Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Nat Immunol ; 18(3): 293-302, 2017 03.
Article in English | MEDLINE | ID: mdl-28092373

ABSTRACT

The aggregation of hypertrophic macrophages constitutes the basis of all granulomatous diseases, such as tuberculosis or sarcoidosis, and is decisive for disease pathogenesis. However, macrophage-intrinsic pathways driving granuloma initiation and maintenance remain elusive. We found that activation of the metabolic checkpoint kinase mTORC1 in macrophages by deletion of the gene encoding tuberous sclerosis 2 (Tsc2) was sufficient to induce hypertrophy and proliferation, resulting in excessive granuloma formation in vivo. TSC2-deficient macrophages formed mTORC1-dependent granulomatous structures in vitro and showed constitutive proliferation that was mediated by the neo-expression of cyclin-dependent kinase 4 (CDK4). Moreover, mTORC1 promoted metabolic reprogramming via CDK4 toward increased glycolysis while simultaneously inhibiting NF-κB signaling and apoptosis. Inhibition of mTORC1 induced apoptosis and completely resolved granulomas in myeloid TSC2-deficient mice. In human sarcoidosis patients, mTORC1 activation, macrophage proliferation and glycolysis were identified as hallmarks that correlated with clinical disease progression. Collectively, TSC2 maintains macrophage quiescence and prevents mTORC1-dependent granulomatous disease with clinical implications for sarcoidosis.


Subject(s)
Granuloma/immunology , Macrophages/immunology , Multiprotein Complexes/metabolism , Sarcoidosis/immunology , TOR Serine-Threonine Kinases/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Cell Line , Cyclin-Dependent Kinase 4/metabolism , Disease Progression , Granuloma/drug therapy , Humans , Macrophages/drug effects , Mechanistic Target of Rapamycin Complex 1 , Mice , Mice, Inbred C57BL , Mice, Knockout , RNA, Small Interfering/genetics , Sarcoidosis/drug therapy , Signal Transduction , Tuberous Sclerosis Complex 2 Protein , Tumor Suppressor Proteins/genetics
2.
Blood ; 141(23): 2878-2890, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37018657

ABSTRACT

Iron is an essential cellular metal that is important for many physiological functions including erythropoiesis and host defense. It is absorbed from the diet in the duodenum and loaded onto transferrin (Tf), the main iron transport protein. Inefficient dietary iron uptake promotes many diseases, but mechanisms regulating iron absorption remain poorly understood. By assessing mice that harbor a macrophage-specific deletion of the tuberous sclerosis complex 2 (Tsc2), a negative regulator of mechanistic target of rapamycin complex 1 (mTORC1), we found that these mice possessed various defects in iron metabolism, including defective steady-state erythropoiesis and a reduced saturation of Tf with iron. This iron deficiency phenotype was associated with an iron import block from the duodenal epithelial cells into the circulation. Activation of mTORC1 in villous duodenal CD68+ macrophages induced serine protease expression and promoted local degradation of Tf, whereas the depletion of macrophages in mice increased Tf levels. Inhibition of mTORC1 with everolimus or serine protease activity with nafamostat restored Tf levels and Tf saturation in the Tsc2-deficient mice. Physiologically, Tf levels were regulated in the duodenum during the prandial process and Citrobacter rodentium infection. These data suggest that duodenal macrophages determine iron transfer to the circulation by controlling Tf availability in the lamina propria villi.


Subject(s)
Iron, Dietary , Transferrin , Mice , Animals , Transferrin/metabolism , Iron, Dietary/metabolism , Iron/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Diet , Duodenum/metabolism , Receptors, Transferrin/metabolism
3.
J Immunol ; 198(6): 2414-2425, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28179495

ABSTRACT

Peroxisomes are proposed to play an important role in the regulation of systemic inflammation; however, the functional role of these organelles in inflammatory responses of myeloid immune cells is largely unknown. In this article, we demonstrate that the nonclassical peroxisome proliferator 4-phenyl butyric acid is an efficient inducer of peroxisomes in various models of murine macrophages, such as primary alveolar and peritoneal macrophages and the macrophage cell line RAW264.7, but not in primary bone marrow-derived macrophages. Further, proliferation of peroxisomes blocked the TLR4 ligand LPS-induced proinflammatory response, as detected by the reduced induction of the proinflammatory protein cyclooxygenase (COX)-2 and the proinflammatory cytokines TNF-α, IL-6, and IL-12. In contrast, disturbing peroxisome function by knockdown of peroxisomal gene Pex14 or Mfp2 markedly increased the LPS-dependent upregulation of the proinflammatory proteins COX-2 and TNF-α. Specifically, induction of peroxisomes did not affect the upregulation of COX-2 at the mRNA level, but it reduced the half-life of COX-2 protein, which was restored by COX-2 enzyme inhibitors but not by proteasomal and lysosomal inhibitors. Liquid chromatography-tandem mass spectrometry analysis revealed that various anti-inflammatory lipid mediators (e.g., docosahexaenoic acid) were increased in the conditioned medium from peroxisome-induced macrophages, which blocked LPS-induced COX-2 upregulation in naive RAW264.7 cells and human primary peripheral blood-derived macrophages. Importantly, LPS itself induced peroxisomes that correlated with the regulation of COX-2 during the late phase of LPS activation in macrophages. In conclusion, our findings identify a previously unidentified role for peroxisomes in macrophage inflammatory responses and suggest that peroxisomes are involved in the physiological cessation of macrophage activation.


Subject(s)
Macrophage Activation , Macrophages/immunology , Peroxisomes/immunology , Phenylbutyrates/metabolism , Toll-Like Receptor 4/metabolism , Animals , Cyclooxygenase 2/metabolism , Cytokines/metabolism , Docosahexaenoic Acids/metabolism , Gene Knockdown Techniques , Humans , Inflammation Mediators/metabolism , Lipopolysaccharides/immunology , Male , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Peroxisomal Multifunctional Protein-2/genetics , Primary Cell Culture , RAW 264.7 Cells , Repressor Proteins/genetics
4.
Biochem Soc Trans ; 41(4): 927-33, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23863158

ABSTRACT

The innate myeloid immune system is a complex network of cells that protect against disease by identifying and killing pathogens and tumour cells, but it is also implicated in homoeostatic mechanisms such as tissue remodelling and wound healing. Myeloid phagocytes such as monocytes, macrophages or dendritic cells are at the basis of controlling these immune responses in all tissues of the body. In the present review, we summarize recent studies demonstrating that mTOR [mammalian (or mechanistic) target of rapamycin] regulates innate immune reactions in macrophages and dendritic cells. The mTOR pathway serves as a decision maker to control the cellular response to pathogens and tumours by regulating the expression of inflammatory mediators such as cytokines, chemokines or interferons. In addition to various in vivo mouse models, kidney transplant patients under mTOR inhibitor therapy allowed the elucidation of important innate immune functions regulated by mTOR in humans. The role of the mTOR pathway in macrophages and dendritic cells enhances our understanding of the immune system and suggests new therapeutic avenues for the regulation of pro- versus anti-inflammatory mediators with potential relevance to cancer therapy, the design of novel adjuvants and the control of distinct infectious and autoimmune diseases.


Subject(s)
Dendritic Cells/immunology , Macrophages/immunology , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Cytokines/metabolism , Dendritic Cells/metabolism , Humans , Immunity, Innate , Inflammation Mediators/metabolism , Macrophages/metabolism , Neoplasms/therapy , TOR Serine-Threonine Kinases/antagonists & inhibitors
5.
Cell Stress ; 5(12): 176-182, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34917890

ABSTRACT

Programmed cell death protein 4 (PDCD4) exerts critical functions as tumor suppressor and in immune cells to regulate inflammatory processes. The phosphoinositide 3-kinase (PI3K) promotes degradation of PDCD4 via mammalian target of rapamycin complex 1 (mTORC1). However, additional pathways that may regulate PDCD4 expression are largely ill-defined. In this study, we have found that activation of the mitogen-activated protein kinase p38 promoted degradation of PDCD4 in macrophages and fibroblasts. Mechanistically, we identified a pathway from p38 and its substrate MAP kinase-activated protein kinase 2 (MK2) to the tuberous sclerosis complex (TSC) to regulate mTORC1-dependent degradation of PDCD4. Moreover, we provide evidence that TSC1 and TSC2 regulate PDCD4 expression via an additional mechanism independent of mTORC1. These novel data extend our knowledge of how PDCD4 expression is regulated by stress- and nutrient-sensing pathways.

6.
Cell Rep ; 30(5): 1542-1552.e7, 2020 02 04.
Article in English | MEDLINE | ID: mdl-32023468

ABSTRACT

Mechanistic or mammalian target of rapamycin complex 1 (mTORC1) is an important regulator of effector functions, proliferation, and cellular metabolism in macrophages. The biochemical processes that are controlled by mTORC1 are still being defined. Here, we demonstrate that integrative multiomics in conjunction with a data-driven inverse modeling approach, termed COVRECON, identifies a biochemical node that influences overall metabolic profiles and reactions of mTORC1-dependent macrophage metabolism. Using a combined approach of metabolomics, proteomics, mRNA expression analysis, and enzymatic activity measurements, we demonstrate that Tsc2, a negative regulator of mTORC1 signaling, critically influences the cellular activity of macrophages by regulating the enzyme phosphoglycerate dehydrogenase (Phgdh) in an mTORC1-dependent manner. More generally, while lipopolysaccharide (LPS)-stimulated macrophages repress Phgdh activity, IL-4-stimulated macrophages increase the activity of the enzyme required for the expression of key anti-inflammatory molecules and macrophage proliferation. Thus, we identify Phgdh as a metabolic checkpoint of M2 macrophages.


Subject(s)
Cell Polarity , Genomics , Macrophages/cytology , Macrophages/metabolism , Models, Biological , Phosphoglycerate Dehydrogenase/metabolism , Animals , Cell Polarity/drug effects , Cell Proliferation/drug effects , Gene Expression Regulation, Enzymologic/drug effects , Glutamic Acid/metabolism , Glycine/metabolism , Interleukin-4/pharmacology , Ketoglutaric Acids/metabolism , Kinetics , Macrophages/drug effects , Macrophages/enzymology , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice, Inbred C57BL , Phosphoglycerate Dehydrogenase/genetics , Principal Component Analysis , Serine/metabolism , Tuberous Sclerosis Complex 2 Protein/metabolism
7.
JCI Insight ; 4(20)2019 10 17.
Article in English | MEDLINE | ID: mdl-31619583

ABSTRACT

The mechanistic target of rapamycin complex 2 (mTORC2) is a potentially novel and promising anticancer target due to its critical roles in proliferation, apoptosis, and metabolic reprogramming of cancer cells. However, the activity and function of mTORC2 in distinct cells within malignant tissue in vivo is insufficiently explored. Surprisingly, in primary human and mouse colorectal cancer (CRC) samples, mTORC2 signaling could not be detected in tumor cells. In contrast, only macrophages in tumor-adjacent areas showed mTORC2 activity, which was downregulated in stromal macrophages residing within human and mouse tumor tissues. Functionally, inhibition of mTORC2 by specific deletion of Rictor in macrophages stimulated tumorigenesis in a colitis-associated CRC mouse model. This phenotype was driven by a proinflammatory reprogramming of mTORC2-deficient macrophages that promoted colitis via the cytokine SPP1/osteopontin to stimulate tumor growth. In human CRC patients, high SPP1 levels and low mTORC2 activity in tumor-associated macrophages correlated with a worsened clinical prognosis. Treatment of mice with a second-generation mTOR inhibitor that inhibits mTORC2 and mTORC1 exacerbated experimental colorectal tumorigenesis in vivo. In conclusion, mTORC2 activity is confined to macrophages in CRC and limits tumorigenesis. These results suggest activation but not inhibition of mTORC2 as a therapeutic strategy for colitis-associated CRC.


Subject(s)
Carcinogenesis/immunology , Colitis, Ulcerative/pathology , Colorectal Neoplasms/immunology , Macrophages/immunology , Mechanistic Target of Rapamycin Complex 2/metabolism , Animals , Carcinogenesis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cells, Cultured , Colitis, Ulcerative/blood , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/immunology , Colon/cytology , Colon/drug effects , Colon/immunology , Colon/pathology , Colorectal Neoplasms/mortality , Colorectal Neoplasms/pathology , Colorectal Neoplasms/prevention & control , Dextran Sulfate/toxicity , Disease Models, Animal , Female , Humans , Intestinal Mucosa/cytology , Intestinal Mucosa/drug effects , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Kaplan-Meier Estimate , Macrophages/metabolism , Male , Mechanistic Target of Rapamycin Complex 2/antagonists & inhibitors , Mice , Mice, Transgenic , Morpholines/pharmacology , Osteopontin/blood , Osteopontin/metabolism , Primary Cell Culture , Prognosis , Survival Rate
8.
FEBS Lett ; 591(19): 3089-3103, 2017 10.
Article in English | MEDLINE | ID: mdl-28600802

ABSTRACT

The mechanistic target of rapamycin (mTOR) pathway is an evolutionarily conserved signaling pathway that senses intra- and extracellular nutrients, growth factors, and pathogen-associated molecular patterns to regulate the function of innate and adaptive immune cell populations. In this review, we focus on the role of the mTOR complex 1 (mTORC1) and mTORC2 in the regulation of the cellular energy metabolism of these immune cells to regulate and support immune responses. In this regard, mTORC1 and mTORC2 generally promote an anabolic response by stimulating protein synthesis, glycolysis, mitochondrial functions, and lipid synthesis to influence proliferation and survival, effector and memory responses, innate training and tolerance as well as hematopoietic stem cell maintenance and differentiation. Deactivation of mTOR restores cell homeostasis after immune activation and optimizes antigen presentation and memory T-cell generation. These findings show that the mTOR pathway integrates spatiotemporal information of the environmental and cellular energy status by regulating cellular metabolic responses to guide immune cell activation. Elucidation of the metabolic control mechanisms of immune responses will help to generate a systemic understanding of the immune system.


Subject(s)
Cells/metabolism , Immunity , Multiprotein Complexes/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Humans , Mechanistic Target of Rapamycin Complex 1 , Mechanistic Target of Rapamycin Complex 2 , Mitochondria/metabolism , Models, Biological
9.
Nat Rev Immunol ; 15(10): 599-614, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26403194

ABSTRACT

The innate immune system is central for the maintenance of tissue homeostasis and quickly responds to local or systemic perturbations by pathogenic or sterile insults. This rapid response must be metabolically supported to allow cell migration and proliferation and to enable efficient production of cytokines and lipid mediators. This Review focuses on the role of mammalian target of rapamycin (mTOR) in controlling and shaping the effector responses of innate immune cells. mTOR reconfigures cellular metabolism and regulates translation, cytokine responses, antigen presentation, macrophage polarization and cell migration. The mTOR network emerges as an integrative rheostat that couples cellular activation to the environmental and intracellular nutritional status to dictate and optimize the inflammatory response. A detailed understanding of how mTOR metabolically coordinates effector responses by myeloid cells will provide important insights into immunity in health and disease.


Subject(s)
Cytokines/immunology , Immunity, Innate/immunology , Signal Transduction/immunology , TOR Serine-Threonine Kinases/immunology , Animals , Dendritic Cells/immunology , Humans , Macrophages/immunology , Models, Immunological , Myeloid Cells/immunology
SELECTION OF CITATIONS
SEARCH DETAIL