Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.146
Filter
Add more filters

Publication year range
1.
Cell ; 187(20): 5753-5774.e28, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39265576

ABSTRACT

The development of successful therapeutics for dementias requires an understanding of their shared and distinct molecular features in the human brain. We performed single-nuclear RNA-seq and ATAC-seq in Alzheimer's disease (AD), frontotemporal dementia (FTD), and progressive supranuclear palsy (PSP), analyzing 41 participants and ∼1 million cells (RNA + ATAC) from three brain regions varying in vulnerability and pathological burden. We identify 32 shared, disease-associated cell types and 14 that are disease specific. Disease-specific cell states represent glial-immune mechanisms and selective neuronal vulnerability impacting layer 5 intratelencephalic neurons in AD, layer 2/3 intratelencephalic neurons in FTD, and layer 5/6 near-projection neurons in PSP. We identify disease-associated gene regulatory networks and cells impacted by causal genetic risk, which differ by disorder. These data illustrate the heterogeneous spectrum of glial and neuronal compositional and gene expression alterations in different dementias and identify therapeutic targets by revealing shared and disease-specific cell states.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Gene Regulatory Networks , Genomics , Neurons , Single-Cell Analysis , Supranuclear Palsy, Progressive , Humans , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Frontotemporal Dementia/metabolism , Supranuclear Palsy, Progressive/genetics , Supranuclear Palsy, Progressive/metabolism , Supranuclear Palsy, Progressive/pathology , Genomics/methods , Neurons/metabolism , Neurons/pathology , Aged , Male , Female , Brain/metabolism , Brain/pathology , Dementia/genetics , Dementia/pathology , Dementia/metabolism , Neuroglia/metabolism , Neuroglia/pathology , Aged, 80 and over , Middle Aged , RNA-Seq
2.
Cell ; 187(18): 4890-4904.e9, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39013470

ABSTRACT

Allogeneic chimeric antigen receptor (CAR)-T cells hold great promise for expanding the accessibility of CAR-T therapy, whereas the risks of allograft rejection have hampered its application. Here, we genetically engineered healthy-donor-derived, CD19-targeting CAR-T cells using CRISPR-Cas9 to address the issue of immune rejection and treated one patient with refractory immune-mediated necrotizing myopathy and two patients with diffuse cutaneous systemic sclerosis with these cells. This study was registered at ClinicalTrials.gov (NCT05859997). The infused cells persisted for over 3 months, achieving complete B cell depletion within 2 weeks of treatment. During the 6-month follow-up, we observed deep remission without cytokine release syndrome or other serious adverse events in all three patients, primarily shown by the significant improvement in the clinical response index scores for the two diseases, respectively, and supported by the observations of reversal of inflammation and fibrosis. Our results demonstrate the high safety and promising immune modulatory effect of the off-the-shelf CAR-T cells in treating severe refractory autoimmune diseases.


Subject(s)
Antigens, CD19 , Immunotherapy, Adoptive , Myositis , Receptors, Chimeric Antigen , Scleroderma, Systemic , Humans , Antigens, CD19/immunology , Antigens, CD19/metabolism , Myositis/therapy , Myositis/immunology , Scleroderma, Systemic/therapy , Scleroderma, Systemic/immunology , Immunotherapy, Adoptive/methods , Female , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Male , Middle Aged , Adult , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Transplantation, Homologous
3.
Nat Immunol ; 25(1): 54-65, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38062135

ABSTRACT

The nature of activation signals is essential in determining T cell subset differentiation; however, the features that determine T cell subset preference acquired during intrathymic development remain elusive. Here we show that naive CD4+ T cells generated in the mouse thymic microenvironment lacking Scd1, encoding the enzyme catalyzing oleic acid (OA) production, exhibit enhanced regulatory T (Treg) cell differentiation and attenuated development of experimental autoimmune encephalomyelitis. Scd1 deletion in K14+ thymic epithelia recapitulated the enhanced Treg cell differentiation phenotype of Scd1-deficient mice. The dearth of OA permitted DOT1L to increase H3K79me2 levels at the Atp2a2 locus of thymocytes at the DN2-DN3 transition stage. Such epigenetic modification persisted in naive CD4+ T cells and facilitated Atp2a2 expression. Upon T cell receptor activation, ATP2A2 enhanced the activity of the calcium-NFAT1-Foxp3 axis to promote naive CD4+ T cells to differentiate into Treg cells. Therefore, OA availability is critical for preprogramming thymocytes with Treg cell differentiation propensities in the periphery.


Subject(s)
Oleic Acid , Thymocytes , Animals , Mice , Oleic Acid/metabolism , Thymus Gland , T-Lymphocytes, Regulatory , Cell Differentiation , Forkhead Transcription Factors/genetics
4.
Mol Cell ; 84(4): 760-775.e7, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38215751

ABSTRACT

Apart from the canonical serotonin (5-hydroxytryptamine [5-HT])-receptor signaling transduction pattern, 5-HT-involved post-translational serotonylation has recently been noted. Here, we report a glyceraldehyde-3-phosphate dehydrogenase (GAPDH) serotonylation system that promotes the glycolytic metabolism and antitumor immune activity of CD8+ T cells. Tissue transglutaminase 2 (TGM2) transfers 5-HT to GAPDH glutamine 262 and catalyzes the serotonylation reaction. Serotonylation supports the cytoplasmic localization of GAPDH, which induces a glycolytic metabolic shift in CD8+ T cells and contributes to antitumor immunity. CD8+ T cells accumulate intracellular 5-HT for serotonylation through both synthesis by tryptophan hydroxylase 1 (TPH1) and uptake from the extracellular compartment via serotonin transporter (SERT). Monoamine oxidase A (MAOA) degrades 5-HT and acts as an intrinsic negative regulator of CD8+ T cells. The adoptive transfer of 5-HT-producing TPH1-overexpressing chimeric antigen receptor T (CAR-T) cells induced a robust antitumor response. Our findings expand the known range of neuroimmune interaction patterns by providing evidence of receptor-independent serotonylation post-translational modification.


Subject(s)
CD8-Positive T-Lymphocytes , Serotonin , CD8-Positive T-Lymphocytes/metabolism , Serotonin/metabolism , Serotonin/pharmacology , Protein Processing, Post-Translational , Signal Transduction
5.
Cell ; 165(5): 1238-1254, 2016 May 19.
Article in English | MEDLINE | ID: mdl-27118425

ABSTRACT

Cerebral organoids, three-dimensional cultures that model organogenesis, provide a new platform to investigate human brain development. High cost, variability, and tissue heterogeneity limit their broad applications. Here, we developed a miniaturized spinning bioreactor (SpinΩ) to generate forebrain-specific organoids from human iPSCs. These organoids recapitulate key features of human cortical development, including progenitor zone organization, neurogenesis, gene expression, and, notably, a distinct human-specific outer radial glia cell layer. We also developed protocols for midbrain and hypothalamic organoids. Finally, we employed the forebrain organoid platform to model Zika virus (ZIKV) exposure. Quantitative analyses revealed preferential, productive infection of neural progenitors with either African or Asian ZIKV strains. ZIKV infection leads to increased cell death and reduced proliferation, resulting in decreased neuronal cell-layer volume resembling microcephaly. Together, our brain-region-specific organoids and SpinΩ provide an accessible and versatile platform for modeling human brain development and disease and for compound testing, including potential ZIKV antiviral drugs.


Subject(s)
Brain/cytology , Cell Culture Techniques , Models, Biological , Organoids , Zika Virus/physiology , Bioreactors , Cell Culture Techniques/economics , Embryo, Mammalian , Embryonic Development , Humans , Induced Pluripotent Stem Cells , Neurogenesis , Neurons/cytology , Organoids/virology , Zika Virus Infection/physiopathology , Zika Virus Infection/virology
6.
Nature ; 615(7950): 56-61, 2023 03.
Article in English | MEDLINE | ID: mdl-36859579

ABSTRACT

Correlating atomic configurations-specifically, degree of disorder (DOD)-of an amorphous solid with properties is a long-standing riddle in materials science and condensed matter physics, owing to difficulties in determining precise atomic positions in 3D structures1-5. To this end, 2D systems provide insight to the puzzle by allowing straightforward imaging of all atoms6,7. Direct imaging of amorphous monolayer carbon (AMC) grown by laser-assisted depositions has resolved atomic configurations, supporting the modern crystallite view of vitreous solids over random network theory8. Nevertheless, a causal link between atomic-scale structures and macroscopic properties remains elusive. Here we report facile tuning of DOD and electrical conductivity in AMC films by varying growth temperatures. Specifically, the pyrolysis threshold temperature is the key to growing variable-range-hopping conductive AMC with medium-range order (MRO), whereas increasing the temperature by 25 °C results in AMC losing MRO and becoming electrically insulating, with an increase in sheet resistance of 109 times. Beyond visualizing highly distorted nanocrystallites embedded in a continuous random network, atomic-resolution electron microscopy shows the absence/presence of MRO and temperature-dependent densities of nanocrystallites, two order parameters proposed to fully describe DOD. Numerical calculations establish the conductivity diagram as a function of these two parameters, directly linking microstructures to electrical properties. Our work represents an important step towards understanding the structure-property relationship of amorphous materials at the fundamental level and paves the way to electronic devices using 2D amorphous materials.

7.
Trends Biochem Sci ; 49(5): 457-469, 2024 May.
Article in English | MEDLINE | ID: mdl-38531696

ABSTRACT

Gene delivery vehicles based on adeno-associated viruses (AAVs) are enabling increasing success in human clinical trials, and they offer the promise of treating a broad spectrum of both genetic and non-genetic disorders. However, delivery efficiency and targeting must be improved to enable safe and effective therapies. In recent years, considerable effort has been invested in creating AAV variants with improved delivery, and computational approaches have been increasingly harnessed for AAV engineering. In this review, we discuss how computationally designed AAV libraries are enabling directed evolution. Specifically, we highlight approaches that harness sequences outputted by next-generation sequencing (NGS) coupled with machine learning (ML) to generate new functional AAV capsids and related regulatory elements, pushing the frontier of what vector engineering and gene therapy may achieve.


Subject(s)
Dependovirus , Gene Transfer Techniques , Dependovirus/genetics , Humans , Genetic Therapy/methods , Genetic Vectors/metabolism , Genetic Engineering , Animals , Computational Biology/methods
8.
Cell ; 153(3): 678-91, 2013 Apr 25.
Article in English | MEDLINE | ID: mdl-23602153

ABSTRACT

TET proteins oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). 5fC and 5caC are excised by mammalian DNA glycosylase TDG, implicating 5mC oxidation in DNA demethylation. Here, we show that the genomic locations of 5fC can be determined by coupling chemical reduction with biotin tagging. Genome-wide mapping of 5fC in mouse embryonic stem cells (mESCs) reveals that 5fC preferentially occurs at poised enhancers among other gene regulatory elements. Application to Tdg null mESCs further suggests that 5fC production coordinates with p300 in remodeling epigenetic states of enhancers. This process, which is not influenced by 5hmC, appears to be associated with further oxidation of 5hmC and commitment to demethylation through 5fC. Finally, we resolved 5fC at base resolution by hydroxylamine-based protection from bisulfite-mediated deamination, thereby confirming sites of 5fC accumulation. Our results reveal roles of active 5mC/5hmC oxidation and TDG-mediated demethylation in epigenetic tuning at regulatory elements.


Subject(s)
Cytosine/analogs & derivatives , Embryonic Stem Cells/metabolism , Epigenesis, Genetic , Genetic Techniques , Genome-Wide Association Study , 5-Methylcytosine/metabolism , Animals , Cytosine/metabolism , Mice , Regulatory Elements, Transcriptional , p300-CBP Transcription Factors/metabolism
9.
Blood ; 144(18): 1951-1961, 2024 Oct 31.
Article in English | MEDLINE | ID: mdl-39046786

ABSTRACT

ABSTRACT: Although tyrosine kinase inhibitor (TKI) therapy has markedly improved the survival of people with chronic-phase chronic myeloid leukemia (CML), 20% to 30% of people still experienced therapy failure. Data from 1955 consecutive patients with chronic-phase CML diagnosed by the European LeukemiaNet recommendations from 1 center receiving initial imatinib or a second-generation (2G) TKI therapy were interrogated to develop a clinical prediction model for TKI-therapy failure. This model was subsequently validated in 3454 patients from 76 other centers. Using the predictive clinical covariates associated with TKI-therapy failure, we developed a model that stratified patients into low-, intermediate- and high-risk subgroups with significantly different cumulative incidences of therapy failure (P < .001). There was good discrimination and calibration in the external validation data set, and the performance was consistent with that of the training data set. Our model had the better prediction discrimination than the Sokal and European Treatment and Outcome Study long-term survival scores, with the greater time-dependent area under the receiver-operator characteristic curve values and a better ability to redefine the risk of therapy failure. Our model could help physicians estimate the likelihood of initial imatinib or 2G TKI-therapy failure in people with chronic-phase CML.


Subject(s)
Imatinib Mesylate , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Protein Kinase Inhibitors , Treatment Failure , Humans , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/adverse effects , Middle Aged , Male , Female , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/mortality , Aged , Adult , Imatinib Mesylate/therapeutic use , Aged, 80 and over , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrimidines/therapeutic use , Pyrimidines/adverse effects , Young Adult , Adolescent , Benzamides/therapeutic use , Piperazines/therapeutic use , Piperazines/adverse effects , Prognosis , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/adverse effects
10.
Mol Cell ; 71(5): 848-857.e6, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30078725

ABSTRACT

A ten-eleven translocation (TET) ortholog exists as a DNA N6-methyladenine (6mA) demethylase (DMAD) in Drosophila. However, the molecular roles of 6mA and DMAD remain unexplored. Through genome-wide 6mA and transcriptome profiling in Drosophila brains and neuronal cells, we found that 6mA may epigenetically regulate a group of genes involved in neurodevelopment and neuronal functions. Mechanistically, DMAD interacts with the Trithorax-related complex protein Wds to maintain active transcription by dynamically demethylating intragenic 6mA. Accumulation of 6mA by depleting DMAD coordinates with Polycomb proteins and contributes to transcriptional repression of these genes. Our findings suggest that active 6mA demethylation by DMAD plays essential roles in fly CNS by orchestrating through added epigenetic mechanisms.


Subject(s)
Adenine/analogs & derivatives , Gene Expression/physiology , Neurons/metabolism , Polycomb-Group Proteins/metabolism , Adenine/metabolism , Animals , DNA Methylation/physiology , Demethylation , Drosophila/metabolism , Drosophila Proteins/metabolism , Epigenesis, Genetic/physiology , Gene Expression Profiling/methods , Genome/physiology
11.
Proc Natl Acad Sci U S A ; 120(39): e2307722120, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37725654

ABSTRACT

Single-cell RNA-seq (scRNA-seq) analysis of multiple samples separately can be costly and lead to batch effects. Exogenous barcodes or genome-wide RNA mutations can be used to demultiplex pooled scRNA-seq data, but they are experimentally or computationally challenging and limited in scope. Mitochondrial genomes are small but diverse, providing concise genotype information. We developed "mitoSplitter," an algorithm that demultiplexes samples using mitochondrial RNA (mtRNA) variants, and demonstrated that mtRNA variants can be used to demultiplex large-scale scRNA-seq data. Using affordable computational resources, mitoSplitter can accurately analyze 10 samples and 60,000 cells in 6 h. To avoid the batch effects from separated experiments, we applied mitoSplitter to analyze the responses of five non-small cell lung cancer cell lines to BET (Bromodomain and extraterminal) chemical degradation in a multiplexed fashion. We found the synthetic lethality of TOP2A inhibition and BET chemical degradation in BET inhibitor-resistant cells. The result indicates that mitoSplitter can accelerate the application of scRNA-seq assays in biomedical research.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , RNA, Mitochondrial , Single-Cell Gene Expression Analysis , Mitochondria/genetics
12.
Lancet ; 403(10445): 2720-2731, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38824941

ABSTRACT

BACKGROUND: Anti-PD-1 therapy and chemotherapy is a recommended first-line treatment for recurrent or metastatic nasopharyngeal carcinoma, but the role of PD-1 blockade remains unknown in patients with locoregionally advanced nasopharyngeal carcinoma. We assessed the addition of sintilimab, a PD-1 inhibitor, to standard chemoradiotherapy in this patient population. METHODS: This multicentre, open-label, parallel-group, randomised, controlled, phase 3 trial was conducted at nine hospitals in China. Adults aged 18-65 years with newly diagnosed high-risk non-metastatic stage III-IVa locoregionally advanced nasopharyngeal carcinoma (excluding T3-4N0 and T3N1) were eligible. Patients were randomly assigned (1:1) using blocks of four to receive gemcitabine and cisplatin induction chemotherapy followed by concurrent cisplatin radiotherapy (standard therapy group) or standard therapy with 200 mg sintilimab intravenously once every 3 weeks for 12 cycles (comprising three induction, three concurrent, and six adjuvant cycles to radiotherapy; sintilimab group). The primary endpoint was event-free survival from randomisation to disease recurrence (locoregional or distant) or death from any cause in the intention-to-treat population. Secondary endpoints included adverse events. This trial is registered with ClinicalTrials.gov (NCT03700476) and is now completed; follow-up is ongoing. FINDINGS: Between Dec 21, 2018, and March 31, 2020, 425 patients were enrolled and randomly assigned to the sintilimab (n=210) or standard therapy groups (n=215). At median follow-up of 41·9 months (IQR 38·0-44·8; 389 alive at primary data cutoff [Feb 28, 2023] and 366 [94%] had at least 36 months of follow-up), event-free survival was higher in the sintilimab group compared with the standard therapy group (36-month rates 86% [95% CI 81-90] vs 76% [70-81]; stratified hazard ratio 0·59 [0·38-0·92]; p=0·019). Grade 3-4 adverse events occurred in 155 (74%) in the sintilimab group versus 140 (65%) in the standard therapy group, with the most common being stomatitis (68 [33%] vs 64 [30%]), leukopenia (54 [26%] vs 48 [22%]), and neutropenia (50 [24%] vs 46 [21%]). Two (1%) patients died in the sintilimab group (both considered to be immune-related) and one (<1%) in the standard therapy group. Grade 3-4 immune-related adverse events occurred in 20 (10%) patients in the sintilimab group. INTERPRETATION: Addition of sintilimab to chemoradiotherapy improved event-free survival, albeit with higher but manageable adverse events. Longer follow-up is necessary to determine whether this regimen can be considered as the standard of care for patients with high-risk locoregionally advanced nasopharyngeal carcinoma. FUNDING: National Natural Science Foundation of China, Key-Area Research and Development Program of Guangdong Province, Natural Science Foundation of Guangdong Province, Overseas Expertise Introduction Project for Discipline Innovation, Guangzhou Municipal Health Commission, and Cancer Innovative Research Program of Sun Yat-sen University Cancer Center. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Subject(s)
Antibodies, Monoclonal, Humanized , Chemoradiotherapy , Induction Chemotherapy , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Humans , Middle Aged , Male , Female , Nasopharyngeal Carcinoma/therapy , Nasopharyngeal Carcinoma/drug therapy , Adult , China/epidemiology , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/therapy , Chemoradiotherapy/methods , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/administration & dosage , Aged , Cisplatin/therapeutic use , Cisplatin/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Gemcitabine , Deoxycytidine/analogs & derivatives , Deoxycytidine/therapeutic use , Deoxycytidine/administration & dosage , Young Adult , Adolescent , Progression-Free Survival
13.
Nat Mater ; 23(8): 1055-1062, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38831130

ABSTRACT

The coexistence of correlated electron and hole crystals enables the realization of quantum excitonic states, capable of hosting counterflow superfluidity and topological orders with long-range quantum entanglement. Here we report evidence for imbalanced electron-hole crystals in a doped Mott insulator, namely, α-RuCl3, through gate-tunable non-invasive van der Waals doping from graphene. Real-space imaging via scanning tunnelling microscopy reveals two distinct charge orderings at the lower and upper Hubbard band energies, whose origin is attributed to the correlation-driven honeycomb hole crystal composed of hole-rich Ru sites and rotational-symmetry-breaking paired electron crystal composed of electron-rich Ru-Ru bonds, respectively. Moreover, a gate-induced transition of electron-hole crystals is directly visualized, further corroborating their nature as correlation-driven charge crystals. The realization and atom-resolved visualization of imbalanced electron-hole crystals in a doped Mott insulator opens new doors in the search for correlated bosonic states within strongly correlated materials.

14.
Plant Cell ; 34(5): 2038-2055, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35188198

ABSTRACT

In tomato (Solanum lycopersicum) and other plants, the photoreceptor UV-RESISTANCE LOCUS 8 regulates plant UV-B photomorphogenesis by modulating the transcription of many genes, the majority of which depends on the transcription factor ELONGATED HYPOCOTYL 5 (HY5). HY5 transcription is induced and then rapidly attenuated by UV-B. However, neither the transcription factors that activate HY5 transcription nor the mechanism for its attenuation during UV-B signaling is known. Here, we report that the tomato B-BOX (BBX) transcription factors SlBBX20 and SlBBX21 interact with SlHY5 and bind to the SlHY5 promoter to activate its transcription. UV-B-induced SlHY5 expression and SlHY5-controlled UV-B responses are normal in slbbx20 and slbbx21 single mutants, but strongly compromised in the slbbx20 slbbx21 double mutant. Surprisingly, UV-B responses are also compromised in lines overexpressing SlBBX20 or SlBBX21. Both SlHY5 and SlBBX20 bind to G-box1 in the SlHY5 promoter. SlHY5 outcompetes SlBBX20 for binding to the SlHY5 promoter in vitro, and inhibits the association of SlBBX20 with the SlHY5 promoter in vivo. Overexpressing 35S:SlHY5-FLAG in the WT background inhibits UV-B-induced endogenous SlHY5 expression. Together, our results reveal the critical role of the SlBBX20/21-SlHY5 module in activating the expression of SlHY5, the gene product of which inhibits its own gene transcription under UV-B, forming an autoregulatory negative feedback loop that balances SlHY5 transcription in plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Solanum lycopersicum , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , Feedback , Gene Expression Regulation, Plant/genetics , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Transcription Factors/metabolism , Ultraviolet Rays
15.
Mol Ther ; 32(4): 878-889, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38311850

ABSTRACT

Cardiac fibrosis, a crucial pathological characteristic of various cardiac diseases, presents a significant treatment challenge. It involves the deposition of the extracellular matrix (ECM) and is influenced by genetic and epigenetic factors. Prior investigations have predominantly centered on delineating the substantial influence of epigenetic and epitranscriptomic mechanisms in driving the progression of fibrosis. Recent studies have illuminated additional avenues for modulating the progression of fibrosis, offering potential solutions to the challenging issues surrounding fibrosis treatment. In the context of cardiac fibrosis, an intricate interplay exists between m6A epitranscriptomic and epigenetics. This interplay governs various pathophysiological processes: mitochondrial dysfunction, mitochondrial fission, oxidative stress, autophagy, apoptosis, pyroptosis, ferroptosis, cell fate switching, and cell differentiation, all of which affect the advancement of cardiac fibrosis. In this comprehensive review, we meticulously analyze pertinent studies, emphasizing the interplay between m6A epitranscriptomics and partial epigenetics (including histone modifications and noncoding RNA), aiming to provide novel insights for cardiac fibrosis treatment.


Subject(s)
Heart Diseases , Humans , Adenine , Epigenesis, Genetic , Fibrosis
16.
Mol Ther ; 32(5): 1252-1265, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38504519

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapy has made great progress in treating lymphoma, yet patient outcomes still vary greatly. The lymphoma microenvironment may be an important factor in the efficacy of CAR T therapy. In this study, we designed a highly multiplexed imaging mass cytometry (IMC) panel to simultaneously quantify 31 biomarkers from 13 patients with relapsed/refractory diffuse large B cell lymphoma (DLBCL) who received CAR19/22 T cell therapy. A total of 20 sections were sampled before CAR T cell infusion or after infusion when relapse occurred. A total of 35 cell clusters were identified, annotated, and subsequently redefined into 10 metaclusters. The CD4+ T cell fraction was positively associated with remission duration. Significantly higher Ki67, CD57, and TIM3 levels and lower CD69 levels in T cells, especially the CD8+/CD4+ Tem and Te cell subsets, were seen in patients with poor outcomes. Cellular neighborhood containing more immune cells was associated with longer remission. Fibroblasts and vascular endothelial cells resided much closer to tumor cells in patients with poor response and short remission after CAR T therapy. Our work comprehensively and systematically dissects the relationship between cell composition, state, and spatial arrangement in the DLBCL microenvironment and the outcomes of CAR T cell therapy, which is beneficial to predict CAR T therapy efficacy.


Subject(s)
Immunotherapy, Adoptive , Lymphoma, Large B-Cell, Diffuse , Receptors, Chimeric Antigen , Single-Cell Analysis , Tumor Microenvironment , Humans , Immunotherapy, Adoptive/methods , Tumor Microenvironment/immunology , Lymphoma, Large B-Cell, Diffuse/therapy , Lymphoma, Large B-Cell, Diffuse/immunology , Single-Cell Analysis/methods , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/immunology , Female , Male , Treatment Outcome , Middle Aged , Adult , Biomarkers, Tumor , Aged
17.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Article in English | MEDLINE | ID: mdl-35086932

ABSTRACT

Single-cell RNA-sequencing (scRNA-seq) has become a powerful tool for biomedical research by providing a variety of valuable information with the advancement of computational tools. Lineage analysis based on scRNA-seq provides key insights into the fate of individual cells in various systems. However, such analysis is limited by several technical challenges. On top of the considerable computational expertise and resources, these analyses also require specific types of matching data such as exogenous barcode information or bulk assay for transposase-accessible chromatin with high throughput sequencing (ATAC-seq) data. To overcome these technical challenges, we developed a user-friendly computational algorithm called "LINEAGE" (label-free identification of endogenous informative single-cell mitochondrial RNA mutation for lineage analysis). Aiming to screen out endogenous markers of lineage located on mitochondrial reads from label-free scRNA-seq data to conduct lineage inference, LINEAGE integrates a marker selection strategy by feature subspace separation and de novo "low cross-entropy subspaces" identification. In this process, the mutation type and subspace-subspace "cross-entropy" of features were both taken into consideration. LINEAGE outperformed three other methods, which were designed for similar tasks as testified with two standard datasets in terms of biological accuracy and computational efficiency. Applied on a label-free scRNA-seq dataset of BRAF-mutated cancer cells, LINEAGE also revealed genes that contribute to BRAF inhibitor resistance. LINEAGE removes most of the technical hurdles of lineage analysis, which will remarkably accelerate the discovery of the important genes or cell-lineage clusters from scRNA-seq data.


Subject(s)
Cell Lineage/genetics , RNA, Mitochondrial/genetics , Sequence Analysis, RNA/methods , Algorithms , Animals , Cluster Analysis , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/methods , Humans , Mutation/genetics , RNA/analysis , Single-Cell Analysis/methods , Exome Sequencing/methods
18.
J Infect Dis ; 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39302695

ABSTRACT

Developing effective vaccines is necessary in combating new virus pandemics. For HIV and SARS-CoV-2, the induction of neutralizing antibodies (NAb) is important for vaccine protection; however, the exact mechanisms underlying protection require further study. Recent data emphasize that even Abs that do not exhibit neutralizing activity may contribute to immune defense. Abs exhibiting this function may counter virus mutations, which are acquired to escape from NAbs, and therefore, broaden the protective Ab response induced by vaccination. However, the steps leading to Ab Fc-mediated inhibition are complex. How can these functions be measured in vitro? What inhibitory assay is the most physiologically relevant at mimicking effective in vivo protection? This review provides a comprehensive update on the current knowledge gaps on the Ab Fc-mediated functions involved in HIV and SARS-CoV-2 protection. Understanding the inhibitory effects of these Abs is vital for designing the next generation of protective HIV and SARS-CoV-2 vaccines.

19.
J Lipid Res ; 65(4): 100527, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447926

ABSTRACT

Forkhead transcription factor 3 (FOXA3) has been shown to regulate metabolism and development. Hepatic FOXA3 is reduced in obesity and fatty liver disease. However, the role of hepatic FOXA3 in regulating obesity or steatohepatitis remains to be investigated. In this work, C57BL/6 mice were i.v. injected with AAV8-ALB-FOXA3 or the control virus. The mice were then fed a chow or Western diet for 16 weeks. The role of hepatic FOXA3 in energy metabolism and steatohepatitis was investigated. Plasma bile acid composition and the role of Takeda G protein-coupled receptor 5 (TGR5) in mediating the metabolic effects of FOXA3 were determined. Overexpression of hepatic FOXA3 reduced hepatic steatosis in chow-fed mice and attenuated Western diet-induced obesity and steatohepatitis. FOXA3 induced lipolysis and inhibited hepatic genes involved in bile acid uptake, resulting in elevated plasma bile acids. The beneficial effects of hepatic FOXA3 overexpression on Western diet-induced obesity and steatohepatitis were abolished in Tgr5-/- mice. Our data demonstrate that overexpression of hepatic FOXA3 prevents Western diet-induced obesity and steatohepatitis via activation of TGR5.


Subject(s)
Diet, Western , Hepatocyte Nuclear Factor 3-gamma , Liver , Mice, Inbred C57BL , Obesity , Receptors, G-Protein-Coupled , Animals , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Obesity/metabolism , Obesity/genetics , Obesity/etiology , Mice , Hepatocyte Nuclear Factor 3-gamma/metabolism , Hepatocyte Nuclear Factor 3-gamma/genetics , Liver/metabolism , Diet, Western/adverse effects , Male , Fatty Liver/metabolism , Fatty Liver/genetics , Fatty Liver/etiology , Bile Acids and Salts/metabolism
20.
J Biol Chem ; 299(7): 104873, 2023 07.
Article in English | MEDLINE | ID: mdl-37257820

ABSTRACT

Dysregulation of long noncoding RNAs (lncRNAs) contributes to tumorigenesis by modulating specific cancer-related pathways, but the roles of N6-methyladenosine (m6A)-enriched lncRNAs and underlying mechanisms remain elusive in nasopharyngeal carcinoma (NPC). Here, we reanalyzed the previous genome-wide analysis of lncRNA profiles in 18 pairs of NPC and normal tissues as well as in ten paired samples from NPC with or without post-treatment metastases. We discerned that an oncogenic m6A-enriched lncRNA, LINC00839, which was substantially upregulated in NPC and correlated with poor clinical prognosis, promoted NPC growth and metastasis both in vitro and in vivo. Mechanistically, by using RNA pull-down assay combined with mass spectrometry, we found that LINC00839 interacted directly with the transcription factor, TATA-box binding protein associated factor (TAF15). Besides, chromatin immunoprecipitation and dual-luciferase report assays demonstrated that LINC00839 coordinated the recruitment of TAF15 to the promoter region of amine oxidase copper-containing 1 (AOC1), which encodes a secreted glycoprotein playing vital roles in various cancers, thereby activating AOC1 transcription in trans. In this study, potential effects of AOC1 in NPC progression were first proposed. Moreover, ectopic expression of AOC1 partially rescued the inhibitory effect of downregulation of LINC00839 in NPC. Furthermore, we showed that silencing vir-like m6A methyltransferase-associated (VIRMA) and insulin-like growth factor 2 mRNA-binding proteins 1 (IGF2BP1) attenuated the expression level and RNA stability of LINC00839 in an m6A-dependent manner. Taken together, our study unveils a novel oncogenic VIRMA/IGF2BP1-LINC00839-TAF15-AOC1 axis and highlights the significance and prognostic value of LINC00839 expression in NPC carcinogenesis.


Subject(s)
Nasopharyngeal Neoplasms , RNA, Long Noncoding , TATA-Binding Protein Associated Factors , Humans , Amines , Carcinogenesis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/pathology , Oxidoreductases/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , TATA-Binding Protein Associated Factors/genetics , TATA-Binding Protein Associated Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL