Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Publication year range
1.
Plant Physiol ; 194(4): 2533-2548, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38142233

ABSTRACT

Aluminum-activated malate transporters (ALMTs) and slow anion channels (SLACs) are important in various physiological processes in plants, including stomatal regulation, nutrient uptake, and in response to abiotic stress such as aluminum toxicity. To understand their evolutionary history and functional divergence, we conducted phylogenetic and expression analyses of ALMTs and SLACs in green plants. Our findings from phylogenetic studies indicate that ALMTs and SLACs may have originated from green algae and red algae, respectively. The ALMTs of early land plants and charophytes formed a monophyletic clade consisting of three subgroups. A single duplication event of ALMTs was identified in vascular plants and subsequent duplications into six clades occurred in angiosperms, including an identified clade, 1-1. The ALMTs experienced gene number losses in clades 1-1 and 2-1 and expansions in clades 1-2 and 2-2b. Interestingly, the expansion of clade 1-2 was also associated with higher expression levels compared to genes in clades that experienced apparent loss. SLACs first diversified in bryophytes, followed by duplication in vascular plants, giving rise to three distinct clades (I, II, and III), and clade II potentially associated with stomatal control in seed plants. SLACs show losses in clades II and III without substantial expansion in clade I. Additionally, ALMT clade 2-2 and SLAC clade III contain genes specifically expressed in reproductive organs and roots in angiosperms, lycophytes, and mosses, indicating neofunctionalization. In summary, our study demonstrates the evolutionary complexity of ALMTs and SLACs, highlighting their crucial role in the adaptation and diversification of vascular plants.


Subject(s)
Magnoliopsida , Plant Proteins , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Aluminum/metabolism , Plants/genetics , Plants/metabolism , Biological Evolution , Magnoliopsida/genetics , Evolution, Molecular
2.
Plant Genome ; 17(2): e20448, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38602082

ABSTRACT

The gene expression landscape across different tissues and developmental stages reflects their biological functions and evolutionary patterns. Integrative and comprehensive analyses of all transcriptomic data in an organism are instrumental to obtaining a comprehensive picture of gene expression landscape. Such studies are still very limited in sorghum, which limits the discovery of the genetic basis underlying complex agricultural traits in sorghum. We characterized the genome-wide expression landscape for sorghum using 873 RNA-sequencing (RNA-seq) datasets representing 19 tissues. Our integrative analysis of these RNA-seq data provides the most comprehensive transcriptomic atlas for sorghum, which will be valuable for the sorghum research community for functional characterizations of sorghum genes. Based on the transcriptome atlas, we identified 595 housekeeping genes (HKGs) and 2080 tissue-specific expression genes (TEGs) for the 19 tissues. We identified different gene features between HKGs and TEGs, and we found that HKGs have experienced stronger selective constraints than TEGs. Furthermore, we built a transcriptome-wide co-expression network (TW-CEN) comprising 35 modules with each module enriched in specific Gene Ontology terms. High-connectivity genes in TW-CEN tend to express at high levels while undergoing intensive selective pressure. We also built global and seed-preferential co-expression networks of starch synthesis pathways, which indicated that photosynthesis and microtubule-based movement play important roles in starch synthesis. The global transcriptome atlas of sorghum generated by this study provides an important functional genomics resource for trait discovery and insight into starch synthesis regulation in sorghum.


Subject(s)
Gene Expression Regulation, Plant , Sorghum , Starch , Transcriptome , Sorghum/genetics , Sorghum/metabolism , Starch/biosynthesis , Starch/metabolism , Gene Regulatory Networks , Gene Expression Profiling
3.
bioRxiv ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38903079

ABSTRACT

Poly(A)-binding protein (Pab1 in yeast) is involved in mRNA decay and translation initiation, but its molecular functions are incompletely understood. We found that auxin-induced degradation of Pab1 reduced bulk mRNA and polysome abundance in a manner suppressed by deleting the catalytic subunit of decapping enzyme (dcp2Δ), demonstrating that enhanced decapping/degradation is the major driver of reduced mRNA abundance and protein synthesis at limiting Pab1 levels. An increased median poly(A) tail length conferred by Pab1 depletion was also nullified by dcp2Δ, suggesting that mRNA isoforms with shorter tails are preferentially decapped/degraded at limiting Pab1. In contrast to findings on mammalian cells, the translational efficiencies (TEs) of many mRNAs were altered by Pab1 depletion; however, these changes were broadly diminished by dcp2∆, suggesting that reduced mRNA abundance is a major driver of translational reprogramming at limiting Pab1. Thus, assembly of the closed-loop mRNP via PABP-eIF4G interaction appears to be dispensable for normal translation of most yeast mRNAs in vivo. Interestingly, histone mRNAs and proteins are preferentially diminished on Pab1 depletion dependent on Dcp2, accompanied by activation of internal cryptic promoters in the manner expected for reduced nucleosome occupancies, revealing a new layer of post-transcriptional control of histone gene expression.

4.
bioRxiv ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38562692

ABSTRACT

Interspecies hybridization is prevalent in various eukaryotic lineages and plays important roles in phenotypic diversification, adaption, and speciation. To better understand the changes that occurred in the different subgenomes of a hybrid species and how they facilitated adaptation, we completed chromosome-level de novo assemblies of all 16 pairs chromosomes for a recently formed hybrid yeast, Saccharomyces bayanus strain CBS380 (IFO11022), using Nanopore MinION long-read sequencing. Characterization of S. bayanus subgenomes and comparative analysis with the genomes of its parent species, S. uvarum and S. eubayanus, provide several new insights into understanding genome evolution after a relatively recent hybridization. For instance, multiple recombination events between the two subgenomes have been observed in each chromosome, followed by loss of heterozygosity (LOH) in most chromosomes in nine chromosome pairs. In addition to maintaining nearly all gene content and synteny from its parental genomes, S. bayanus has acquired many genes from other yeast species, primarily through the introgression of S. cerevisiae, such as those involved in the maltose metabolism. In addition, the patterns of recombination and LOH suggest an allotetraploid origin of S. bayanus. The gene acquisition and rapid LOH in the hybrid genome probably facilitated its adaption to maltose brewing environments and mitigated the maladaptive effect of hybridization.

5.
bioRxiv ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38979253

ABSTRACT

Moderating the pool of active ribosomal subunits is critical for maintaining global translation rates. A factor crucial for modulating the 60S ribosomal subunits is eukaryotic translation initiation factor 6. Release of eIF6 from 60S is essential to permit 60S interactions with 40S. Here, using the N106S mutant of eIF6, we show that disrupting eIF6 interaction with 60S leads to an increase in vacant 80S. It further highlights a dichotomy in the anti-association activity of eIF6 that is distinct from its role in 60S biogenesis and shows that the nucleolar localization of eIF6 is not dependent on uL14-BCCIP interactions. Limiting active ribosomal pools markedly deregulates translation especially in mitosis and leads to chromosome segregation defects, mitotic exit delays and mitotic catastrophe. Ribo-Seq analysis of the eIF6-N106S mutant shows a significant downregulation in the translation efficiencies of mitotic factors and specifically transcripts with long 3'UTRs. eIF6-N106S mutation also limits cancer invasion, and this role is correlated with the overexpression of eIF6 only in high-grade invasive cancers suggesting that deregulation of eIF6 is probably not an early event in cancers. Thus, this study highlights the segregation of eIF6 functions and its role in moderating 80S availability for mitotic translation and cancer progression.

6.
Front Psychiatry ; 14: 1234461, 2023.
Article in English | MEDLINE | ID: mdl-38274432

ABSTRACT

Background: Prenatal depressive symptoms (PDS) is a serious public health problem. This study aimed to develop an integrated panel and nomogram to assess at-risk populations by examining the association of PDS with the serum metabolome, multivitamin supplement intake, and clinical blood indicators. Methods: This study comprised 221 pregnant women, categorized into PDS and non-PDS groups based on the Edinburgh postnatal depression scale. The participants were divided into training and test sets according to their enrollment time. We conducted logistic regression analysis to identify risk factors, and employed liquid chromatography/high resolution mass spectrometry-based serum metabolome analysis to identify metabolic biomarkers. Multiple factor analysis was used to combine risk factors, clinical blood indicators and key metabolites, and then a nomogram was developed to estimate the probability of PDS. Results: We identified 36 important differential serum metabolites as PDS biomarkers, mainly involved in amino acid metabolism and lipid metabolism. Multivitamin intake works as a protective factor for PDS. The nomogram model, including multivitamin intake, HDL-C and three key metabolites (histidine, estrone and valylasparagine), exhibited an AUC of 0.855 in the training set and 0.774 in the test set, and the calibration curves showed good agreement, indicating that the model had good stability. Conclusion: Our approach integrates multiple models to identify metabolic biomarkers for PDS, ensuring their robustness. Furthermore, the inclusion of dietary factors and clinical blood indicators allows for a comprehensive characterization of each participant. The analysis culminated in an intuitive nomogram based on multimodal data, displaying potential performance in initial PDS risk assessment.

SELECTION OF CITATIONS
SEARCH DETAIL