ABSTRACT
The 4-biphenylnitrenium ion (BPN), a reactive metabolic intermediate of the tobacco smoke carcinogen 4-aminobiphenyl (4-ABP), can react with nucleophilic sulfanyl groups in glutathione (GSH) as well as in proteins. The main site of attack of these S-nucleophiles was predicted using simple orientational rules of aromatic nucleophilic substitution. Thereafter, a series of presumptive 4-ABP metabolites and adducts with cysteine were synthesized, namely, S-(4-amino-3-biphenyl)cysteine (ABPC), N-acetyl-S-(4-amino-3-biphenyl)cysteine (4-amino-3-biphenylmercapturic acid, ABPMA), S-(4-acetamido-3-biphenyl)cysteine (AcABPC), and N-acetyl-S-(4-acetamido-3-biphenyl)cysteine (4-acetamido-3-biphenylmercapturic acid, AcABPMA). Then, globin and urine of rats dosed with a single ip dose of 4-ABP (27 mg/kg b.w.) was analyzed by HPLC-ESI-MS2. ABPC was identified in acid-hydrolyzed globin at levels of 3.52 ± 0.50, 2.74 ± 0.51, and 1.25 ± 0.12 nmol/g globin (mean ± S.D.; n = 6) on days 1, 3, and 8 after dosing, respectively. In the urine collected on day 1 (0-24 h) after dosing, excretion of ABPMA, AcABPMA, and AcABPC amounted to 1.97 ± 0.88, 3.09 ± 0.75, and 3.69 ± 1.49 nmol/kg b.w. (mean ± S.D.; n = 6), respectively. On day 2, excretion of the metabolites decreased by one order of magnitude followed by a slower decrease on day 8. Regarding the possible formation of AcABPC from ABPC, N-acetylation of the amino group at the biphenyl moiety prior to that at cysteine appears to be very unlikely. Thus, the structure of AcABPC indicates the involvement of N-acetyl-4-biphenylnitrenium ion (AcBPN) and/or its reactive ester precursors in in vivo reactions with GSH and protein-bound cysteine. ABPC in globin might become an alternative biomarker of the dose of toxicologically relevant metabolic intermediates of 4-ABP.
Subject(s)
Carcinogens , Tobacco Smoke Pollution , Rats , Animals , Carcinogens/chemistry , Globins/chemistry , Cysteine/chemistry , Aminobiphenyl Compounds/chemistry , Nicotiana/chemistry , SmokeABSTRACT
Novel aminonaphthylcysteine (ANC) adducts, formed via naphthylnitrenium ions and/or their metabolic precursors in the biotransformation of naphthylamines (NA) and nitronaphthalenes (NN), were identified and quantified in globin of rats dosed intraperitoneally with 0.16 mmol/kg b.w. of 1-NA, 1-NN, 2-NA and 2-NN. Using HPLC-ESI-MS2 analysis of the globin hydrolysates, S-(1-amino-2-naphthyl)cysteine (1A2NC) together with S-(4-amino-1-naphthyl)cysteine (4A1NC) were found in rats given 1-NA or 1-NN, and S-(2-amino-1-naphthyl)cysteine (2A1NC) in those given 2-NA or 2-NN. The highest level of ANC was produced by the most mutagenic and carcinogenic isomer 2-NA (35.8 ± 5.4 nmol/g globin). The ratio of ANC adduct levels for 1-NA, 1-NN, 2-NA and 2-NN was 1:2:100:3, respectively. Notably, the ratio of 1A2NC:4A1NC in globin of rats dosed with 1-NA and 1-NN differed significantly (2:98 versus 16:84 respectively), indicating differences in mechanism of the adduct formation. Moreover, aminonaphthylmercapturic acids, formed via conjugation of naphthylnitrenium ions and/or their metabolic precursors with glutathione, were identified in the rat urine. Their amounts excreted after dosing rats with 1-NA, 1-NN, 2-NA and 2-NN were in the ratio 1:100:40:2, respectively. For all four compounds tested, haemoglobin binding index for ANC was several-fold higher than that for the sulphinamide adducts, generated via nitrosoarene metabolites. Due to involvement of electrophilic intermediates in their formation, ANC adducts in globin may become toxicologically more relevant biomarkers of cumulative exposure to carcinogenic or non-carcinogenic arylamines and nitroarenes than the currently used sulphinamide adducts.
Subject(s)
Globins/metabolism , Naphthalenes/blood , 1-Naphthylamine/administration & dosage , 1-Naphthylamine/metabolism , 1-Naphthylamine/toxicity , 2-Naphthylamine/administration & dosage , 2-Naphthylamine/metabolism , 2-Naphthylamine/toxicity , Acetylcysteine/analogs & derivatives , Acetylcysteine/urine , Animals , Biomarkers/blood , Biomarkers/urine , Cysteine , Injections, Intraperitoneal , Male , Naphthalenes/administration & dosage , Naphthalenes/toxicity , Protein Binding , Rats, WistarABSTRACT
Ethylene oxide (EO), a genotoxic industrial chemical and sterilant, forms covalent adducts with DNA and also with nucleophilic amino acids in proteins. The adduct with N-terminal valine in globin [N-(2-hydroxyethyl)valine (HEV)] has been used in biomonitoring of cumulative exposures to EO. Here we studied in rats the fate of EO-adducted N-termini of globin after life termination of the erythrocytes. Rat erythrocytes were incubated with EO to produce the HEV levels in globin at 0.4-13.2 µmol/g as determined after acidic hydrolysis. Alternative hydrolysis of the isolated globin with enzyme pronase afforded N-(2-hydroxyethyl)-L-valyl-L-leucine (HEVL) and N-(2-hydroxyethyl)-L-valyl-L-histidine (HEVH), the EO-adducted N-terminal dipeptides of rat globin α- and ß-chains, respectively. The ratio of HEVL/HEVH (1:3) reflected higher reactivity of EO with the ß-chain. The EO-modified erythrocytes were then given intravenously to the recipient rats. HEVL and HEVH were found to be the ultimate cleavage products excreted in the rat urine. Finally, rats were dosed intraperitoneally with EO, 50 mg/kg. Herein, the initial level of globin-bound HEVL (11.7 ± 1.3 nmol/g) decreased almost linearly over 60 days corresponding to the life span of rat erythrocytes. Daily urinary excretion of HEVL was almost constant for 30-40 days, decreasing faster in the subsequent phase of elimination. Recoveries of the total urinary HEVL from its globin-bound form were 84 ± 6% and 101 ± 17% after administrations of EO and the EO-modified erythrocytes, respectively. In conclusion, urinary HEVL appears to be a promising novel non-invasive biomarker of human exposures to EO.
Subject(s)
Dipeptides/urine , Ethylene Oxide/toxicity , Hazardous Substances/toxicity , Animals , Biomarkers/urine , Dipeptides/metabolism , Environmental Monitoring , Erythrocytes , Globins/metabolism , Hydrolysis , Leucine , Rats , Valine/chemistryABSTRACT
1. Methylone (3,4-methylenedioxy-N-methylcathinone, MDMC), which appeared on the illicit drug market in 2004, is a frequently abused synthetic cathinone derivative. Known metabolic pathways of MDMC include N-demethylation to normethylone (3,4-methylenedioxycathinone, MDC), aliphatic chain hydroxylation and oxidative demethylenation followed by monomethylation and conjugation with glucuronic acid and/or sulphate. 2. Three new phase II metabolites, amidic conjugates of MDC with succinic, glutaric and adipic acid, were identified in the urine of rats dosed subcutaneously with MDMC.HCl (20 mg/kg body weight) by LC-ESI-HRMS using synthetic reference standards to support identification. 3. The main portion of administered MDMC was excreted unchanged. Normethylone, was a major urinary metabolite, of which a minor part was conjugated with dicarboxylic acids. 4. Previously identified ring-opened metabolites 4-hydroxy-3-methoxymethcathinone (4-OH-3-MeO-MC), 3-hydroxy-4-methoxymeth-cathinone (3-OH-4-MeO-MC) and 3,4-dihydroxymethcathinone (3,4-di-OH-MC) mostly in conjugated form with glucuronic and/or sulphuric acids were also detected. 5. Also, ring-opened metabolites derived from MDC, namely, 4-hydroxy-3-methoxycathinone (4-OH-3-MeO-C), 3-hydroxy-4-methoxycathinone (3-OH-4-MeO-C) and 3,4-dihydroxycathinone (3,4-di-OH-C) were identified for the first time in vivo.
Subject(s)
Designer Drugs/pharmacology , Designer Drugs/pharmacokinetics , Methamphetamine/analogs & derivatives , Animals , Dicarboxylic Acids/metabolism , Male , Methamphetamine/pharmacokinetics , Methamphetamine/pharmacology , Methylation , Rats , Rats, WistarABSTRACT
3-Nitrobenzanthrone (3-NBA), a potent environmental mutagen and carcinogen, is known to be activated in vivo to 3-benzanthronylnitrenium ion which forms both NH and C2-bound adducts with DNA and also reacts with glutathione giving rise to urinary 3-aminobenzanthron-2-ylmercapturic acid. In this study, acid hydrolysate of globin from rats dosed intraperitoneally with 3-NBA was analysed by HPLC/MS to identify a novel type of cysteine adduct, 3-aminobenzanthron-2-ylcysteine (3-ABA-Cys), confirmed using a synthesised standard. The 3-ABA-Cys levels in globin peaked after single 3-NBA doses of 1 and 2 mg/kg on day 2 to attain 0.25 and 0.49 nmol/g globin, respectively, thereafter declining slowly to 70-80% of their maximum values during 15 days. After dosing rats for three consecutive days with 1 mg 3-NBA/kg a significant cumulation of 3-ABA-Cys in globin was observed. 3-ABA-Cys was also found in the plasma hydrolysate. Herein, after dosing with 1 and 2 mg 3-NBA/kg the adduct levels peaked on day 1 at 0.15 and 0.51 nmol/ml plasma, respectively, thereafter declining rapidly to undetectable levels on day 15. In addition, sulphinamide adducts were also found in the exposed rats, measured indirectly as 3-aminobenzanthrone (3-ABA) split off from globin by mild acid hydrolysis. Levels of both types of adducts in the globin samples parallelled very well with 3-ABA/3-ABA-Cys ratio being around 1:8. In conclusion, 3-ABA-Cys is the first example of arylnitrenium-cysteine adduct in globin representing a new promising class of biomarkers to assess cumulative exposures to aromatic amines, nitroaromatics and heteroaromatic amines.
Subject(s)
Benz(a)Anthracenes/pharmacokinetics , Carcinogens/pharmacokinetics , Globins/chemistry , Animals , Benz(a)Anthracenes/metabolism , Carcinogens/metabolism , Chromatography, High Pressure Liquid , Cysteine/chemistry , Cysteine/metabolism , Environmental Biomarkers , Hydrolysis , Magnetic Resonance Spectroscopy , Male , Plasma/metabolism , Rats, WistarABSTRACT
1. 5,6-Methylenedioxy-2-aminoindane (MDAI) is a member of aminoindane drug family with serotoninergic effect, which appeared on illicit drug market as a substitute for banned stimulating and entactogenic drugs. 2. Metabolism of MDAI, which has been hitherto unexplored, was studied in rats dosed with a subcutaneous dose of 20 mg MDAI.HCl/kg body weight. The urine of rats was collected within 24 h after dosing for analyses by HPLC-ESI-HRMS and GC/MS. 3. The main metabolic pathways proceeding in parallel were found to be oxidative demethylenation followed by O-methylation and N-acetylation. These pathways gave rise to five metabolites, namely, 5,6-dihydroxy-2-aminoindane, 5-hydroxy-6-methoxy-2-aminoindane, N-acetyl-5,6-methylenedioxy-2-aminoindane, N-acetyl-5,6-dihydroxy-2-aminoindane and N-acetyl-5-hydroxy-6-methoxy-2-aminoindane, which were found predominantly in the form of corresponding glucuronides and sulphates. However, the main portion of administered MDAI was excreted unchanged. 4. Minor metabolites formed primarily by hydroxylation at various sites include cis- and trans-1-hydroxy-5,6-methylenedioxy-2-aminoindane, 5,6-methylenedioxyindan-2-ol and 4-hydroxy-5,6-methylenedioxy-2-aminoindane. 5. Identification of all metabolites except for glucuronides, sulphates and tentatively identified 4-hydroxy-5,6-methylenedioxy-2-aminoindane was supported by synthesised reference standards.
Subject(s)
Illicit Drugs/urine , Indans/urine , Substance Abuse Detection/methods , Animals , RatsABSTRACT
A new experimental model was designed to study the fate of globin adducts with styrene 7,8-oxide (SO), a metabolic intermediate of styrene and a model electrophilic compound. Rat erythrocytes were incubated with SO at 7 or 22 °C. Levels of specific amino acid adducts in globin were determined by LC/MS analysis of the globin hydrolysate, and erythrocytes with known adduct content were administered intravenously to recipient rats. The course of adduct elimination from the rat blood was measured over the following 50 days. In the erythrocytes incubated at 22 °C, a rapid decline in the adduct levels on the first day post-transfusion followed by a slow phase of elimination was observed. In contrast, the adduct elimination in erythrocytes incubated at 7 °C was nearly linear, copying elimination of intact erythrocytes. In the urine of recipient rats, regioisomeric SO adducts at cysteine, valine, lysine, and histidine in the form of amino acid adducts and/or their acetylated metabolites as well as SO-dipeptide adducts were identified by LC/MS supported by synthesized reference standards. S-(2-Hydroxy-1-phenylethyl)cysteine and S-(2-hydroxy-2-phenylethyl)cysteine, the most abundant globin adducts, were excreted predominantly in the form of the corresponding urinary mercapturic acids (HPEMAs). Massive elimination of HPEMAs via urine occurred within the first day from the erythrocytes incubated at both 7 and 22 °C. However, erythrocytes incubated at 7 °C also showed a slow second phase of elimination such that HPEMAs were detected in urine up to 50 days post-transfusion. These results indicate for the first time that globin adducts can be cleaved in vivo to modified amino acids and dipeptides. The cleavage products and/or their predictable metabolites are excreted in urine over the whole life span of erythrocytes. Some of the urinary adducts may represent a new type of noninvasive biomarker for exposure to adduct-forming chemicals.
Subject(s)
Epoxy Compounds/metabolism , Epoxy Compounds/urine , Globins/metabolism , Globins/urine , Animals , Biomarkers/metabolism , Biomarkers/urine , Chromatography, High Pressure Liquid , Erythrocytes/drug effects , Erythrocytes/metabolism , Hydrolysis , Male , Rats , Rats, Wistar , Tandem Mass Spectrometry , Xenobiotics/metabolism , Xenobiotics/urineABSTRACT
Phenylnitrenium ion (PhNH(+)) may bind to nucleophiles through nitrogen as well as through C2 or C4 carbons. However, only adducts of the former type have been hitherto reported after its reaction with purine nucleosides. In this study, reactions of N-acetoxyaniline (PhNHOAc), a precursor to PhNH(+), with 2'-deoxyadenosine (dA), 2'-deoxyguanosine (dG), and with DNA in vitro at physiological conditions are described. The reaction of PhNHOAc with dA followed by a hydrolytic deribosylation afforded 8-phenylaminoadenine (C8-PhNHA) together with a smaller amount of N(6)-(4-aminophenyl)adenine (N(6)-4APA). A similar reaction with dG afforded 8-phenylaminoguanine (C8-PhNHG) together with traces of 7-(4-aminophenyl)guanine (N7-4APG). The same adducts were found also in the DNA treated with PhNHOAc, and all of them were identified by comparison of their HPLC retention times and MS(2) spectra with a set of synthesized authentic adenine adducts at C2, C8, N7, and N(6) positions and guanine adducts at C8, N7, and N(2) positions. The newly identified minor adduct, N7-4APG, represents the first proof of arylnitrenium adduction at the N7 position of dG, which is the prominent site of attack by most C-electrophiles.
Subject(s)
Benzene Derivatives/chemistry , DNA Adducts/analysis , Imides/chemistry , Chromatography, High Pressure Liquid , Molecular StructureABSTRACT
Metabolism of benzene, an important environmental and industrial carcinogen, produces three electrophilic intermediates, namely, benzene oxide and 1,2- and 1,4-benzoquinone, capable of reacting with the DNA. Numerous DNA adducts formed by these metabolites in vitro have been reported in the literature, but only one of them was hitherto identified in vivo. In a search for urinary DNA adducts, specific LC-ESI-MS methods have been developed for the determination in urine of six nucleobase adducts, namely, 7-phenylguanine, 3-phenyladenine, 3-hydroxy-3,N(4) -benzethenocytosine, N(2) -(4-hydroxyphenyl)guanine, 7-(3,4-dihydroxyphenyl)guanine and 3-(3,4-dihydroxyphenyl)-adenine (DHPA), with detection limits of 200, 10, 260, 50, 400 and 200 pg ml(-1) , respectively. Mice were exposed to benzene vapors at concentrations of 900 and 1800 mg m(-3) , 6 h per day for 15 consecutive days. The only adduct detected in their urine was DHPA. It was found in eight out of 30 urine samples from the high-exposure group at concentrations of 352 ± 146 pg ml(-1) (mean ± SD; n = 8), whereas urines from the low-exposure group were negative. Assuming the DHPA concentration in the negative samples to be half of the detection limit, conversion of benzene to DHPA was estimated to 2.2 × 10(-6) % of the absorbed dose. Thus, despite the known high mutagenic and carcinogenic potential of benzene, only traces of a single DNA adduct in urine were detected. In conclusion, DHPA is an easily depurinating adduct, thus allowing indication of only high recent exposure to benzene, but not long-term damage to DNA in tissues.
Subject(s)
Adenine/analogs & derivatives , Benzene/toxicity , Carcinogens/toxicity , DNA Adducts/urine , Adenine/urine , Administration, Inhalation , Animals , Biomarkers , Chromatography, High Pressure Liquid , Male , Mass Spectrometry , Mice , Reference Standards , Spectrometry, Mass, Electrospray IonizationABSTRACT
Biomonitoring of human exposure to reactive electrophilic chemicals such as ethylene oxide (EO) has been commonly based on the determination of adducts with N-terminal valine in blood protein globin, but a systematic search has also been undertaken to find surrogate markers enabling non-invasive sampling. Recently, N-(2-hydroxyethyl)-L-valyl-L-leucine (HEVL) has been identified as an ultimate cleavage product of EO-adducted globin in the urine of occupationally exposed workers. Herein, full validation of the analytical procedure consisting of solid-phase extraction of HEVL from urine samples (2 mL) followed by high-performance liquid chromatography-electrospray ionization-high-resolution mass spectrometry determination using deuterium-labeled HEVL as an internal standard (IS) is described. Method limit of quantitation is 0.25 ng/mL, and its selectivity is excellent as demonstrated by the invariable ratio of the qualifier and quantifier ion intensities across diverse urine samples and synthetic standard. The linear calibration model was applicable over the whole concentration range tested (0.25-10 ng/mL). The method accuracy assessed as a recovery of HEVL using a spiking experiment was 98-100%. Within-day precision of the method ranged from 1.8% to 3.0%, while the results from consecutive analytical runs conducted within 1 week or within 10-150 weeks differed in the range of 2.2-9.7%. The stability study on urine samples (-20°C up to 3 years, freeze-and-thaw up to 10 cycles) as well as on aqueous solutions (5°C up to 4 months) indicated no relevant changes in HEVL concentration (≤4%) over the time tested. Analytical responses of both HEVL and IS correlated with urinary creatinine as an index of matrix composition, but this matrix effect was mostly eliminated using the HEVL/IS peak area ratio, attaining the IS-normalized relative matrix effect <3%. In conclusion, the method complied successfully with the bioanalytical method validation criteria, making it a reliable tool for HEVL determination in human biomonitoring.
Subject(s)
Dipeptides , Ethylene Oxide , Humans , Chromatography, High Pressure Liquid , Leucine , Globins , Reproducibility of ResultsABSTRACT
1. Reactivity of benzene oxide (BO), a reactive metabolite of benzene, was studied in model reactions with biologically relevant S- and N-nucleophiles by LC-ESI-MS. 2. Reaction with N-acetylcysteine (NAC) in aqueous buffer solutions gave N-acetyl-S-(6-hydroxycyclohexa-2,4-dien-1-yl)cysteine (pre-phenylmercapturic acid, PPhMA), which was easily dehydrated in acidic solutions to phenylmercapturic acid (PhMA). The yield of PPhMA + PhMA increased exponentially with pH up to 11% in the pH range from 5.5 to 11.4. 3. Primary 6-hydroxycyclohexa-2,4-dien-1-yl (HC) adducts were detected also in reactions of purine nucleosides and nucleotides under physiological conditions. After a vigorous acidic hydrolysis, all HC adducts were converted to corresponding phenyl purines, which were identified as 7-phenylguanine (7-PhG), 3-phenyladenine (3-PhA) and N(6)-phenyladenine (6-PhA). The yield of 7-PhG amounted to 14 ± 5 and 16 ± 7 ppm for 2'-deoxyguanosine and 2'-deoxyguanosine-5'-monophosphate, respectively, that of 6-PhA was 500 ± 70 and 455 ± 75 ppm with 2'-deoxyadenosine and 2'-deoxyadenosine-5'-phosphate, respectively, with only traces of 3-PhA. 4. Reactions with the DNA followed by acidic hydrolysis yielded 26 ± 11 ppm (mean ± SD; n = 9) of 7-PhG as the sole adduct detected. 5. In contrast to the reactions with S-nucleophiles, the reactivity of BO with nucleophilic sites in the DNA is very low and can therefore hardly account for a significant DNA damage caused by benzene.
Subject(s)
Acetylcysteine/metabolism , Benzene/metabolism , Cyclohexanes/metabolism , DNA/metabolism , Acetylcysteine/analogs & derivatives , Acetylcysteine/chemistry , Adenosine Monophosphate/metabolism , Animals , Cattle , Cyclohexanes/chemistry , DNA/chemistry , DNA Adducts/chemistry , DNA Adducts/metabolism , Deoxyadenosines/metabolism , Deoxyguanine Nucleotides/metabolism , Deoxyguanosine/metabolism , Solutions , Spectrometry, Mass, Electrospray Ionization , TemperatureABSTRACT
Benzetheno adducts derived from p-benzoquinone (p-BQ), a reactive metabolite of benzene, were reported to be formed by the reaction of p-BQ with DNA in vitro but have never been detected either in vivo or in experiments with living cells. Two of them, 3-hydroxy-3,N(4)-benzetheno-2'-deoxycytidine (DCBQ) and 7-hydroxy-1,N(2)-benzetheno-2'-deoxyguanosine (DGBQ), were administered to rats by single ip injections at the doses of 2 mg/kg each. The excretion of unchanged compounds DCBQ and DGBQ within 2 days amounted to 8.2 ± 1.9 and 4.5 ± 1.2% (mean ± SE) of the dose, respectively. Additionally, deribosylated metabolites of DCBQ and DGBQ, 3-hydroxy-3,N(4)-benzethenocytosine (CBQ) and 7-hydroxy-1,N(2)-benzethenoguanine (GBQ), were found amounting to 45.7 ± 10.2 and 2.9 ± 2.1% of the dose, respectively. An additional portion of CBQ and GBQ was liberated from their corresponding conjugates by acidic hydrolysis. Therefore, total recoveries of CBQ and GBQ in urine were 82.1 ± 13.5 and 11.6 ± 5.1% of the dose. To identify conjugated metabolites, DCBQ and DGBQ were administered intraperitoneally at the doses 10.5 and 11.0 mg/kg, respectively, to one animal each. Glucuronides of DCBQ, DGBQ, and GBQ as well as sulfates of DGBQ, CBQ, and GBQ were identified by ESI-LC-MS according to (M - H)(-) ions and their fragmentation. In addition, two oxygenated metabolites and their corresponding conjugates were detected for DGBQ and GBQ. One of these metabolites was identified as 2,7-dihydroxy-1,N(2)-benzethenoguanine OGBQ1. It coeluted with the product obtained by the reaction of HQ and p-BQ mixture with 8-hydroxy-2'-deoxyguanosine followed by acid hydrolysis. These findings suggest that both DCBQ and DGBQ undergo extensive biotransformation in vivo. CBQ appears to be the only p-BQ derived DNA adduct, which can be efficiently recovered from its conjugates and might be therefore useful in molecular dosimetry of benzene.
Subject(s)
Benzene/metabolism , Benzimidazoles/metabolism , Benzoquinones/chemistry , DNA Adducts/chemistry , Deoxycytidine/analogs & derivatives , Deoxyguanosine/analogs & derivatives , Animals , Benzimidazoles/chemistry , Benzimidazoles/urine , Chromatography, High Pressure Liquid , DNA/chemistry , DNA/metabolism , DNA Adducts/metabolism , Deoxycytidine/chemistry , Deoxycytidine/metabolism , Deoxycytidine/urine , Deoxyguanosine/chemistry , Deoxyguanosine/metabolism , Deoxyguanosine/urine , Injections, Intraperitoneal , Mass Spectrometry , Rats , Time FactorsABSTRACT
The urine from mice exposed to styrene vapors (600 and 1200 mg/m(3), 6 h) was analyzed for ring-oxidized metabolites of styrene. To facilitate the identification of metabolites in urine, the following potential metabolites were prepared: 2-, 3-, and 4-vinylphenol (2-, 3-, and 4-VP), 4-vinylpyrocatechol, and 2-, 3-, and 4-vinylphenylmercapturic acid (2-, 3-, and 4-VPMA). For the analysis of vinylphenols beta-glucuronidase-treated urine was extracted and derivatized with acetanhydride/triethylamine before injection into GC/MS. Three isomers, 2-, 3-, and 4-VP, were found in the exposed urine using authentic standards. Additionally, three novel minor urinary metabolites, arylmercapturic acids 2-, 3-, and 4-VPMA, were identified by LC-ESI-MS(2) by comparison with authentic standards. Excretion of the most abundant isomer, 4-VPMA, amounted to 535 +/- 47 nmol/kg and 984 +/- 78 nmol/kg, representing approximately 0.047 and 0.043% of the absorbed dose for the exposure levels of 600 and 1200 mg/m(3), respectively. The ratio of 2-VPMA, 3-VPMA, and 4-VPMA was approximately 2:1:6. In model reactions of styrene 3,4-oxide (3,4-STO) with N-acetylcysteine in aqueous solutions and of its methyl ester in methanol, 4-vinylphenol was always the main product, while 3-vinylphenol has never been detected. No mercapturic acid was found in the reaction of 3,4-STO with N-acetylcysteine in aqueous solution at pH 7.4 or 9.7, but a small amount of 4-VPMA methyl ester was detected by LC-ESI-MS after the reaction of 3,4-STO with N-acetylcysteine methyl ester. In contrast, no mercapturic acid was found in the reaction of 3,4-STO with N-acetylcysteine in aqueous solution at pH 7.4 or 9.7. These findings indicate a capability of 3,4-STO to react with cellular thiol groups despite its rapid isomerization to vinylphenol in an aqueous environment. Moreover, the in vivo formation of 2- and 3-isomers of both VP and VPMA, neither of which was formed from 3,4-STO in vitro, strongly suggests that another arene oxide, styrene 2,3-oxide, might be a minor metabolic intermediate of styrene.
Subject(s)
Acetylcysteine/urine , Catechols/urine , Phenols/urine , Styrene/metabolism , Acetylcysteine/analogs & derivatives , Animals , Chromatography, High Pressure Liquid , Mice , Spectrometry, Mass, Electrospray Ionization , StereoisomerismABSTRACT
Ethylene oxide (EO), a carcinogenic chemical used as an industrial intermediate and sterilant, forms covalent adducts with DNA and proteins. The adduct with N-terminal valine [N-(2-hydroxyethyl)-l-valine, HEV] in blood protein globin has been employed as a principal biomarker of cumulative exposures to EO. However, as sampling of blood is inconvenient in routine occupational health practice, a non-invasive alternative to globin analysis has been investigated. Following identification of N-(2-hydroxyethyl)-l-valyl-l-leucine (HEVL) as ultimate cleavage product of EO-adducted globin excreted in the rat urine, here we report for the first time on the presence of HEVL in the urine of humans. In 18 sterilization workers, urinary HEVL ranged from 0.67 to 11.98 µg/g creatinine (mean ± SD: 5.04 ± 3.14 µg/g creat) and correlated with HEV: HEVL (µg/g creat) = 0.833 HEV (nmol/g globin) + 1.19 (R2 = 0.45). As unexpectedly high levels of urinary HEVL were found also in controls (mean ± SD: 0.97 ± 0.37 µg/g creat, n = 32), HEVL is not proposed for the accurate assessment of sub-ppm exposures to EO. On the other hand, non-invasive sampling and facile work-up procedure predetermine HEVL for screening purposes to identify subjects approaching to or exceeding occupational exposure limit for EO (1.8 mg/m3) to be re-examined by the more sensitive reference analysis for HEV.
Subject(s)
Biological Monitoring/methods , Biomarkers/urine , Carcinogens/toxicity , Ethylene Oxide/urine , Occupational Exposure/adverse effects , Valine/urine , Adult , Female , Humans , Male , Middle AgedABSTRACT
New urinary adenine adducts, 3-(2-hydroxy-1-phenylethyl)adenine (N3alphaA), 3-(2-hydroxy-2-phenylethyl)adenine (N3betaA), were found in the urine of mice exposed to styrene vapour. These styrene 7,8-oxide derived adenine adducts as well as previously identified guanine adducts, 7-(2-hydroxy-1-phenylethyl)guanine (N7alphaG) and 7-(2-hydroxy-2-phenylethyl)guanine (N7betaG) were quantified by HPLC-ESI-MS(2) and the excretion profile during and after a repeated exposure to 600mg/m(3) or 1200mg/m(3) of styrene for 10 consecutive days (6h/day) was determined. The excretion was dose dependent. Total N3 adenine adducts (N3alphaA+N3betaA) excreted amounted to nearly 0.8x10(-5)% of the absorbed dose while urinary N7 guanine adducts (N7alphaG+N7betaG) amounted to nearly 1.4x10(-5)% of the dose. No accumulation of the adducts was observed. Due to rapid depurination from the DNA, the excretion of both N3 adenine and N7 guanine adducts ceased shortly after finishing the exposure. Both N3 adenine and N7 guanine adducts may be used as non-invasive biomarkers of effective dose reflecting only a short time exposure to styrene.
Subject(s)
Adenine/urine , DNA Adducts/urine , Guanine/urine , Styrene/metabolism , Adenine/analogs & derivatives , Administration, Inhalation , Animals , Chromatography, High Pressure Liquid , DNA Adducts/analysis , Guanine/analogs & derivatives , Male , Mice , Styrene/administration & dosageABSTRACT
Ethylene oxide (EO), an industrial intermediate and gaseous sterilant for medical devices, is carcinogenic to humans, which warrants minimization of exposure in the workplaces. The principal analytical strategy currently used in biomonitoring of exposure to EO consists in the conversion of N-(2-hydroxyethyl) adduct at the N-terminal valine (HEV) in globin to a specific thiohydantoin derivative accessible to GC-MS analysis (modified Edman degradation, MED). Though highly sensitive, the method is laborious and, at least in our hands, not sufficiently robust. Here we developed an alternative strategy of HEV determination based on acidic hydrolysis (AH) of globin followed directly by HPLC-ESI-MS2 analysis. Limit of quantitation is ca. 25â¯pmol HEV/g globin. Comparative analyses of globin samples from EO-exposed workers by both the AH-based and MED-based methods provided results that correlated well with each other (R2â¯>â¯0.95) but those obtained with AH were significantly more accurate (according to external quality control programme G-EQUAS) and repeatible (5% and 6% for intra-day and between-day analyses, respectively). In conclusion, the new AH-based method surpassed MED being similarly sensitive, much less laborious and more reliable, thus applicable as an effective tool for biomonitoring of EO in exposure control and risk assessment.
Subject(s)
Chromatography, High Pressure Liquid , Environmental Monitoring/methods , Ethylene Oxide/blood , Globins/analysis , Inhalation Exposure , Occupational Exposure , Occupational Health , Spectrometry, Mass, Electrospray Ionization , Valine/analogs & derivatives , Acids/chemistry , Environmental Biomarkers , Ethylene Oxide/adverse effects , Humans , Hydrolysis , Inhalation Exposure/adverse effects , Male , Occupational Exposure/adverse effects , Reproducibility of Results , Risk Assessment , Valine/bloodABSTRACT
3-Halo-3-phenyl-3H-diazirines (halogen = Br or Cl) undergo a dissociative single-electron transfer from alkyllithiums (RLi) in THF-based solvent mixtures. The resulting 3-phenyldiazirinyl radical, observed by EPR spectroscopy, is eventually transformed to benzonitrile. In Et2O, 2 equiv of RLi add to both nitrogens of halodiazirine NâN bond, affording N,N'-dialkylbenzamidines. The nitrenoid reactivity of some N-alkyl-1H-diazirine intermediates is manifested by their insertion into the α-C-H bond of THF or Et2O.
ABSTRACT
Metabolic profile of mephedrone (4-methylmethcathinone, 4-MMC), a frequently abused recreational drug, was determined in rats in vivo. The urine of rats dosed with a subcutaneous bolus dose of 20mg 4-MMC/kg was analysed by LC/MS. Ten phase I and five phase II metabolites were identified by comparison of their retention times and MS(2) spectra with those of authentic reference standards and/or with the MS(2) spectra of previously identified metabolites. The main metabolic pathway was N-demethylation leading to normephedrone (4-methylcathinone, 4-MC) which was further conjugated with succinic, glutaric and adipic acid. Other phase I metabolic pathways included oxidation of the 4-methyl group, carbonyl reduction leading to dihydro-metabolites and ω-oxidation at the position 3'. Five of the metabolites detected, namely, 4-carboxynormephedrone (4-carboxycathinone, 4-CC), 4-carboxydihydronormephedrone (4-carboxynorephedrine, 4-CNE), hydroxytolyldihydro-normephedrone (4-hydroxymethylnorephedrine, 4-OH-MNE) and conjugates of 4-MC with glutaric and adipic acid, have not been reported as yet. The last two conjugates represent a novel, hitherto unexploited, type of phase II metabolites in mammals together with an analogous succinic acid conjugate of 4-MC identified by Pozo et al. (2015). These conjugates might be potentially of great importance in the metabolism of other psychoactive amines.