ABSTRACT
Developing effective vaccines is necessary in combating new virus pandemics. For HIV and SARS-CoV-2, the induction of neutralizing antibodies (NAb) is important for vaccine protection; however, the exact mechanisms underlying protection require further study. Recent data emphasize that even Abs that do not exhibit neutralizing activity may contribute to immune defense. Abs exhibiting this function may counter virus mutations, which are acquired to escape from NAbs, and therefore, broaden the protective Ab response induced by vaccination. However, the steps leading to Ab Fc-mediated inhibition are complex. How can these functions be measured in vitro? What inhibitory assay is the most physiologically relevant at mimicking effective in vivo protection? This review provides a comprehensive update on the current knowledge gaps on the Ab Fc-mediated functions involved in HIV and SARS-CoV-2 protection. Understanding the inhibitory effects of these Abs is vital for designing the next generation of protective HIV and SARS-CoV-2 vaccines.
ABSTRACT
The processing of Citrus grandis Osbeck cv. Mato Peiyu (CGMP) fruits generates a considerable amount of waste, mainly the flavedo, albedo, and segment membrane; the generated waste yields severe environmental and economic challenges. In this study, we tried to reclaim some functional chemicals from the waste. Our data indicated that the essential oil content in the flavedo was 0.76-1.34%, with the major component being monoterpenes (93.75% in August, declining to 85.56% in November, including mainly limonene (87.08% to 81.12%) and others such as ß-myrcene). p-Synephrine (mg/100 g dry weight) declined accordingly (flavedo, 10.40 to 2.00; albedo, 1.80 to 0.25; segment membrane, 0.3 in August, 0.2 in September, and none since October). Polyphenols (in µg/g) included gallic acid (70.32-110.25, 99.27-252.89, and 105.78-187.36, respectively); protocatechuic acid (65.32-204.94, 26.35-72.35, and 214.98-302.65, respectively), p-coumaric acid (30.63-169.13, 4.32-17.00, and 6.68-34.32, respectively), ferulic acid (12.36-39.36, 1.21-10.25, and 17.07-39.63, respectively), and chlorogenic acid (59.19-199.36, 33.08-108.57, and 65.32-150.14, respectively). Flavonoids (in µg/g) included naringin (flavedo, 89.32-283.19), quercetin (181.05-248.51), nobiletin (259.75-563.7), hesperidin, and diosmin. The phytosterol content (mg/100 g) was 12.50-44.00 in the flavedo. The total dietary fiber in the segment membrane was 57 g/100 g. The antioxidant activity against the DPPH⢠and ABTS+⢠free radicals was moderately high. In conclusion, the waste of CGMP fruits is worth reclaiming for essential oil, p-synephrine, polyphenolics, and dietary fiber. Notably, p-synephrine content (flavedo: <8 mg/100 g dry weight, albedo: <2.0, or segment membrane: <0.4 mg) can serve as a marker of the internal maturation of CGMP fruits.
Subject(s)
Citrus , Oils, Volatile , Citrus/chemistry , Synephrine/analysis , Flavonoids/chemistry , Antioxidants/chemistry , Plant Extracts/chemistry , Oils, Volatile/analysis , Fruit/chemistryABSTRACT
The development of an effective vaccine against HIV is desperately needed. The successive failures of HIV vaccine efficacy trials in recent decades have shown the difficulty of inducing an appropriate protective immune response to fight HIV. Different correlates of antibody parameters associated with a decreased risk of HIV-1 acquisition have been identified. However, these parameters are difficult to reproduce and improve, possibly because they have an intricate and combined action. Here, we describe the numerous antibody (Ab) functions associated with HIV-1 protection and report the interrelated parameters regulating their complex functions. Indeed, besides neutralizing and Fc-mediated activity, additional factors such as Ab type, concentration and kinetics of induction, and Fc-receptor expression and binding capacity also influence the protective effect conferred by Abs. As these parameters were described to be associated with ethnicity, age and sex, these additional factors must be considered for the development of an effective immune response. Therefore, future vaccine designs need to consider these multifaceted Ab functions together with the demographic attributes of the patient populations.
Subject(s)
AIDS Vaccines , HIV Infections , HIV-1 , Antibodies, Neutralizing , Antibody Formation , HIV Antibodies/pharmacology , Humans , Receptors, Fc , VaccinationABSTRACT
Inhibition of the HIV-1 fusion process constitutes a promising strategy to neutralize the virus at an early stage before it enters the cell. In this process, the envelope glycoprotein (Env) plays a central role by promoting membrane fusion. We previously identified a vulnerability at the flexible C-terminal end of the gp41 C-terminal heptad repeat (CHR) region to inhibition by a single-chain miniprotein (named covNHR-N) that mimics the first half of the gp41 N-terminal heptad repeat (NHR). The miniprotein exhibited low stability, moderate binding to its complementary CHR region, both as an isolated peptide and in native trimeric Envs, and low inhibitory activity against a panel of pseudoviruses. The addition of a disulfide bond stabilizing the miniprotein increased its inhibitory activity, without altering the binding affinity. Here, to further study the effect of conformational stability on binding and inhibitory potency, we additionally stabilized these miniproteins by engineering a second disulfide bond stapling their N-terminal end, The new disulfide-bond strongly stabilizes the protein, increases binding affinity for the CHR target and strongly improves inhibitory activity against several HIV-1 strains. Moreover, high inhibitory activity could be achieved without targeting the preserved hydrophobic pocket motif of gp41. These results may have implications in the discovery of new strategies to inhibit HIV targeting the gp41 CHR region.
Subject(s)
HIV Fusion Inhibitors , HIV-1 , Amino Acid Sequence , Disulfides/metabolism , HIV Envelope Protein gp41/chemistry , HIV Fusion Inhibitors/pharmacology , Protein ConformationABSTRACT
After being harvested, cacao beans are usually subjected to very complex processes in order to improve their chemical and physical characteristics, like tastefulness with chocolate characteristic flavors. The traditional process consists of three major processing stages: fermentation, drying, and roasting, while most of the fermentation is carried out by an on-farm in-box process. In Taiwan, we have two major cocoa beans, the red and the yellow. We proposed that the major factor affecting the variation in tastes and colors in the finished cocoa might be the difference between cultivars. To uncover this, we examined the effect of the three major processes including fermentation, drying and roasting on these two cocoa beans. Results indicated that the two cultivars really behaved differently (despite before or after processing with fermentation, drying, and roasting) with respect to the patterns of fatty acids (palmitic, stearic, oleic, and arachidonic); triacylglycerols:1,2,3-trioleoyl-glycerol (OOO); 1-stearoyl-2,3-oleoyl-glycerol (SOO); 1-stearoyl-sn-2-oleoyl-3-arachidoyl- glycerol (SOA); 1,3-distearyol-sn-2-oleoyl-glycerol (SOS); organic acids (citric, tartaric, acetic, and malic); soluble sugars (glucose and fructose); amino acids; total phenolics; total flavonoids; and volatiles. Our findings suggest that to choose specific processing conditions for each specific cocoa genotype is the crucial point of processing cocoa with consistent taste and color.
Subject(s)
Cacao , Malvaceae , Cacao/chemistry , Fermentation , Glycerol/metabolism , TaiwanABSTRACT
Houttuynia cordata Thunb. is a medicinal and edible plant that has been commonly used in traditional Chinese medicine since ancient times. This study used headspace solid-phase microextraction (HS-SPME) and direct injection, combined with gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS), to identify the volatile compounds in H. cordata. Extraction from different parts of the plant using different extraction techniques for the identification of volatile compounds were determined. A total of 93 volatile components were analyzed in the leaves, stems, rhizomes, and whole plant samples of H. cordata. The leaves contained more (Z)-3-hexenal, ß-myrcene, (Z)-ß-ocimene, and (4E,6E)-allo-ocimene; the stems contained more geranyl acetate and nerolidol; and rhizomes contained more α-pinene, ß-pinene, limonene, 2-undecanone, and decanoyl acetaldehyde. Among them, the essential oil extracted by HS-SPME could produce more monoterpenes, while direct injection could obtain higher contents of aliphatic ketones, terpene esters, sesquiterpenes, and was more conducive to the extraction of 2-undecanone and decanoyl acetaldehyde.
Subject(s)
Houttuynia , Volatile Organic Compounds , Houttuynia/chemistry , Gas Chromatography-Mass Spectrometry/methods , Monoterpenes/analysis , Volatile Organic Compounds/analysis , Solid Phase Microextraction/methodsABSTRACT
Coix lacryma-jobi var. ma-yuen L. Gramineae is widely cultivated in Taiwan. Literature regarding the molecular action mechanism of coixol on tyrosinase and the application of coicis seed extracts to the processing of facial masks is still lacking. Solvent extractability analysis revealed that most of the polyphenolics in coicis seeds were water soluble (3.17 ± 0.12 to 3.63 ± 0.07 µg/mLGAE). In contrast, the methanolic extract contained the most flavonoids (0.06 ± 0.00~0.26 ± 0.03 µg/mL QE) and coixol (11.43 ± 0.13~12.83 ± 0.14 µg/mL), showing potent antioxidant capability. Additionally, the contents of coixenolide (176.77 ± 5.91 to 238.60 ± 0.21 µg/g), phytosterol (52.45 ± 2.05 to 58.23 ± 1.14 mg/g), and polysaccharides (3.42 ± 0.10 to 4.41 ± 0.10 mg/g) were rather high. The aqueous extract (10 µg/mL) and the ethanolic extract (1 mg/mL) showed no cytotoxicity to B16F10 melanocytes. More attractively, the ethanolic extract at 1 mg/mL caused 48.4% inhibition of tyrosinase activity in B16F10 melanocytes, and 50.7% on human tyrosinase (hTyr) fragment 369-377. Conclusively, the coicis seed extracts containing abundant nutraceuticals with promising anti-hTyr activity and moisturizing capability can serve as good ingredients for facial mask processing.
Subject(s)
Coix , Cosmetics , Benzoxazoles/pharmacology , Cosmetics/pharmacology , Ethanol , Humans , Monophenol Monooxygenase , Plant Extracts/pharmacology , SeedsABSTRACT
BACKGROUND: Plasmodium falciparum erythrocyte binding antigen-175 (PfEBA-175) is a candidate antigen for a blood-stage malaria vaccine, while various polymorphisms and dimorphism have prevented to development of effective vaccines based on this gene. This study aimed to investigate the dimorphism of PfEBA-175 on both the Bioko Island and continent of Equatorial Guinea, as well as the genetic polymorphism and natural selection of global PfEBA-175. METHODS: The allelic dimorphism of PfEBA-175 region II of 297 bloods samples from Equatorial Guinea in 2018 and 2019 were investigated by nested polymerase chain reaction and sequencing. Polymorphic characteristics and the effect of natural selection were analyzed using MEGA 7.0, DnaSP 6.0 and PopART programs. Protein function prediction of new amino acid mutation sites was performed using PolyPhen-2 and Foldx program. RESULTS: Both Bioko Island and Bata district populations, the frequency of the F-fragment was higher than that of the C-fragment of PfEBA-175 gene. The PfEBA-175 of Bioko Island and Bata district isolates showed a high degree of genetic variability and heterogeneity, with π values of 0.00407 & 0.00411 and Hd values of 0.958 & 0.976 for nucleotide diversity, respectively. The values of Tajima's D of PfEBA-175 on Bata district and Bioko Island were 0.56395 and - 0.27018, respectively. Globally, PfEBA-175 isolates from Asia were more diverse than those from Africa and South America, and genetic differentiation quantified by the fixation index between Asian and South American countries populations was significant (FST > 0.15, P < 0.05). A total of 310 global isolates clustered in 92 haplotypes, and only one cluster contained isolates from three continents. The mutations A34T, K109E, D278Y, K301N, L305V and D329N were predicted as probably damaging. CONCLUSIONS: This study demonstrated that the dimorphism of F-fragment PfEBA-175 was remarkably predominant in the study area. The distribution patterns and genetic diversity of PfEBA-175 in Equatorial Guinea isolates were similar another region isolates. And the levels of recombination events suggested that natural selection and intragenic recombination might be the main drivers of genetic diversity in global PfEBA-175. These results have important reference value for the development of blood-stage malaria vaccine based on this antigen.
Subject(s)
Antigens, Protozoan/genetics , Plasmodium falciparum/genetics , Polymorphism, Genetic , Protozoan Proteins/genetics , Selection, Genetic , Adolescent , Adult , Aged , Child , Child, Preschool , Equatorial Guinea , Humans , Infant , Malaria, Falciparum/parasitology , Middle Aged , Young AdultABSTRACT
BACKGROUND: Thrombospondin-related adhesive protein (TRAP) is a transmembrane protein that plays a crucial role during the invasion of Plasmodium falciparum into liver cells. As a potential malaria vaccine candidate, the genetic diversity and natural selection of PfTRAP was assessed and the global PfTRAP polymorphism pattern was described. METHODS: 153 blood spot samples from Bioko malaria patients were collected during 2016-2018 and the target TRAP gene was amplified. Together with the sequences from database, nucleotide diversity and natural selection analysis, and the structural prediction were preformed using bioinformatical tools. RESULTS: A total of 119 Bioko PfTRAP sequences were amplified successfully. On Bioko Island, PfTRAP shows its high degree of genetic diversity and heterogeneity, with π value for 0.01046 and Hd for 0.99. The value of dN-dS (6.2231, p < 0.05) hinted at natural selection of PfTRAP on Bioko Island. Globally, the African PfTRAPs showed more diverse than the Asian ones, and significant genetic differentiation was discovered by the fixation index between African and Asian countries (Fst > 0.15, p < 0.05). 667 Asian isolates clustered in 136 haplotypes and 739 African isolates clustered in 528 haplotypes by network analysis. The mutations I116T, L221I, Y128F, G228V and P299S were predicted as probably damaging by PolyPhen online service, while mutations L49V, R285G, R285S, P299S and K421N would lead to a significant increase of free energy difference (ΔΔG > 1) indicated a destabilization of protein structure. CONCLUSIONS: Evidences in the present investigation supported that PfTRAP gene from Bioko Island and other malaria endemic countries is highly polymorphic (especially at T cell epitopes), which provided the genetic information background for developing an PfTRAP-based universal effective vaccine. Moreover, some mutations have been shown to be detrimental to the protein structure or function and deserve further study and continuous monitoring.
Subject(s)
Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Epitopes , Equatorial Guinea/epidemiology , Gene Frequency , Genetic Variation , Haplotypes , Humans , Malaria Vaccines , Malaria, Falciparum/epidemiology , Malaria, Falciparum/immunology , Plasmodium falciparum/immunology , Polymorphism, Genetic , Protozoan Proteins/chemistry , Protozoan Proteins/immunology , Selection, GeneticABSTRACT
BACKGROUND: Plasmodium falciparum circumsporozoite protein (PfCSP) is a potential malaria vaccine candidate, but various polymorphisms of the pfcsp gene among global P. falciparum population become the major barrier to the effectiveness of vaccines. This study aimed to investigate the genetic polymorphisms and natural selection of pfcsp in Bioko and the comparison among global P. falciparum population. METHODS: From January 2011 to December 2018, 148 blood samples were collected from P. falciparum infected Bioko patients and 96 monoclonal sequences of them were successfully acquired and analysed with 2200 global pfcsp sequences mined from MalariaGEN Pf3k Database and NCBI. RESULTS: In Bioko, the N-terminus of pfcsp showed limited genetic variations and the numbers of repetitive sequences (NANP/NVDP) were mainly found as 40 (35%) and 41 (34%) in central region. Most polymorphic characters were found in Th2R/Th3R region, where natural selection (p > 0.05) and recombination occurred. The overall pattern of Bioko pfcsp gene had no obvious deviation from African mainland pfcsp (Fst = 0.00878, p < 0.05). The comparative analysis of Bioko and global pfcsp displayed the various mutation patterns and obvious geographic differentiation among populations from four continents (p < 0.05). The global pfcsp C-terminal sequences were clustered into 138 different haplotypes (H_1 to H_138). Only 3.35% of sequences matched 3D7 strain haplotype (H_1). CONCLUSIONS: The genetic polymorphism phenomena of pfcsp were found universal in Bioko and global isolates and the majority mutations located at T cell epitopes. Global genetic polymorphism and geographical characteristics were recommended to be considered for future improvement of malaria vaccine design.
Subject(s)
Plasmodium falciparum/genetics , Polymorphism, Genetic , Protozoan Proteins/genetics , Equatorial Guinea , Haplotypes , Selection, GeneticABSTRACT
Phalaenopsis is the most important economic crop in the Orchidaceae family. There are currently numerous beautiful and colorful Phalaenopsis flowers, but only a few species of Phalaenopsis have an aroma. This study reports the analysis volatile components present in P. Nobby's Pacific Sunset by solid-phase microextraction (SPME) coupled with gas chromatography (GC) and gas chromatography/mass spectrometry (GC-MS). The results show that the optimal extraction conditions were obtained by using a DVB/CAR/PDMS fiber. A total of 31 compounds were identified, with the major compounds being geraniol, linalool and α-farnesene. P. Nobby's Pacific Sunset had the highest odor concentration from 09:00 to 13:00 on the eighth day of storage. It was also found that in P. Nobby's Pacific Sunset orchids the dorsal sepals and petals had the highest odor concentrations, whereas the column had the lowest.
Subject(s)
Flowers/chemistry , Orchidaceae/chemistry , Plant Extracts/isolation & purification , Adsorption , Solid Phase Microextraction , Volatile Organic Compounds/isolation & purificationABSTRACT
Taiwanese college students (N = 101) participated in the study to examine the effects of the amount of an endowment, the tangibility of an endowment, and the certainty of the recipient on selfishness in a modified dictator game. Results showed that dictators were more selfish when allocating tangible (money) than less tangible (honor credits) endowments. Selfishness was higher when large amounts of money were involved. The certainty of the recipient was manipulated by whether the recipient was chosen and announced before or after the decision. Unexpectedly, participants were more self-interested in the certain-recipient condition than in the uncertain-recipient condition. In the honor condition, the amount of an endowment and the certainty of the recipient did not affect participants' allocations.
Subject(s)
Financial Management , Games, Experimental , Motivation , Narcissism , Power, Psychological , Self Concept , Uncertainty , Altruism , Decision Making , Female , Humans , Male , Students/psychology , Taiwan , Young AdultABSTRACT
Oranges contain many natural active chemicals, organic acids, and polysaccharides. Aging processing is commonly used to modify the color, quality, functional components, and stability of fruits. This study assesses the preparation of aging black oranges using various pre-treatments and solid fermentation. Oranges were aged for six weeks in fresh, non-blanching, blanching, and hot air-assisted aging cycle (AA) groups. The oranges' shrinkage ratio, color difference values, and soluble solids content changed significantly (p < 0.05). Principal component analysis indicated that aging fermentation treatment accelerated glycolysis and increased the ratio of reducing sugars. The enhanced browning can be associated with the oxidation of ascorbic acid (0.66-0.47 mg/g) and the formation of 5-hydroxymethylfurfural (5-HMF) (0.09 mg/g). Furthermore, the presence of free polyphenols led to an increase in the total polyphenol and total flavonoid content. It also had a synergistic effect with 5-HMF in increasing the 2,2-diphenyl-1-picrylhydrazyl free radical-scavenging capacity and ferric ion-reducing antioxidant power (p < 0.05). AA had superior α-glucosidase inhibitory ability increasing from 67.31 to 80.48%. It also reduced the development time by 33%. Therefore, aging technology can enhance the bioactive compounds in oranges and provide a reference for future whole-fruit aging fermentation and health product creation.
ABSTRACT
Ginger-infused sesame oil enriches the nutrition and provides enhanced flavor for the foods. An original processing procedure and module for evaluation were established in this study, using different raw materials (Guangdong and Chu ginger) and treatments (ginger powder, extract, and both). The quality, functionality, and flavor of the infused oils were evaluated. Ginger-infused sesame oil contained 0.58-3.22 µg/g of 6-gingerol, 0.21-0.88 µg/g of 6-shogaol. The number range of volatile compounds from 48 to 55 identified by gas chromatography-mass spectrometry varies depending on different process procedures. Agglomerative hierarchical clustering analysis revealed the flavor profiles were clustered by different varieties, while gingerol and phytosterol was by different treatments. In conclusion, sesame oil was an appropriate carrier for gingerol and phytosterol, which are characterized by higher antioxidant capacities (p < 0.05). These results show the benefits of developing infused oil products with enhanced functional and sensory properties.
ABSTRACT
BACKGROUND: Adolescent major depressive disorder (MDD) is a significant mental health concern that often leads to recurrent depression in adulthood. Resting-state functional magnetic resonance imaging (rs-fMRI) offers unique insights into the neural mechanisms underlying this condition. However, despite previous research, the specific vulnerable brain regions affected in adolescent MDD patients have not been fully elucidated. AIM: To identify consistent vulnerable brain regions in adolescent MDD patients using rs-fMRI and activation likelihood estimation (ALE) meta-analysis. METHODS: We performed a comprehensive literature search through July 12, 2023, for studies investigating brain functional changes in adolescent MDD patients. We utilized regional homogeneity (ReHo), amplitude of low-frequency fluctuations (ALFF) and fractional ALFF (fALFF) analyses. We compared the regions of aberrant spontaneous neural activity in adolescents with MDD vs healthy controls (HCs) using ALE. RESULTS: Ten studies (369 adolescent MDD patients and 313 HCs) were included. Combining the ReHo and ALFF/fALFF data, the results revealed that the activity in the right cuneus and left precuneus was lower in the adolescent MDD patients than in the HCs (voxel size: 648 mm3, P < 0.05), and no brain region exhibited increased activity. Based on the ALFF data, we found decreased activity in the right cuneus and left precuneus in adolescent MDD patients (voxel size: 736 mm3, P < 0.05), with no regions exhibiting increased activity. CONCLUSION: Through ALE meta-analysis, we consistently identified the right cuneus and left precuneus as vulnerable brain regions in adolescent MDD patients, increasing our understanding of the neuropathology of affected adolescents.
ABSTRACT
Human respiratory syncytial virus (HRSV) is the most prevalent pathogen contributing to acute respiratory tract infections (ARTI) in infants and young children and can lead to significant financial and medical costs. Here, we developed a simultaneous, dual-gene and ultrasensitive detection system for typing HRSV within 60 minutes that needs only minimum laboratory support. Briefly, multiplex integrating reverse transcription-recombinase polymerase amplification (RT-RPA) was performed with viral RNA extracted from nasopharyngeal swabs as a template for the amplification of the specific regions of subtypes A (HRSVA) and B (HRSVB) of HRSV. Next, the Pyrococcus furiosus Argonaute (PfAgo) protein utilizes small 5'-phosphorylated DNA guides to cleave target sequences and produce fluorophore signals (FAM and ROX). Compared with the traditional gold standard (RT-qPCR) and direct immunofluorescence assay (DFA), this method has the additional advantages of easy operation, efficiency and sensitivity, with a limit of detection (LOD) of 1 copy/µL. In terms of clinical sample validation, the diagnostic accuracy of the method for determining the HRSVA and HRSVB infection was greater than 95%. This technique provides a reliable point-of-care (POC) testing for the diagnosis of HRSV-induced ARTI in children and for outbreak management, especially in resource-limited settings.
Subject(s)
RNA, Viral , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Sensitivity and Specificity , Humans , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/isolation & purification , Respiratory Syncytial Virus Infections/diagnosis , Respiratory Syncytial Virus Infections/virology , RNA, Viral/genetics , Infant , Pyrococcus furiosus/genetics , Pyrococcus furiosus/isolation & purification , Argonaute Proteins/genetics , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Limit of Detection , Nasopharynx/virology , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/virology , Child, PreschoolABSTRACT
The volatile components in single-flowered and double-flowered Chinese narcissus were identified by headspace-solid phase microextraction (HS-SPME) coupled with GC and GC/MS. Changes in aroma during the vase-life (days 0, 1, 2, 3, 4, 5 and 6) of two samples were also studied. A total of 35 compounds were identified, of which all were present in single-flowered and 26 in double-flowered samples. The main aroma components were (E)-ß-ocimene, and benzyl acetate. Single-flowered narcissus have a higher percentage of benzyl acetate, while double-flowered narcissus have a higher percentage of 1,8-cineole. In vase-life, the total volatile component content peaked on day 2 for single-flowered and day 3 for the double-flowered narcissus. For both single-flowered and double-flowered narcissus flowers, the total content of volatile components had decreased significantly by day 4.
Subject(s)
Narcissus/chemistry , Solid Phase Microextraction/methods , Volatile Organic Compounds/chemistry , Acyclic Monoterpenes , Alkenes/chemistry , Gas Chromatography-Mass SpectrometryABSTRACT
OBJECTIVES: Broadly neutralizing antibodies have been proposed as key actors for HIV vaccine development. However, they display features of highly matured antibodies, hampering their induction by vaccination. As protective broadly neutralizing antibodies should be induced rapidly after vaccination and should neutralize the early-transmitted founder (T/F) viruses, we searched whether such antibodies may be induced following HIV infection. DESIGN: Sera were collected during acute infection (Day 0) and at viral set point (Month 6/12) and the neutralizing activity against T/F strains was investigated. Neutralizing activity in sera collected from chronic progressor was analyzed in parallel. METHODS: We compared neutralizing activity against T/F strains with neutralizing activity against non-T/F strains using the conventional TZM-bL neutralizing assay. RESULTS: We found neutralizing antibodies (nAbs) preferentially directed against T/F viruses in sera collected shortly after infection. This humoral response evolved by shifting to nAbs directed against non-T/F strains. CONCLUSION: Although features associated with nAbs directed against T/F viruses need further investigations, these early-induced nAbs may display lesser maturation characteristics; therefore, this might increase their interest for future vaccine designs.
Subject(s)
HIV Infections , Humans , HIV Infections/prevention & control , Broadly Neutralizing AntibodiesABSTRACT
CONTEXT: Previously, we showed the essential oils (EO) of the mountain celery [Cryptotaenia japonica Hass (Umbelliferae)] seeds (MCS) to be a prominent hypolipidemic agent. OBJECTIVE: We hypothesized the aqueous extract (AE) of its seeds could also exhibit a comparable nutritional effect. MATERIALS AND METHODS: Experiments were carried out for compositional analysis, antioxidant assay, and hypolipidaemic assay with AE in hamsters. RESULTS: AE contained soluble arabinogalactan (AGal) with molecular weight (MW) 878 kDa. AE also was enriched in polyphenolics and flavonoids, reaching 30.4 and 2.20 mg/100 g, respectively. AGal consisted of eight monosaccharides (in mols %), galactose (28.75), arabinose (24.84), glucose (17.91), mannose (6.93), ribose (6.03), fucose (5.83), xylose (5.30), and rhamnose (4.41), with average MW 878 kDa. In vitro, AE showed potent ferrous chelating and DPPH scavenging effects but only moderate H2O2 scavenging capability. In hamsters, AE exhibited promising hypolipidemic bioactivity, in particular, the HDL-C and hepatic unsaturated fatty acid (UFA) biosynthesis regarding oleic, linoleic, and arachidonic acids. DISCUSSION AND CONCLUSION: The presence of AGal enhanced the hypolipidemic and antioxidative bioactivity of MCS. MCS is feasibly beneficial to the hepatic de novo UFA synthesis and the hypolipidemics as evidenced by hamster model.
Subject(s)
Apium , Galactans/isolation & purification , Hypolipidemic Agents/isolation & purification , Plant Extracts/isolation & purification , Polyphenols/isolation & purification , Polysaccharides, Bacterial/isolation & purification , Seeds , Animals , Cricetinae , Drug Synergism , Fatty Acids/metabolism , Galactans/metabolism , Hypolipidemic Agents/metabolism , Male , Mesocricetus , Plant Extracts/metabolism , Polyphenols/metabolism , Polysaccharides, Bacterial/metabolism , Random AllocationABSTRACT
Roasting can increase the Maillard reaction and caramelization of sweet potatoes to create an attractive appearance, color, aroma, and taste, and is rapidly increasing in the commercial market. This study mainly analyzed the influence of roasting sweet potatoes, with and without the peel, on sweet potato quality and flavor characteristics combined with sensory qualities. The results showed that the a* value (1.65-8.10), browning degree (58.30-108.91), total acidity (0.14-0.21 g/100 g, DW), and maltose content (0.00-46.16 g/100 g, DW) of roasted sweet potatoes increased with roasting time. A total of 46 volatile compounds were detected and 2-furanmethanol, furfural, and maltol were identified as the main sources of the aroma of roasted sweet potatoes. A sensory evaluation based on a comprehensive nine-point acceptance test and descriptive analysis showed that roasting for 1 to 2 h resulted in the highest acceptance score (6.20-6.65), including a golden-yellow color, sweet taste, and fibrous texture. The sweet potatoes became brown after roasting for 2.5 to 3 h and gained a burnt and sour taste, which reduced the acceptance score (4.65-5.75). These results can provide a reference for increased quality in the food industry production of roasted sweet potatoes.