Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
J Chem Ecol ; 46(7): 567-580, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32676764

ABSTRACT

Two odorant receptors (ORs), OnubOR3 and OnubOR6, in the sex pheromone communication systems of E- and Z-strain European corn borers, Ostrinia nubilalis, were broadly receptive to analogs of their pheromone components. In addition to responding to their natural 14-carbon pheromone components, (Z)-11- and (E)-11-tetradecenyl acetates (Z11- and E11-14:OAc), these pheromone ORs responded to the longer-chain compounds, (Z)-11- and (E)-11-hexadecenyl acetate (Z11- and E11-16:OAc). Z11-16:OAc is a pheromone gland constituent of E-strain O. nubilalis females in Europe but has not previously been shown to have behavioral activity to males. Here, we demonstrate that Z11-16:OAc evokes high levels of upwind flight and source location in E-strain males when substituted for Z11-14:OAc (minor component) in the E-strain blend. Since Z11-16:OAc is found in the gland and has behavioral activity when Z11-14:OAc is missing, then it should be classified as a cryptic, redundant minor pheromone component in E-strain O. nubilalis. The opposite geometric isomer, E11-16:OAc, also functions in Z-strain O. nubilalis, substituting behaviorally for the E11-14:OAc minor component, but has not been found in Z-strain female glands. Single-sensillum recordings showed that sensory neurons of E- and Z-strain male antennae expressing OnubOR3 and OnubOR6 produced responses to these hexadecenyl acetates similar to those evoked by the natural (tetradecenyl acetate) pheromone components. We postulate that the wide responsiveness of these two ORs to the 16-carbon acetates could be a preadaptation for O. nubilalis to use these compounds as minor components in lieu of the respective 14-carbon acetates. Alternatively, the responsiveness of OnubOR3 to E11-16:OAc and OnubOR6 to Z11-16:OAc could represent a vestigial state of these receptors, with the 16-carbon acetates having previously acted as functional minor components in an ancestral blend.


Subject(s)
Chemotaxis , Moths/physiology , Receptors, Odorant/physiology , Sex Attractants/physiology , Acetates/metabolism , Animals , Fatty Acids, Monounsaturated/metabolism , Male , Species Specificity
2.
J Chem Ecol ; 45(11-12): 946-958, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31755018

ABSTRACT

There are contrasting hypotheses regarding the role of plant volatiles in host plant location. We used the grape berry moth (GBM; Paralobesia viteana)-grape plant (Vitis spp.) complex as a model for studying the proximate mechanisms of long distance olfactory-mediated, host-plant location and selection by a specialist phytophagous insect. We used flight tunnel assays to observe GBM female in-flight responses to host (V. riparia) and non-host (apple, Malus domestica; and gray dogwood, Cornus racimosa,) odor sources in the form of plant shoots, extracts of shoots, and synthetic blends. Gas chromatography-electroantennographic detection and gas chromatography/mass spectrometry analyses were used to identify antennal-active volatile compounds. All antennal-active compounds found in grape shoots were also present in dogwood and apple shoots. Female GBM flew upwind to host and non-host extracts and synthetic blends at similar levels, suggesting discrimination is not occurring at long distance from the plant. Further, females did not land on sources releasing plant extracts and synthetic blends, suggesting not all landing cues were present. Additionally, mated and unmated moths displayed similar levels of upwind flight responses to all odor sources, supporting the idea that plant volatiles are not functioning solely as ovipositional cues. The results of this study support a hypothesis that GBM females are using volatile blends to locate a favorable habitat rather than a specific host plant, and that discrimination is occurring within the habitat, or even post-landing.


Subject(s)
Moths/physiology , Oviposition/drug effects , Plant Extracts/chemistry , Vitis/chemistry , Volatile Organic Compounds/chemistry , Animals , Behavior, Animal , Cornus/chemistry , Female , Gas Chromatography-Mass Spectrometry/methods , Host Specificity , Host-Parasite Interactions , Insect Control/methods , Malus/chemistry , Odorants/analysis , Plant Shoots/chemistry , Smell , Vitis/parasitology , Volatile Organic Compounds/metabolism
3.
J Chem Ecol ; 44(7-8): 671-680, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29923080

ABSTRACT

A new blend of volatiles was identified for the fruit of downy red hawthorn, Crataegus mollis, that is attractive to Rhagoletis pomonella flies infesting this host in the northeastern USA. The new blend was as attractive as the previously identified mixture but is more complex in the number of odorants (six in the old versus ten in the new) and differs significantly in the ratio of three volatiles, 3-methylbutan-1-ol, butyl hexanoate, and dihydro-ß-ionone, that are common to both blends and exerted agonist or antagonist effects on behavior in a flight tunnel assay. However, behavioral results with the old and new northern hawthorn blends, as well as modified blends with substituted ratios of 3-methylbutan-1-ol, butyl hexanoate, dihydro-ß-ionone, indicated that the 'agonist' or 'antagonist' effects of these volatiles depended on the ratio, or balance of compounds within the blend. In addition, the new blend contains a number of esters identified from the headspace of domesticated apple, Malus domestica, that are attractive to apple-origin R. pomonella, and present in the five other blends from southern hawthorns, including the southern C. mollis var. texana blend, but are not part of the previously identified blend from northern C. mollis fruit. This finding supports the hypothesis that in addition to providing specificity to the odor blends of the northern and southern hawthorn populations, the presence of the significant amounts of ester compounds in the new northern hawthorn blend might have provided a source of standing variation that could help explain the shift in host preference by C. mollis-infesting flies to introduced apple in the mid-1800's.


Subject(s)
Crataegus/chemistry , Tephritidae/physiology , Volatile Organic Compounds/chemistry , Animals , Arthropod Antennae/physiology , Behavior, Animal/physiology , Crataegus/metabolism , Fruit/chemistry , Fruit/metabolism , Gas Chromatography-Mass Spectrometry , Host-Parasite Interactions , Malus/chemistry , Malus/metabolism , New England , Smell , Volatile Organic Compounds/analysis
4.
J Chem Ecol ; 43(2): 188-197, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28078623

ABSTRACT

A mixture of behaviorally active volatiles was identified from the fruit of snowberry, Symphoricarpos albus laevigatus, for Rhagoletis zephyria flies reared from snowberry fruit. A nine-component blend containing 3-methylbutan-1-ol (3%), dimethyl trisulfide (1%), 1-octen-3-ol (40%), myrcene (8%), nonanal (9%), linalool (13%), (3E)-4,8-dimethyl-1,3,7-nonatriene (DMNT, 6%), decanal (15%), and ß-caryophyllene (5%) was identified that gave consistent electroantennogram activity and was behaviorally active in flight tunnel tests. In other flight tunnel assays, snowberry flies from two sites in Washington state, USA, displayed significantly greater levels of upwind oriented flight to sources with the snowberry volatile blend compared with previously identified volatile blends from domestic apple (Malus domestica) and downy hawthorn (Crataegus mollis) fruit from the eastern USA, and domestic apple, black hawthorn (C. douglasii) and ornamental hawthorn (C. monogyna) from Washington state. Selected subtraction assays showed that whereas removal of DMNT or 1-octen-3-ol significantly reduced the level of upwind flight, removal of myrcene and ß-caryophyllene, or dimethyl trisulfide alone did not significantly affect the proportion of upwind flights. Our findings add to previous studies showing that populations of Rhagoletis flies infesting different host fruit are attracted to unique mixtures of volatile compounds specific to their respective host plants. Taken together, the results support the hypothesis that differences among flies in their behavioral responses to host fruit odors represent key adaptations involved in sympatric host plant shifts, contributing to host specific mating and generating prezygotic reproductive isolation among members of the R. pomonella sibling species complex.


Subject(s)
Behavior, Animal/drug effects , Insect Control/methods , Symphoricarpos/metabolism , Tephritidae/physiology , Volatile Organic Compounds/pharmacology , Animals , Ecosystem , Flight, Animal/drug effects , Fruit/parasitology , Host-Parasite Interactions , Models, Theoretical , Symphoricarpos/parasitology , Volatile Organic Compounds/isolation & purification , Volatile Organic Compounds/metabolism , Washington
5.
J Chem Ecol ; 42(1): 51-4, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26631407

ABSTRACT

Previous flight tunnel studies showed that 3-5 % of male European corn borer (ECB) moths, Ostrinia nubilalis, could fly upwind and make contact with sources releasing the sex pheromone of the closely related Asian corn borer (ACB), Ostrina furnacalis, [2:1 (Z)-12-tetradecenyl acetate (Z12-14:OAc) : (E)-12-teradecenyl acetate (E12-14:OAc)] and that 2-4 % of ACB males could similarly fly upwind to the sex pheromone blends of the ECB Z- [97:3 (Z)-tetradecenyl acetate (Z11-14:OAc) : (E)-tetradecenyl acetate (E11-14:Ac)] and E-strains (1:99 Z/E11-14:OAc) pheromones. The results supported the hypothesis that the evolution of the ACB pheromone system from an ECB-like ancestor included a stage in which males could be attracted to the unusual females emitting Z12- and E12-14:OAc while retaining their responsiveness to the ancestral pheromone blend of Z11- and E11-14:OAc. Here, we showed further that ECB E-strain males exhibited upwind oriented flight and source contacts to sources containing all combinations of ECB and ACB components. Maximal response levels were observed with the E-strain 99:1 E11/Z11-14:OAc blend, and high response levels also were observed with two other blends containing E11-14:OAc as the major component (E11:E12 and E11:Z12). Upwind flight and source contact also occurred at lower levels with the remaining blend combinations in which Z11-, E12-, or Z12-14:OAc was the major component. Our current results support the hypothesis concerning the evolution of ACB from an ECB-like ancester by showing that males were able to respond to females producing either the 12-14:Ac isomers, 11-14:Ac isomers, or even mixtures of all four components.


Subject(s)
Behavior, Animal/drug effects , Biological Evolution , Moths/drug effects , Sex Attractants/pharmacology , Animals , Asia , Europe , Female , Male , Moths/physiology , Sex Attractants/chemistry
6.
Proc Natl Acad Sci U S A ; 109(35): 14081-6, 2012 Aug 28.
Article in English | MEDLINE | ID: mdl-22891317

ABSTRACT

Sex pheromone communication, acting as a prezygotic barrier to mating, is believed to have contributed to the speciation of moths and butterflies in the order Lepidoptera. Five decades after the discovery of the first moth sex pheromone, little is known about the molecular mechanisms that underlie the evolution of pheromone communication between closely related species. Although Asian and European corn borers (ACB and ECB) can be interbred in the laboratory, they are behaviorally isolated from mating naturally by their responses to subtly different sex pheromone isomers, (E)-12- and (Z)-12-tetradecenyl acetate and (E)-11- and (Z)-11-tetradecenyl acetate (ACB: E12, Z12; ECB; E11, Z11). Male moth olfactory systems respond specifically to the pheromone blend produced by their conspecific females. In vitro, ECB(Z) odorant receptor 3 (OR3), a sex pheromone receptor expressed in male antennae, responds strongly to E11 but also generally to the Z11, E12, and Z12 pheromones. In contrast, we show that ACB OR3, a gene that has been subjected to positive selection (ω = 2.9), responds preferentially to the ACB E12 and Z12 pheromones. In Ostrinia species the amino acid residue corresponding to position 148 in transmembrane domain 3 of OR3 is alanine (A), except for ACB OR3 that has a threonine (T) in this position. Mutation of this residue from A to T alters the pheromone recognition pattern by selectively reducing the E11 response ∼14-fold. These results suggest that discrete mutations that narrow the specificity of more broadly responsive sex pheromone receptors may provide a mechanism that contributes to speciation.


Subject(s)
Evolution, Molecular , Moths/genetics , Receptors, Pheromone/genetics , Sex Attractants/physiology , Adaptation, Physiological/genetics , Amino Acid Sequence , Animals , Female , Male , Membrane Potentials/physiology , Molecular Sequence Data , Moths/classification , Oocytes/physiology , Phylogeny , Polymorphism, Single Nucleotide/genetics , Receptors, Odorant/genetics , Receptors, Odorant/physiology , Receptors, Pheromone/physiology , Smell/genetics , Species Specificity , Xenopus
7.
J Chem Ecol ; 38(12): 1504-12, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23129125

ABSTRACT

Coordinated sexual communication systems, seen in many species of moths, are hypothesized to be under strong stabilizing natural selection. Stabilized communication systems should be resistant to change, but there are examples of species/populations that show great diversification. A possible solution is that it is directional sexual selection on variation in male response that drives evolution. We tested a component of this model by asking whether 'rare' males (ca. 5 % of all males in a population) of the European corn borer moth (ECB), Ostrinia nubilalis, that respond to the sex pheromones of both ECB and a different Ostrinia species (O. furnacalis, the Asian corn borer, ACB), might play an important role in diversification. We specifically tested, via artificial selection, whether this broad male response has an evolvable genetic component. We increased the frequency of broad male response from 5 to 70 % in 19 generations, showing that broad-responding males could be important for the evolution of novel communication systems in ECB. We did not find a broader range of mating acceptance of broad males by females of the base population, however, suggesting that broad response would be unlikely to increase in frequency without the involvement of other factors. However, we found that ECB selection-line females accepted a broader range of courting males, including those of ACB, than did females of the base population. Thus, a genetic correlation exists between broad, long-range response to female sex pheromone and the breadth of female acceptance of males at close range. These results are discussed in the context of evolution of novel communication systems in Ostrinia.


Subject(s)
Moths/physiology , Sex Attractants/physiology , Sexual Behavior, Animal/physiology , Animals , Biological Evolution , Female , Male
8.
J Chem Ecol ; 38(3): 319-29, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22399441

ABSTRACT

The apple maggot fly, Rhagoletis pomonella, infests apple (Malus domestica) and hawthorn species (most notably the downy hawthorn, Crataegus mollis) in the eastern USA. Evidence suggests that the fly was introduced into the western USA sometime in the last 60 years. In addition to apple, R. pomonella also infests two species of hawthorns in the western USA as major hosts: the native black hawthorn (C. douglasii) and the introduced ornamental English hawthorn, C. monogyna. Apple and downy hawthorn-origin flies in the eastern USA use volatile blends emitted from the surface of their respective ripening fruit to find and discriminate among host trees. To test whether the same is true for western flies, we used coupled gas chromatography and electroantennographic detection (GC-EAD) and developed a 7-component apple fruit blend for western apple-origin flies, an 8-component black hawthorn fruit blend for flies infesting C. douglasii, and a 9-component ornamental hawthorn blend for flies from C. monogyna. Crataegus douglasii and C. monogyna-origin flies showed similar levels of upwind directed flight to their respective natal synthetic fruit blends in flight tunnel assays compared to whole fruit adsorbent extracts, indicating that the blends contain all the behaviorally relevant fruit volatiles to induce maximal response levels. The black and ornamental hawthorn blends shared four compounds in common including 3-methylbutan-1-ol, which appears to be a key volatile for R. pomonella populations in the eastern, southern, and western USA that show a preference for fruit from different Crataegus species. However, the blends also differed from one another and from domesticated apple in several respects that make it possible that western R. pomonella flies behaviorally discriminate among fruit volatiles and form ecologically differentiated host races, as is the case for eastern apple and hawthorn flies.


Subject(s)
Crataegus/metabolism , Diptera/physiology , Host-Parasite Interactions , Malus/metabolism , Volatile Organic Compounds/metabolism , Animals , Crataegus/parasitology , Flight, Animal , Fruit/metabolism , Fruit/parasitology , Malus/parasitology , United States
9.
J Insect Sci ; 12: 124, 2012.
Article in English | MEDLINE | ID: mdl-23451979

ABSTRACT

The apple maggot fly, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae), infests non-commercial apple (Malus domestica (Borkh.) Borkh.) and native black-fruited hawthorns (mostly Crataegus douglasii Lindl.) in central Washington, but little has been published on the abundance of the fly in this region. In this paper, the abundance of R. pomonella across different sites near apple-growing areas in central Washington is documented in order to assess the threat of the fly to commercial apple orchards. The fly was first detected on traps in Klickitat, Yakima, and Kittitas Counties in 1981, 1995, and 1997, respectively. From 1981-2010 in Kittitas and Yakima Counties, only 0 to 4.7% of traps on apple, crabapple, and hawthorn trees were positive for flies, whereas in Klickitat County, located farther from commercial apple orchards, 0 to 41.9% of traps were positive. In 2008, in Yakima County and Goldendale in Klickitat County, 7.8% of black-fruited hawthorn trees were infested, with 0 to 0.00054 larvae per fruit. In 2010, in Kittitas and Yakima Counties and Goldendale in Klickitat County, 25.0% of C. douglasii trees were infested, with 0.00042 to 0.00248 larvae per fruit. In 2010, in a remote forested area of Klickitat County far from commercial apple orchards, 94.7% of C. douglasii trees were infested, with 0.20813 larvae per fruit. Overall results suggest R. pomonella is unlikely to develop high populations rapidly near major commercial apple-growing areas in central Washington, including in black-fruited hawthorns, increasing chances it can be kept out of commercial orchards.


Subject(s)
Insect Control , Tephritidae/physiology , Animals , Crataegus , Larva/growth & development , Larva/physiology , Malus , Population Dynamics , Pupa/growth & development , Pupa/physiology , Tephritidae/growth & development , Washington
10.
Insects ; 13(5)2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35621759

ABSTRACT

The surfaces of trichoid sensilla on male moth antennae have been sculpted over evolutionary time to capture pheromone odorant molecules emitted by the females of their species and transport the molecules in milliseconds into the binding protein milieu of the sensillum lumen. The capture of pheromone molecules likely has been optimized by the topographies and spacings of the numerous ridges and pores on these sensilla. A monolayer of free lipids in the outer epicuticle covers the sensillar surfaces and must also be involved in optimal pheromone odorant capture and transport. Using electro-conductive atomic force microscopy probes, we found that electrical surface potentials of the pores, ridges and flat planar areas between ridges varied in consistent ways, suggesting that there is a heterogeneity in the distribution of surface lipid mixtures amongst these structures that could help facilitate the capture and transport of pheromone molecules down through the pores. We also performed experiments using peak force atomic force microscopy in which we heated the sensilla to determine whether there is a temperature-related change of state of some of the surface lipid exudates such as the prominent domes covering many of the pores. We found that these exudates were unaffected by heating and did not melt or change shape significantly under high heat. Additionally, we measured and compared the topographies of the trichoid sensilla of five species of moths, including the distributions, spacings, heights and diameters of ridges, pores and pore exudates.

11.
J Chem Ecol ; 37(9): 961-73, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21892724

ABSTRACT

The apple maggot fly, Rhagoletis pomonella, infests several hawthorn species in the southern USA. Here, we tested the hypothesis that these populations could serve as reservoirs for fruit odor discrimination behaviors facilitating sympatric host race formation and speciation, specifically the recent shift from downy hawthorn (Crataegus mollis) to domestic apple (Malus domestica) in the northern USA. Coupled gas chromatography and electroantennographic detection (GC-EAD), gas chromatography with mass spectrometry (GC-MS), and flight tunnel bioassays were used to identify the behaviorally active natal fruit volatile blends for three of the five major southern hawthorns: C. opaca (western mayhaw), C. aestivalis (eastern mayhaw), and C. rufula (a possible hybrid between C. opaca and C. aestivalis). A 6-component blend was developed for C. opaca (3-methylbutan-1-ol [44%], pentyl acetate [6%], butyl butanoate [6%], propyl hexanoate [6%], butyl hexanoate [26%], and hexyl butanoate [12%]); an 8-component blend for C. aestivalis (3-methylbutan-1-ol [2%], butyl acetate [47%], pentyl acetate [2%], butyl butanoate [12%], propyl hexanoate [1%], butyl hexanoate [25%], hexyl butanoate [9%], and pentyl hexanoate [2%]); and a 9-component blend for C. rufula (3-methylbutan-1-ol [1%], butyl acetate [57%], 3-methylbutyl acetate [3%], butyl butanoate [5%], propyl hexanoate [1%], hexyl propionate [1%], butyl hexanoate [23%], hexyl butanoate [6%], and pentyl hexanoate [3%]). Crataegus aestivalis and C. opaca-origin flies showed significantly higher levels of upwind directed flight to their natal blend in flight tunnel assays compared to the non-natal blend and previously developed apple, northern downy hawthorn, and flowering dogwood blends. Eastern and western mayhaw flies also were tested to the C. rufula blend, with eastern flies displaying higher levels of upwind flight compared with the western flies, likely due to the presence of butyl acetate in the C. aestivalis and C. rufula blends, an agonist compound for eastern mayhaw-origin flies, but a behavioral antagonist for western flies. The results discount the possibility that the apple fly was "pre-assembled" and originated via a recent introduction of southern mayhaw flies predisposed to accepting apple. Instead, the findings are consistent with the possibility of southern mayhaw-infesting fly host races. However, mayhaw fruits do emit several volatiles found in apple. It is, therefore, possible that the ability of the fly to evolve a preference for apple volatiles, although not the entire blend, stemmed, in part, from standing variation related to the presence of these compounds in southern mayhaw fruit.


Subject(s)
Crataegus/parasitology , Fruit/parasitology , Host-Parasite Interactions , Tephritidae/physiology , Volatile Organic Compounds/metabolism , Animals , Crataegus/metabolism , Fruit/metabolism , Gas Chromatography-Mass Spectrometry/methods , Malus/metabolism , Malus/parasitology , Smell , United States , Volatile Organic Compounds/analysis
12.
J Chem Ecol ; 37(9): 974-83, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21887525

ABSTRACT

The apple maggot fly, Rhagoletis pomonella, infests several hawthorn species in the southern USA. In a companion paper, we showed that R. pomonella flies infesting two different mayhaw species (Crataegus opaca and C. aestivalis) can discriminate between volatile blends developed for each host fruit, and that these blends are different from previously constructed blends for northern fly populations that infest domestic apple (Malus domestica), downy hawthorn (Crataegus mollis), and flowering dogwood (Cornus florida). Here, we show by using coupled gas chromatography and electroantennographic detection (GC-EAD), gas chromatography with mass spectrometry (GC-MS), and flight tunnel bioassays, that two additional southern hawthorn fly populations infesting C. viridis (green hawthorn) and C. brachyacantha (blueberry hawthorn) also can discriminate between volatile blends for each host fruit type. A 9-component blend was developed for C. viridis (3-methylbutan-1-ol [5%], butyl butanoate [19.5%], propyl hexanoate [1.5%], butyl hexanoate [24%], hexyl butanoate [24%], pentyl hexanoate [2.5%], 1-octen-3-ol [0.5%], pentyl butanoate [2.5%], and (3E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) [20.5%]) and an 8-component blend for C. brachyacantha (3-methylbutan-1-ol [0.6%], butyl acetate [50%], pentyl acetate [3.5%], butyl butanoate [9%], butyl hexanoate [16.8%], hexyl butanoate [16.8%], 1-octen-3-ol [0.3%], and pentyl butanoate [3%]). Crataegus viridis and C. brachyacantha-origin flies showed significantly higher levels of upwind oriented flight to their natal blend in flight tunnel assays compared to the alternate, non-natal blend and previously developed northern host plant blends. The presence of DMNT in C. viridis and butyl acetate in C. brachyacantha appeared to be largely responsible for driving the differential response. This sharp behavioral distinction underscores the diversity of odor response phenotypes in the southern USA, points to possible host race formation in these populations, and despite the presence of several apple volatiles in both blends, argues against a functional apple race existing on southern host plants prior to the introduction of apple to North America.


Subject(s)
Crataegus/parasitology , Fruit/parasitology , Host-Parasite Interactions , Tephritidae/physiology , Volatile Organic Compounds/metabolism , Animals , Chromatography, Gas , Crataegus/metabolism , Fruit/metabolism , Gas Chromatography-Mass Spectrometry , Odorants , Phenotype , Species Specificity , Volatile Organic Compounds/analysis
13.
J Insect Sci ; 11: 108, 2011.
Article in English | MEDLINE | ID: mdl-22220519

ABSTRACT

Male antennae of Phyllophaga tristis (Fabricius) (Coleoptera: Scarabaeidae: Melolonthinae) were tested using a coupled gas chromatograph-electroantennogram detector (GC-EAD) system for electrophysiological responses to five sex pheromones identified from other Phyllophaga species including L-valine methyl ester, L-isoleucine methyl ester, L-leucine methyl ester, methyl 2(methylthio)benzoate and methyl 2-amino benzoate. Male antennae responded only to methyl 2(methylthio)benzoate. In a 2003 field test near Greensburg, Kansas, cross-vane traps baited with rubber septa containing 1 mg of methyl 2-(methylthio)benzoate captured 466 male P. tristis. Control traps baited with rubber septa loaded with only hexane captured none. Similarly, in a field test in 2010 in Gainesville, Florida, 265 male P. apicata Reinhard were captured in traps baited with 1 mg of methyl 2-(methylthio)benzoate whereas control traps captured only a single male.


Subject(s)
Arthropod Antennae/physiology , Benzoates/metabolism , Coleoptera/chemistry , Sex Attractants/analysis , Sulfides/metabolism , Animals , Female , Male
14.
Chem Senses ; 34(1): 37-48, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18791185

ABSTRACT

Recent studies have shown that flies from sympatric populations of Rhagoletis pomonella infesting hawthorn, apple, and flowering dogwood fruit can distinguish among unique volatile blends identified from each host. Analysis of peripheral chemoreception in Rhagoletis flies suggests that changes in receptor specificity and/or receptor neuron sensitivity could impact olfactory preference among the host populations and their hybrids. In an attempt to validate these claims, we have combined flight tunnel analyses and single sensillum electrophysiology in F(2) and backcross hybrids displaying a variety of behavioral phenotypes. Results show that differences in peripheral chemoreception among second-generation adults do not provide a direct correlation between peripheral coding and olfactory behavior. We conclude that either the plasticity of the central nervous system in Rhagoletis can compensate for significant alterations in peripheral coding or that peripheral changes present subtle effects on behavior not easily detectable with current techniques. The results of this study imply that the basis for olfactory behavior in Rhagoletis has a complicated genetic and neuronal basis, even for populations with a recent divergence in preference.


Subject(s)
Behavior, Animal/physiology , Chemoreceptor Cells/physiology , Olfactory Pathways/physiology , Olfactory Perception/physiology , Tephritidae/physiology , Animals , Electrophysiology , Genetic Speciation , Tephritidae/genetics , Volatilization
15.
J Econ Entomol ; 112(4): 1546-1551, 2019 08 03.
Article in English | MEDLINE | ID: mdl-30915478

ABSTRACT

The diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae), is a global pest that infests vegetable and field crops within the Brassica family. A genetically engineered strain of P. xylostella, OX4319L, carrying a 'self-limiting' gene, has shown potential for managing P. xylostella populations, using sustained releases of OX4319L male moths. In order for such a strain to provide control, the transgenic individuals must exhibit attraction to female P. xylostella sex pheromone and adequate dispersal in the field. In this study, we tested these key traits. First, we compared the responses of the OX4319L male moths to a synthetic female sex pheromone source in wind tunnel trials to those of males from three other strains. We found that OX4319L males responded comparably to strains of non-engineered males, with all males flying upwind towards the pheromone source. Second, we used mark-release-recapture studies of a wildtype P. xylostella strain, from which the OX4319L strain was originally developed, to assess dispersal under field conditions. Released males were recaptured using both pheromone-baited and passive traps within a 2.83 ha circular cabbage field, with a recapture rate of 7.93%. Males were recaptured up to the boundary of the field at 95 m from the central release point. The median dispersal of males was 14 m. These results showed the progenitor strain of OX4319L retained its ability to disperse within a host field. The results of these experiments are discussed in relation to the potential for the effective use of engineered male-selecting P. xylostella strains under field conditions.


Subject(s)
Brassica , Moths , Sex Attractants , Animals , Animals, Genetically Modified , Female , Male , Pheromones
16.
J Insect Physiol ; 54(8): 1261-70, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18634788

ABSTRACT

The olfactory receptor neuron (ORN) and behavioral responses of hybrids between the Asian corn borer (ACB), Ostrinia furnacalis, and the E-strain European corn borer (ECB(E)), Ostrinia nubilalis were examined and compared to the parental populations. In hybrids and both parents, the large-spike-size ORN was capable of responding to all four pheromone components of ACB and ECB, despite differences in which compounds elicited the greatest spike frequency in each population. There was a small-spiking ORN more narrowly tuned to the minor pheromone components in both ACB and ECB(E). In hybrids the homologous small-spiking ORN was tuned primarily to the ECB(E) minor pheromone component, with some responsiveness to the ACB minor component. Both species and all the hybrids had an intermediate spike-size ORN tuned primarily to their common behavioral antagonist. Dominance of responsiveness to the ECB(E) versus the ACB minor pheromone component on the small-spiking ORN may explain the greater tendency of hybrids to fly upwind to the ECB(E) pheromone blend than the ACB blend. This finding points toward a distinct evolutionary role for this ORN in allowing a pheromone shift.


Subject(s)
Chimera , Moths/physiology , Olfactory Receptor Neurons/physiology , Pheromones/physiology , Animals , Behavior, Animal , Electrophysiology , Female , Hybridization, Genetic , Male , Moths/genetics , Sex Attractants/physiology
17.
Environ Entomol ; 47(4): 946-950, 2018 08 11.
Article in English | MEDLINE | ID: mdl-29668879

ABSTRACT

Fermentation volatiles attract a wide variety of insects and are used for integrated pest management. However, identification of the key behavior modifying chemicals has often been challenging due to the time consuming nature of thorough behavioral tests and unexpected discrepancies between laboratory and field results. Thus we report on a multiple-choice bioassay approach that may expedite the process of identifying field-worthy attractants in the laboratory. We revisited the four-component key chemical blend (acetic acid, ethanol, acetoin, and methionol) identified from 12 antennally active wine and vinegar chemicals for Drosophila suzukii (Matsumura) (Diptera: Drosophilidae). The identification of this blend took 2 yr of continuous laboratory two-choice assays and then similarly designed field trials. This delay was mainly due to a discrepancy between laboratory and field results that laboratory two-choice assay failed to identify methionol as an attractant component. Using a multiple-choice approach, we compared the co-attractiveness of the 12 potential attractants to an acetic acid plus ethanol mixture, known as the basal attractant for D. suzukii, and found similar results as the previous field trials. Only two compounds, acetoin and, importantly, methionol, increased attraction to a mixture of acetic acid and ethanol, suggesting the identification of the four-component blend could have been expedited. Interestingly, the co-attractiveness of some of the 12 individual compounds, including a key attractant, methionol, appears to change when they were tested under different background odor environments, suggesting that background odor can influence detection of potential attractants. Our findings provide a potentially useful approach to efficiently identify behaviorally bioactive fermentation chemicals.


Subject(s)
Chemotaxis , Drosophila/physiology , Insect Control/methods , Pheromones/pharmacology , Volatile Organic Compounds/pharmacology , Acetic Acid/chemistry , Acetic Acid/pharmacology , Acetoin/pharmacology , Animals , Ethanol/pharmacology , Female , Fermentation , Male , Propanols/pharmacology , Random Allocation , Sulfides/pharmacology , Wine/analysis
18.
J Insect Physiol ; 53(10): 1063-71, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17624366

ABSTRACT

Three percent of E-strain Ostrinia nubilalis males fly upwind in response to the Ostrinia furnacalis pheromone blend [a 40:60 ratio of (E)-12-tetradecenyl acetate to (Z)-12-tetradecenyl acetate (E12-14:OAc to Z12-14:OAc)], in addition to their own pheromone blend [a 99:1 ratio of (E)-11-tetradecenyl acetate to (Z)-11-tetradecenyl acetate) (E11-14:OAc to Z11-14:OAc)]. We assessed the olfactory receptor neuron (ORN) responses of these behaviorally "rare" males versus those of normal males. For the three ORNs housed within each sensillum, we tested responsiveness to Z12-14:OAc, E12-14:OAc, Z11-14:OAc, E11-14:OAc, and the behavioral antagonist (Z)-9-tetradecenyl acetate (Z9-14:OAc). Z11-14:OAc, E11-14:OAc, and Z9-14:OAc stimulated ORNs exhibiting distinct small, large, and medium spike sizes, respectively. For rare and normal males, both Z12-14:OAc and E12-14:OAc usually elicited responses from the largest-spiking ORN. In many ORNs of normal males, Z12-14:OAc or E12-14:OAc stimulated the smaller-spiking ORN that is responsive to Z11-14:OAc. In rare males, detectable ORN responses from the smaller-spiking ORN in response to Z12- and E12-14:OAc were virtually non-existent. These differences in ORN tuning in rare males will tend to create an ORN firing ratio between the large- and small-spiking ORNs in response to the O. furnacalis blend that is similar to that elicited by the O. nubilalis blend.


Subject(s)
Moths/physiology , Olfactory Receptor Neurons/physiology , Pheromones/physiology , Animals , Electrophysiology , Female , Male
19.
J Insect Physiol ; 53(5): 488-96, 2007 May.
Article in English | MEDLINE | ID: mdl-17374381

ABSTRACT

Olfactory receptor neuron (ORN) response was measured to assess why some males ("rare males") of the Asian corn borer (ACB), Ostrinia furnacalis, have a broad behavioral response to fly upwind to both the ACB and the European corn borer (ECB), Ostrinia nubilalis, pheromone blends. We performed single-sensillum electrophysiological recordings on ACB males that had been behaviorally assessed for upwind flight response to the ACB blend [60:40 (Z)-12-tetradecenyl acetate (Z12-14:OAc) to (E)-12-tetradecenyl acetate (E12-14:OAc)], as well as to ECB (Z-strain) and ECB (E-strain) blends [3:97 and 99:1 (Z)-11-tetradecenyl acetate (Z11-14:OAc) to (E)-11-tetradecenyl acetate (E11-14:OAc)]. Sensilla from all types of males had large- and small-spike-sized ORNs responding strongly to Z12- or E12-14:OAc, but weakly to Z11- and E11-14:OAc. In the majority of males ("normal males") that flew upwind only to the ACB blend, Z11-14:OAc elicited responses in an intermediate spike-sized ORN associated with behavioral antagonism that is mainly tuned to (Z)-9-tetradecenyl acetate (Z9-14:OAc). In the rare-type ACB males that flew to both the ACB and ECB pheromone blends, Z11-14:OAc did not stimulate this ORN. Increased responsiveness to ancestral pheromone components by ORNs associated with behavioral antagonism could be instrumental in reproductive character displacement, or in reinforcement and reproductive isolation during speciation by helping to increase assortative mating between males and females in derived populations that use novel sex pheromone blends.


Subject(s)
Appetitive Behavior/physiology , Biological Evolution , Moths/physiology , Olfactory Receptor Neurons/physiology , Pheromones/physiology , Animals , Male
20.
Environ Entomol ; 46(5): 1041-1050, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28981656

ABSTRACT

In agricultural settings, examples of effective control strategies using repellent chemicals in integrated pest management (IPM) are relatively scarce compared to those using attractants. This may be partly due to a poor understanding of how repellents affect insect behavior once they are deployed. Here we attempt to identify potential hallmarks of repellent stimuli that are robust enough for practical use in the field. We explore the literature for success stories using repellents in IPM and we investigate the mechanisms of repellency for two chemical oviposition deterrents for controlling Drosophila suzukii Matsumura, a serious pest of small fruit crops. Drosophila suzukii causes injury by laying her eggs in ripening fruit and resulting larvae make fruit unmarketable. In caged choice tests, reduced oviposition was observed in red raspberry fruit treated with volatile 1-octen-3-ol and geosmin at two initial concentrations (10% and 1%) compared to untreated controls. We used video monitoring to observe fly behavior in these caged choice tests and investigate the mode of action for deterrence through the entire behavioral repertoire leading to oviposition. We observed fewer visitors and more time elapsed before flies first landed on 1-octen-3-ol-treated fruits than control fruits and concluded that this odor primarily inhibits behaviors that occur before D. suzukii comes in contact with a potential oviposition substrate (precontact). We observed some qualitative differences in precontact behavior of flies around geosmin-treated fruits; however, we concluded that this odor primarily inhibits behaviors that occur after D. suzukii comes in contact with treated fruits (postcontact). Field trials found reduced oviposition in red raspberry treated with 1-octen-3-ol and a combination of 1-octen-3-ol and geosmin, but no effect of geosmin alone. Recommendations for further study of repellents for practical use in the field are discussed.


Subject(s)
Insect Control/methods , Insect Repellents/pharmacology , Naphthols/pharmacology , Octanols/pharmacology , Oviposition/drug effects , Animals , Drosophila , Female , Rubus
SELECTION OF CITATIONS
SEARCH DETAIL