broad range of DNA damage response (DDR) processes and include loss-of-function variants in key DDR-associated genes. Integration with experimental models demonstrates that these DDR processes act across the life-course to shape the ovarian reserve and its rate of depletion. Furthermore, we demonstrate that experimental manipulation of DDR pathways highlighted by human genetics increases fertility and extends reproductive life in mice. Causal inference analyses using the identified genetic variants indicate that extending reproductive life in women improves bone health and reduces risk of type 2 diabetes, but increases the risk of hormone-sensitive cancers. These findings provide insight into the mechanisms that govern ovarian ageing, when they act, and how they might be targeted by therapeutic approaches to extend fertility and prevent disease.


Subject(s)
Aging/genetics , Ovary/metabolism , Adult , Alleles , Animals , Bone and Bones/metabolism , Checkpoint Kinase 1/genetics , Checkpoint Kinase 2/genetics , Diabetes Mellitus, Type 2 , Diet , Europe/ethnology , Asia, Eastern/ethnology , Female , Fertility/genetics , Fragile X Mental Retardation Protein/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Healthy Aging/genetics , Humans , Longevity/genetics , Menopause/genetics , Menopause, Premature/genetics , Mice , Mice, Inbred C57BL , Middle Aged , Primary Ovarian Insufficiency/genetics , Uterus
8.
Nature ; 582(7811): 240-245, 2020 06.
Article in English | MEDLINE | ID: mdl-32499647

ABSTRACT

Meta-analyses of genome-wide association studies (GWAS) have identified more than 240 loci that are associated with type 2 diabetes (T2D)1,2; however, most of these loci have been identified in analyses of individuals with European ancestry. Here, to examine T2D risk in East Asian individuals, we carried out a meta-analysis of GWAS data from 77,418 individuals with T2D and 356,122 healthy control individuals. In the main analysis, we identified 301 distinct association signals at 183 loci, and across T2D association models with and without consideration of body mass index and sex, we identified 61 loci that are newly implicated in predisposition to T2D. Common variants associated with T2D in both East Asian and European populations exhibited strongly correlated effect sizes. Previously undescribed associations include signals in or near GDAP1, PTF1A, SIX3, ALDH2, a microRNA cluster, and genes that affect the differentiation of muscle and adipose cells3. At another locus, expression quantitative trait loci at two overlapping T2D signals affect two genes-NKX6-3 and ANK1-in different tissues4-6. Association studies in diverse populations identify additional loci and elucidate disease-associated genes, biology, and pathways.


Subject(s)
Asian People/genetics , Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease , Aldehyde Dehydrogenase, Mitochondrial/genetics , Alleles , Ankyrins/genetics , Body Mass Index , Case-Control Studies , Europe/ethnology , Eye Proteins/genetics , Asia, Eastern/ethnology , Female , Genome-Wide Association Study , Homeodomain Proteins/genetics , Humans , Male , Nerve Tissue Proteins/genetics , RNA, Messenger/analysis , Transcription Factors/genetics , Transcription, Genetic , Homeobox Protein SIX3
9.
BMC Pediatr ; 24(1): 211, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528535

ABSTRACT

BACKGROUND: SARS-CoV-2 posed a threat to children during the early phase of Omicron wave because many patients presented with febrile seizures. The study aimed to investigate predicting factors for acute encephalopathy of children infected by SARS-CoV-2 Omicron variant presenting with febrile seizures. METHODS: The retrospective study analyzed data from pediatric patients who visited the emergency department of Chang Gung Memorial Hospital in Taiwan between April and July 2022. We specifically focused on children with COVID-19 who presented with febrile seizures, collecting demographic, clinical, and laboratory data at the pediatric emergency department, as well as final discharge diagnoses. Subsequently, we conducted a comparative analysis of the clinical and laboratory characteristics between patients diagnosed with acute encephalopathy and those with other causes of febrile seizures. RESULTS: Overall, 10,878 children were included, of which 260 patients presented with febrile seizures. Among them, 116 individuals tested positive for SARS-CoV-2 and of them, 14 subsequently developed acute encephalopathy (12%). Those with acute encephalopathy displayed distinctive features, including older age (5.1 vs. 2.6 years old), longer fever duration preceding the first seizure (1.6 vs. 0.9 days), cluster seizure (50% vs. 16.7%), status epilepticus (50% vs. 13.7%) and occurrences of bradycardia (26.8% vs. 0%) and hypotension (14.3% vs. 0%) in the encephalopathy group. Besides, the laboratory findings in the encephalopathy group are characterized by hyperglycemia (mean (95% CI) 146 mg/dL (95% CI 109-157) vs. 108 mg/dL (95% CI 103-114) and metabolic acidosis (mean (95% CI) pH 7.29(95% CI 7.22-7.36) vs. 7.39 (95%CI 7.37-7.41)). CONCLUSIONS: In pediatric patients with COVID-19-related febrile seizures, the occurrence of seizures beyond the first day of fever, bradycardia, clustered seizures, status epilepticus, hyperglycemia, and metabolic acidosis should raise concerns about acute encephalitis/encephalopathy. However, the highest body temperature and the severity of leukocytosis or C-reactive protein levels were not associated with poor outcomes.


Subject(s)
Acidosis , Brain Diseases , COVID-19 , Hyperglycemia , Seizures, Febrile , Status Epilepticus , Child , Humans , Child, Preschool , Seizures, Febrile/etiology , SARS-CoV-2 , Retrospective Studies , Bradycardia/complications , COVID-19/complications , Fever/etiology , Brain Diseases/etiology , Seizures/complications , Hyperglycemia/complications
10.
BMC Genomics ; 24(1): 638, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37875790

ABSTRACT

BACKGROUND: Although it is known that variation in the aldehyde dehydrogenase 2 (ALDH2) gene family influences the East Asian alcohol flushing response, knowledge about other genetic variants that affect flushing symptoms is limited. METHODS: We performed a genome-wide association study meta-analysis and heritability analysis of alcohol flushing in 15,105 males of East Asian ancestry (Koreans and Chinese) to identify genetic associations with alcohol flushing. We also evaluated whether self-reported flushing can be used as an instrumental variable for alcohol intake. RESULTS: We identified variants in the region of ALDH2 strongly associated with alcohol flushing, replicating previous studies conducted in East Asian populations. Additionally, we identified variants in the alcohol dehydrogenase 1B (ADH1B) gene region associated with alcohol flushing. Several novel variants were identified after adjustment for the lead variants (ALDH2-rs671 and ADH1B-rs1229984), which need to be confirmed in larger studies. The estimated SNP-heritability on the liability scale was 13% (S.E. = 4%) for flushing, but the heritability estimate decreased to 6% (S.E. = 4%) when the effects of the lead variants were controlled for. Genetic instrumentation of higher alcohol intake using these variants recapitulated known associations of alcohol intake with hypertension. Using self-reported alcohol flushing as an instrument gave a similar association pattern of higher alcohol intake and cardiovascular disease-related traits (e.g. stroke). CONCLUSION: This study confirms that ALDH2-rs671 and ADH1B-rs1229984 are associated with alcohol flushing in East Asian populations. Our findings also suggest that self-reported alcohol flushing can be used as an instrumental variable in future studies of alcohol consumption.


Subject(s)
Alcohol Drinking , East Asian People , Flushing , Humans , Male , Alcohol Dehydrogenase/genetics , Alcohol Drinking/genetics , Aldehyde Dehydrogenase, Mitochondrial/genetics , East Asian People/genetics , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Flushing/chemically induced
11.
Neurobiol Dis ; 180: 106082, 2023 05.
Article in English | MEDLINE | ID: mdl-36925053

ABSTRACT

Humans are thought to be more susceptible to neurodegeneration than equivalently-aged primates. It is not known whether this vulnerability is specific to anatomically-modern humans or shared with other hominids. The contribution of introgressed Neanderthal DNA to neurodegenerative disorders remains uncertain. It is also unclear how common variants associated with neurodegenerative disease risk are maintained by natural selection in the population despite their deleterious effects. In this study, we aimed to quantify the genome-wide contribution of Neanderthal introgression and positive selection to the heritability of complex neurodegenerative disorders to address these questions. We used stratified-linkage disequilibrium score regression to investigate the relationship between five SNP-based signatures of natural selection, reflecting different timepoints of evolution, and genome-wide associated variants of the three most prevalent neurodegenerative disorders: Alzheimer's disease, amyotrophic lateral sclerosis and Parkinson's disease. We found no evidence for enrichment of positively-selected SNPs in the heritability of Alzheimer's disease, amyotrophic lateral sclerosis and Parkinson's disease, suggesting that common deleterious disease variants are unlikely to be maintained by positive selection. There was no enrichment of Neanderthal introgression in the SNP-heritability of these disorders, suggesting that Neanderthal admixture is unlikely to have contributed to disease risk. These findings provide insight into the origins of neurodegenerative disorders within the evolution of Homo sapiens and addresses a long-standing debate, showing that Neanderthal admixture is unlikely to have contributed to common genetic risk of neurodegeneration in anatomically-modern humans.


Subject(s)
Alzheimer Disease , Amyotrophic Lateral Sclerosis , Neanderthals , Neurodegenerative Diseases , Parkinson Disease , Animals , Humans , Neanderthals/genetics , Neurodegenerative Diseases/genetics , Selection, Genetic
12.
BMC Med ; 21(1): 37, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36726144

ABSTRACT

BACKGROUND: Extensive evidence links higher body mass index (BMI) to higher odds of depression in people of European ancestry. However, our understanding of the relationship across different settings and ancestries is limited. Here, we test the relationship between body composition and depression in people of East Asian ancestry. METHODS: Multiple Mendelian randomisation (MR) methods were used to test the relationship between (a) BMI and (b) waist-hip ratio (WHR) with depression. Firstly, we performed two-sample MR using genetic summary statistics from a recent genome-wide association study (GWAS) of depression (with 15,771 cases and 178,777 controls) in people of East Asian ancestry. We selected 838 single nucleotide polymorphisms (SNPs) correlated with BMI and 263 SNPs correlated with WHR as genetic instrumental variables to estimate the causal effect of BMI and WHR on depression using the inverse-variance weighted (IVW) method. We repeated these analyses stratifying by home location status: China versus UK or USA. Secondly, we performed one-sample MR in the China Kadoorie Biobank (CKB) in 100,377 participants. This allowed us to test the relationship separately in (a) males and females and (b) urban and rural dwellers. We also examined (c) the linearity of the BMI-depression relationship. RESULTS: Both MR analyses provided evidence that higher BMI was associated with lower odds of depression. For example, a genetically-instrumented 1-SD higher BMI in the CKB was associated with lower odds of depressive symptoms [OR: 0.77, 95% CI: 0.63, 0.95]. There was evidence of differences according to place of residence. Using the IVW method, higher BMI was associated with lower odds of depression in people of East Asian ancestry living in China but there was no evidence for an association in people of East Asian ancestry living in the USA or UK. Furthermore, higher genetic BMI was associated with differential effects in urban and rural dwellers within China. CONCLUSIONS: This study provides the first MR evidence for an inverse relationship between BMI and depression in people of East Asian ancestry. This contrasts with previous findings in European populations and therefore the public health response to obesity and depression is likely to need to differ based on sociocultural factors for example, ancestry and place of residence. This highlights the importance of setting-specific causality when using genetic causal inference approaches and data from diverse populations to test hypotheses. This is especially important when the relationship tested is not purely biological and may involve sociocultural factors.


Subject(s)
Body Composition , Depression , East Asian People , Genome-Wide Association Study , Female , Humans , Male , Body Composition/genetics , Body Mass Index , Depression/epidemiology , Depression/genetics , Mendelian Randomization Analysis , Obesity/genetics , Polymorphism, Single Nucleotide/genetics , China
13.
Inorg Chem ; 62(4): 1570-1579, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36656719

ABSTRACT

A new copper indium selenide, Ba3.5Cu7.55In1.15Se9, was synthesized by the KBr flux reaction at 800 °C. The compound crystallizes with orthorhombic Pnma, a = 46.1700(12) Å, b = 4.26710(10) Å, c = 19.8125(5) Å, and Z = 8. The structural framework mainly consists of four sites of cubane-type defective M4Se3 (M = Cu, Cu/In) units with disordered Cu+/In3+ ions present at the part corner of each unit. The single crystal emits intense photoluminescence at 657 nm with a relative quantum yield (RQY) 0.2 times that of rhodamine 6G powder. The compound belongs to a direct band gap at 1.91 eV, analyzed by Tauc's plot, and the energy is close to the PL position. The Hall effect measurement on a pressed pellet reveals an n-type conductivity with a carrier concentration of 3.358 × 1017 cm-3 and a mobility of 24.331 cm2 V-1 s-1. Furthermore, the compound produces a strong nonlinear third-harmonic generation (THG), with an χS(3) value of 1.3 × 105 pm2/V2 comparable to 1.6 × 105 pm2/V2 for AgGaSe2 measured at 800 nm.

14.
Eur J Epidemiol ; 38(10): 1089-1103, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37676424

ABSTRACT

Adiposity is associated with multiple diseases and traits, but little is known about the causal relevance and mechanisms underlying these associations. Large-scale proteomic profiling, especially when integrated with genetic data, can clarify mechanisms linking adiposity with disease outcomes. We examined the associations of adiposity with plasma levels of 1463 proteins in 3977 Chinese adults, using measured and genetically-instrumented BMI. We further used two-sample bi-directional MR analyses to assess if certain proteins influenced adiposity, along with other (e.g. enrichment) analyses to clarify possible mechanisms underlying the observed associations. Overall, the mean (SD) baseline BMI was 23.9 (3.3) kg/m2, with only 6% being obese (i.e. BMI ≥ 30 kg/m2). Measured and genetically-instrumented BMI was significantly associated at FDR < 0.05 with levels of 1096 (positive/inverse: 826/270) and 307 (positive/inverse: 270/37) proteins, respectively, with FABP4, LEP, IL1RN, LSP1, GOLM2, TNFRSF6B, and ADAMTS15 showing the strongest positive and PON3, NCAN, LEPR, IGFBP2 and MOG showing the strongest inverse genetic associations. These associations were largely linear, in adiposity-to-protein direction, and replicated (> 90%) in Europeans of UKB (mean BMI 27.4 kg/m2). Enrichment analyses of the top > 50 BMI-associated proteins demonstrated their involvement in atherosclerosis, lipid metabolism, tumour progression and inflammation. Two-sample bi-directional MR analyses using cis-pQTLs identified in CKB GWAS found eight proteins (ITIH3, LRP11, SCAMP3, NUDT5, OGN, EFEMP1, TXNDC15, PRDX6) significantly affect levels of BMI, with NUDT5 also showing bi-directional association. The findings among relatively lean Chinese adults identified novel pathways by which adiposity may increase disease risks and novel potential targets for treatment of obesity and obesity-related diseases.


Subject(s)
Adiposity , East Asian People , Humans , Adult , Adiposity/genetics , Proteomics , Body Mass Index , Obesity/genetics , Obesity/complications , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Extracellular Matrix Proteins/genetics , Carrier Proteins/genetics , Membrane Proteins/genetics
15.
Neuroradiology ; 65(7): 1179-1181, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37199765

ABSTRACT

We present a pediatric case of acute hemorrhagic leukoencephalitis associated with SARS-CoV-2 Omicron BA 2.0 infection. A previously healthy girl presented with ataxia and diplopia three weeks after the COVID-19 confirmation from a nasopharyngeal swab. Acute and symmetrical motor weakness and drowsiness ensued within the following 3 days. She then became spastic tetraplegic. MRI revealed multifocal lesions in the cerebral white matter, basal ganglia, and brainstem, with hemorrhagic changes confirmed with T1-hyperintensity and hypointensity on susceptibility-weighted images. Peripheral areas of decreased diffusion, increased blood flow, and rim contrast enhancement were noted in the majority of lesions. She was treated with a combination of intravenous immunoglobulin and methylprednisolone pulse therapy. Neurological deterioration ensued with coma, ataxic respiratory pattern and decerebrate posture. Repeated MRI performed on day 31 revealed progression of abnormalities, hemorrhages and brain herniation. Despite the administration of plasma exchange, she died two months after admission.


Subject(s)
COVID-19 , Leukoencephalitis, Acute Hemorrhagic , Child , Female , Humans , Brain/pathology , COVID-19/complications , Leukoencephalitis, Acute Hemorrhagic/diagnostic imaging , Magnetic Resonance Imaging/methods , SARS-CoV-2
17.
Environ Toxicol ; 38(5): 1078-1089, 2023 May.
Article in English | MEDLINE | ID: mdl-36727907

ABSTRACT

Colorectal cancer (CRC) is recognized as the third most common malignancy and the second most deadly in highly developed countries. Although the treatment of CRC has improved in the past decade, the mortality rate of CRC is still increasing. Amentoflavone, one of the flavonoids detected in medical plants, is reported to possess potential anticancer properties in various cancers. However, its role in CRC has not been studied. This study aimed to investigate the role and underlying mechanism of amentoflavone on CRC in vitro and in vivo. We identified the cytotoxicity, apoptosis effect, cell cycle alteration, DNA damage induction and tumor progression inhibition of amentoflavone in HT-29 model by using MTT assay, flow cytometry, immunofluorescence (IF) staining, Western blotting and animal experiments. Amentoflavone induced cytotoxicity is caused by triggering G1 arrest, DNA damage and apoptosis in HT-29 cells. The expression of cyclin D1, CDK4 and CDK6 was decreased by amentoflavone; in contrast, the phosphorylation of ATM and CHK2 and the expression of p21 and p27 were increased. The apoptosis induction of amentoflavone in CRC is not only caspase-dependent but also increases EndoG and AIF nuclear translocation in a caspase-independent manner. Importantly, the apoptosis induction of amentoflavone is not affected by the activity of p53 in CRC. Amentoflavone suppressed the progression of CRC by initiating G1 arrest and ATM/CHK2-mediated DNA damage-responsive, caspase-dependent/independent apoptotic effects. We uncovered a novel tumor-inhibitory role of amentoflavone in CRC that is not associated with p53 activity, which may serve as a potential treatment for CRC.


Subject(s)
Colorectal Neoplasms , Cyclin-Dependent Kinases , Animals , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinases/pharmacology , Tumor Suppressor Protein p53/metabolism , Cell Line, Tumor , Cell Cycle , Apoptosis , Caspases/metabolism , Colorectal Neoplasms/pathology , Cyclin-Dependent Kinase Inhibitor p21/metabolism
18.
Int J Cancer ; 150(10): 1627-1639, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35048370

ABSTRACT

Two genetic variants that alter alcohol metabolism, ALDH2-rs671 and ADH1B-rs1229984, can modify oesophageal cancer risk associated with alcohol consumption in East Asians, but their associations with other cancers remain uncertain. ALDH2-rs671 G>A and ADH1B-rs1229984 G>A were genotyped in 150 722 adults, enrolled from 10 areas in China during 2004 to 2008. After 11 years' follow-up, 9339 individuals developed cancer. Cox regression was used to estimate hazard ratios (HRs) for site-specific cancers associated with these genotypes, and their potential interactions with alcohol consumption. Overall, the A-allele frequency was 0.21 for ALDH2-rs671 and 0.69 for ADH1B-rs1229984, with A-alleles strongly associated with lower alcohol consumption. Among men, ALDH2-rs671 AA genotype was associated with HR of 0.69 (95% confidence interval: 0.53-0.90) for IARC alcohol-related cancers (n = 1900), compared to GG genotype. For ADH1B-rs1229984, the HRs of AG and AA vs GG genotype were 0.80 (0.69-0.93) and 0.75 (0.64-0.87) for IARC alcohol-related cancers, 0.61 (0.39-0.96) and 0.61 (0.39-0.94) for head and neck cancer (n = 196) and 0.68 (0.53-0.88) and 0.60 (0.46-0.78) for oesophageal cancer (n = 546). There were no significant associations of these genotypes with risks of liver (n = 651), colorectal (n = 556), stomach (n = 725) or lung (n = 1135) cancers. Among male drinkers, the risks associated with higher alcohol consumption were greater among ALDH2-rs671 AG than GG carriers for head and neck, oesophageal and lung cancers (Pinteraction < .02). Among women, only 2% drank alcohol regularly, with no comparable associations observed between genotype and cancer. These findings support the causal effects of alcohol consumption on upper aerodigestive tract cancers, with ALDH2-rs671 AG genotype further exacerbating the risks.


Subject(s)
Alcohol Dehydrogenase , Esophageal Neoplasms , Adult , Alcohol Dehydrogenase/genetics , Alcohol Drinking/adverse effects , Alcohol Drinking/genetics , Aldehyde Dehydrogenase/genetics , Aldehyde Dehydrogenase, Mitochondrial/genetics , Asian People/genetics , Esophageal Neoplasms/epidemiology , Esophageal Neoplasms/genetics , Female , Genotype , Humans , Male , Polymorphism, Single Nucleotide , Prospective Studies , Risk Factors
19.
PLoS Med ; 19(4): e1003967, 2022 04.
Article in English | MEDLINE | ID: mdl-35452448

ABSTRACT

BACKGROUND: Taller adult height is associated with lower risks of ischemic heart disease in mendelian randomization (MR) studies, but little is known about the causal relevance of height for different subtypes of ischemic stroke. The present study examined the causal relevance of height for different subtypes of ischemic stroke. METHODS AND FINDINGS: Height-associated genetic variants (up to 2,337) from previous genome-wide association studies (GWASs) were used to construct genetic instruments in different ancestral populations. Two-sample MR approaches were used to examine the associations of genetically determined height with ischemic stroke and its subtypes (cardioembolic stroke, large-artery stroke, and small-vessel stroke) in multiple ancestries (the MEGASTROKE consortium, which included genome-wide studies of stroke and stroke subtypes: 60,341 ischemic stroke cases) supported by additional cases in individuals of white British ancestry (UK Biobank [UKB]: 4,055 cases) and Chinese ancestry (China Kadoorie Biobank [CKB]: 10,297 cases). The associations of genetically determined height with established cardiovascular and other risk factors were examined in 336,750 participants from UKB and 58,277 participants from CKB. In MEGASTROKE, genetically determined height was associated with a 4% lower risk (odds ratio [OR] 0.96; 95% confidence interval [CI] 0.94, 0.99; p = 0.007) of ischemic stroke per 1 standard deviation (SD) taller height, but this masked a much stronger positive association of height with cardioembolic stroke (13% higher risk, OR 1.13 [95% CI 1.07, 1.19], p < 0.001) and stronger inverse associations with large-artery stroke (11% lower risk, OR 0.89 [0.84, 0.95], p < 0.001) and small-vessel stroke (13% lower risk, OR 0.87 [0.83, 0.92], p < 0.001). The findings in both UKB and CKB were directionally concordant with those observed in MEGASTROKE, but did not reach statistical significance: For presumed cardioembolic stroke, the ORs were 1.08 (95% CI 0.86, 1.35; p = 0.53) in UKB and 1.20 (0.77, 1.85; p = 0.43) in CKB; for other subtypes of ischemic stroke in UKB, the OR was 0.97 (95% CI 0.90, 1.05; p = 0.49); and for other nonlacunar stroke and lacunar stroke in CKB, the ORs were 0.89 (0.80, 1.00; p = 0.06) and 0.99 (0.88, 1.12; p = 0.85), respectively. In addition, genetically determined height was also positively associated with atrial fibrillation (available only in UKB), and with lean body mass and lung function, and inversely associated with low-density lipoprotein (LDL) cholesterol in both British and Chinese ancestries. Limitations of this study include potential bias from assortative mating or pleiotropic effects of genetic variants and incomplete generalizability of genetic instruments to different populations. CONCLUSIONS: The findings provide support for a causal association of taller adult height with higher risk of cardioembolic stroke and lower risk of other ischemic stroke subtypes in diverse ancestries. Further research is needed to understand the shared biological and physical pathways underlying the associations between height and stroke risks, which could identify potential targets for treatments to prevent stroke.


Subject(s)
Embolic Stroke , Ischemic Stroke , Stroke , Adult , Genome-Wide Association Study , Humans , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Risk Factors , Stroke/epidemiology , Stroke/genetics
20.
Genet Med ; 24(3): 586-600, 2022 03.
Article in English | MEDLINE | ID: mdl-34906514

ABSTRACT

PURPOSE: Non-European populations are under-represented in genetics studies, hindering clinical implementation of breast cancer polygenic risk scores (PRSs). We aimed to develop PRSs using the largest available studies of Asian ancestry and to assess the transferability of PRS across ethnic subgroups. METHODS: The development data set comprised 138,309 women from 17 case-control studies. PRSs were generated using a clumping and thresholding method, lasso penalized regression, an Empirical Bayes approach, a Bayesian polygenic prediction approach, or linear combinations of multiple PRSs. These PRSs were evaluated in 89,898 women from 3 prospective studies (1592 incident cases). RESULTS: The best performing PRS (genome-wide set of single-nucleotide variations [formerly single-nucleotide polymorphism]) had a hazard ratio per unit SD of 1.62 (95% CI = 1.46-1.80) and an area under the receiver operating curve of 0.635 (95% CI = 0.622-0.649). Combined Asian and European PRSs (333 single-nucleotide variations) had a hazard ratio per SD of 1.53 (95% CI = 1.37-1.71) and an area under the receiver operating curve of 0.621 (95% CI = 0.608-0.635). The distribution of the latter PRS was different across ethnic subgroups, confirming the importance of population-specific calibration for valid estimation of breast cancer risk. CONCLUSION: PRSs developed in this study, from association data from multiple ancestries, can enhance risk stratification for women of Asian ancestry.


Subject(s)
Breast Neoplasms , Bayes Theorem , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Multifactorial Inheritance/genetics , Polymorphism, Single Nucleotide/genetics , Prospective Studies , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL