ABSTRACT
We present images of Venus from the Wide-Field Imager for Parker Solar Probe (WISPR) telescope on board the Parker Solar Probe (PSP) spacecraft, obtained during PSP's third and fourth flybys of Venus on 2020 July 11 and 2021 February 20, respectively. Thermal emission from the surface is observed on the night side, representing the shortest wavelength observations of this emission ever, the first detection of the Venusian surface by an optical telescope observing below 0.8 µm. Consistent with previous observations at 1 µm, the cooler highland areas are fainter than the surrounding lowlands. The irradiances measured by WISPR are consistent with model predictions assuming a surface temperature of T = 735 K. In addition to the thermal emission, the WISPR images also show bright nightglow emission at the limb, and we compare the WISPR intensities with previous spectroscopic measurements of the molecular oxygen nightglow lines from Venus Express.
ABSTRACT
Ruminants are important reservoirs of E. coli O157:H7 and are considered as the major source of most foodborne outbreaks (e.g., 2017 outbreak in Germany, 2014 and 2016 outbreaks in United States, all linked to beef products). A promising strategy to reduce E. coli O157 is using antimicrobials to reduce the pathogen levels and/or virulence within the animal gastrointestinal tract and thus foodborne disease. The aim of the study was to determine the efficacy of a commercial mixture of natural antimicrobials against E. coli O157. The minimum inhibitory concentration and minimum bactericidal concentration of the antimicrobial were quantitatively determined and found to be 0.5% and 0.75% (v/v) of the natural antimicrobial, respectively. Microbial growth kinetics was also used to determine the effect of the antimicrobial on the pathogen. The natural antimicrobial affected the cell membrane of E. coli O157, as demonstrated by the increase in relative electric conductivity and increase in protein and nucleic acid release. The antimicrobial was also able to significantly reduce the concentration on E. coli O157 in a model rumen system. Biofilm assays showed that subinhibitory concentrations of the antimicrobial significantly reduced the E. coli 0157 biofilm forming capacity without influencing pathogen growth. In addition, the natural antimicrobial was able to reduce motility and exopolysaccharide production. Subinhibitory concentrations of the antimicrobial had no effect on AI-2 production. These findings suggest that the natural antimicrobial exerts an antimicrobial effect against E. coli O157 in vitro and in a model rumen system and could be potentially used to control this pathogen in the animal gut. The results also indicate that subinhibitory concentrations of the antimicrobial effectively reduce biofilm formation, motility, and exopolysaccharide production.
Subject(s)
Anti-Infective Agents/pharmacology , Biological Products/pharmacology , Escherichia coli O157/drug effects , Animals , Biofilms/drug effects , Biofilms/growth & development , Cattle , Cell Membrane Permeability , Electric Conductivity , Escherichia coli O157/growth & development , Escherichia coli O157/physiology , Female , Homoserine/analogs & derivatives , Homoserine/drug effects , Humans , Lactones , Microbial Sensitivity Tests , Polysaccharides, Bacterial/metabolism , Rumen/drug effects , Rumen/microbiologyABSTRACT
The current trend in reducing the antibiotic usage in animal production imposes urgency in the identification of novel biocides. The essential oil carvacrol, for example, changes the morphology of the cell and acts against a variety of targets within the bacterial membranes and cytoplasm, and our in vitro results show that it reduces adhesion and invasion of chicken intestinal primary cells and also biofilm formation. A trial was conducted to evaluate the effects of dietary supplementation of carvacrol at four concentrations (0, 120, 200, and 300 mg/kg of diet) on the performance of Lactobacillus spp., Escherichia coli, Campylobacter spp., and broilers. Each of the four diets was fed to three replicates/trial of 50 chicks each from day 0 to 35. Our results show that carvacrol linearly decreased feed intake, feed conversion rates and increased body weight at all levels of supplementation. Plate count analysis showed that Campylobacter spp. was only detected at 35 days in the treatment groups compared with the control group where the colonization occurred at 21 days. The absence of Campylobacter spp. at 21 days in the treatment groups was associated with a significant increase in the relative abundance of Lactobacillus spp. Also, carvacrol was demonstrated to have a significant effect on E. coli numbers in the cecum of the treatment groups, at all supplementation levels. In conclusion, this study shows for the first time that at different concentrations, carvacrol can delay Campylobacter spp., colonization of chicken broilers, by inducing changes in gut microflora, and it demonstrates promise as an alternative to the use of antibiotics.
Subject(s)
Campylobacter Infections/veterinary , Chickens/microbiology , Monoterpenes/pharmacology , Poultry Diseases/prevention & control , Animal Feed/analysis , Animals , Campylobacter Infections/prevention & control , Campylobacter jejuni/drug effects , Campylobacter jejuni/isolation & purification , Cecum/drug effects , Cecum/microbiology , Colony Count, Microbial , Cymenes , DNA, Bacterial/isolation & purification , Diet/veterinary , Dietary Supplements , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Fatty Acids/analysis , Gastrointestinal Microbiome/drug effects , Intestines/drug effects , Intestines/microbiology , Lactobacillus/drug effects , Lactobacillus/isolation & purification , Male , Poultry Diseases/microbiology , RNA, Bacterial/isolation & purification , RNA, Ribosomal, 18S/isolation & purification , Sequence Analysis, DNA , Thiobarbituric Acid Reactive Substances/metabolismABSTRACT
Microbial cells, and ultimately the Earth's biosphere, function within a narrow range of physicochemical conditions. For the majority of ecosystems, productivity is cold-limited, and it is microbes that represent the failure point. This study was carried out to determine if naturally occurring solutes can extend the temperature windows for activity of microorganisms. We found that substances known to disorder cellular macromolecules (chaotropes) did expand microbial growth windows, fungi preferentially accumulated chaotropic metabolites at low temperature, and chemical activities of solutes determined microbial survival at extremes of temperature as well as pressure. This information can enhance the precision of models used to predict if extraterrestrial and other hostile environments are able to support life; furthermore, chaotropes may be used to extend the growth windows for key microbes, such as saprotrophs, in cold ecosystems and man-made biomes.
Subject(s)
Adaptation, Biological/physiology , Ecosystem , Fungi/growth & development , Models, Biological , Temperature , Cryoprotective Agents/metabolism , Cryoprotective Agents/pharmacology , Fungi/drug effects , Glucose/metabolism , Glucose/pharmacology , Glycerol/metabolism , Glycerol/pharmacology , Pressure , Sucrose/metabolism , Sucrose/pharmacologyABSTRACT
The microbial quality of untreated and pressure-treated carrot juice was compared during storage at 4, 8 and 12 °C. High pressure treatment at 500 MPa and 600 MPa (1 min/20 °C) reduced the total counts by approximately 4 log CFU ml⻹ and there was very little growth of the survivors during storage at 4 °C for up to 22 days. Total counts increased during storage of pressure-treated juice at 8 °C and 12 °C but took significantly longer to reach maximum levels compared to the untreated juice. The microflora in the untreated juice consisted predominantly of Gram-negative bacteria, identified as mostly Pantoea spp., Erwinia spp. and Pseudomonas spp. Initially the pressure-treated juice contained low numbers of spore-forming bacteria (Bacillus spp. and Paenibacillus spp.) and Gram-positive cocci; the spore-formers continued to dominate during storage. When irradiation-sterilised juice was inoculated with a cocktail of Listeria monocytogenes, numbers decreased during storage at 4 °C and 8 °C by 1.50 and 0.56 log CFU ml⻹ respectively. When the inoculated carrot juice was pressure treated (500 MPa/1 min/20 °C) no L. monocytogenes were found immediately after pressure treatment or during storage at 4, 8 and 12 °C (>6 log inactivation). In contrast, pressure treatment in TSBYE only resulted in 1.65 log inactivation and survivors grew rapidly. This suggests that the antilisterial effect of carrot juice is enhanced by HPP.
Subject(s)
Beverages/microbiology , Daucus carota/microbiology , Food Contamination/analysis , Food Microbiology/methods , Listeria monocytogenes/isolation & purification , Colony Count, Microbial , Consumer Product Safety , Food Handling/methods , Food Preservation/methods , Hydrostatic Pressure , Listeria monocytogenes/growth & development , Pressure , RefrigerationABSTRACT
Poultry farming is growing globally, particularly in developing countries, to meet the demands of growing populations for poultry meat and eggs. This is likely to lead to an increase in the use of antibiotics in poultry feed, thus contributing to the development and spread of antibiotic resistance which, poses a serious threat to human and animal health worldwide. One way of reducing this threat is to reduce the use of antibiotics in poultry production by finding effective and sustainable antibiotic alternatives that can be used to support poultry health and productivity. Therefore, this study evaluates the incorporation of three medicinal plants, Anemone chinensis Bunge, Smilax glabra Roxb, and Agrimonia pilosa Ledeb, in poultry feed on production performance, nutrient digestibility, and bacteria in the chicken caecum in a 35-day performance trial with 420-day-old male Ross 308 broilers. Groups of randomly selected chicks received one of six dietary treatments. These included five experimental diets of reduced nutrient specifications as a negative control (NC); with amoxicillin as a positive antibiotic control (PC1); with A. pilosa Ledeb (NC1); with A. chinensis Bunge (NC2); and with S. glabra Roxb (NC3). One other positive control diet contained the recommended nutrient specification (PC2). Weight gain and feed intake were measured weekly and used to calculate the feed conversion ratio as performance parameters. Bacteria were enumerated from chicken caecum using a traditional plating method and selective agar. S. glabra Roxb and A. chinensis Bunge showed comparable effects to amoxicillin with significantly increased weight gain in birds offered these diets, compared to those offered the negative control from days 0 to 35 (p < 0.001). S. glabra Roxb exhibited effects similar to the amoxicillin control group with an improved feed conversion ratio (p < 0.001). In addition, S. glabra Roxb decreased numbers of E. coli and Campylobacter spp. on days 21 (p < 0.05) and 35 (p < 0.01) and increased numbers of lactic acid bacteria comparable to the antibiotic group on days 14 (p < 0.001) and 35 (p < 0.01). The findings of this in vivo trial highlight the potential of S. glabra Roxb and A. chinensis Bunge as beneficial feed material to promote poultry health and productivity in the absence of antibiotics.
ABSTRACT
The objective of this study was to assess the effect of High Pressure Homogenisation (HPH) compared with High Hydrostatic Pressure (HHP) on the microbiological quality of raw apple juice during storage at ideal (4 °C) and abuse (12 °C) temperatures. In the case of HPH, only low numbers of micro-organisms were detected after treatment at 300 MPa (typically between 2 and 3 log.ml⻹). These were identified as Streptomyces spp., and numbers did not increase during storage of the juice for 35 days, irrespective of storage temperature. In the case of HHP, the total aerobic counts were also reduced significantly (p < 0.05) after treatment for 1 min at 500 and 600 MPa and the numbers did not increase significantly during storage at 4 °C. However, during storage at 12 °C the counts did increase significantly (p < 0.05) and by day 14 counts at 500 MPa were not significantly different from the control juice. This confirms that good temperature control is important if the full benefits of HHP treatment are to be realised. Frateuria aurantia dominated the microbiota of the HHP apple juice stored at 12 °C along with low levels of Bacillus and Streptomyces spp. The HPH and HHP juices both turned brown during storage indicating that neither treatment was sufficient to inactivate polyphenol oxidase. The enzyme is known to be pressure resistant and this discolouration was controlled by a heat treatment (70 °C for 1 min) used in commercial practice and given prior to HP treatment.
Subject(s)
Beverages/microbiology , Malus/chemistry , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Beverages/analysis , Food Handling , Hydrostatic Pressure , Malus/microbiology , MetagenomeABSTRACT
Reducing the Campylobacter load on poultry carcasses represents a major tasks for the industry as its ability to reduce their presence is of major interest aiming to increase consumer safety. This study investigated the ability of a mixture of natural antimicrobials (A3001) to reduce the adherence of the T6SS+/-C. coli isolates (NC1hcp-, NC2 hcp- and NC3 hcp+) to chicken neck skin and whole carcasses. Overall, the antimicrobial mixture induced a significant reduction in the capability of our C. coli isolates to colonise the chicken skin (p < 0.05) and carcasses (p < 0.0001) but with a greater effect (≈3 log reduction) on the NC3 isolate. Using the HCT-8 in vitro infection model we also show that at a concentration of 0.5% A3001, the impact on the NC3 isolate is accompanied by the downregulation of the hcp gene (p = 0.0001), and indicator of the T6SS presence. The results described herein also indicated that these isolates are highly resistant to H2O2, up to 20 mM, suggesting a high resilience to environmental stresses. In summary our study shows that natural antimicrobials can reduce the ability of T6SS positive chicken C. coli isolates to adhere to chicken skin or to the whole carcass and to infect epithelial cells in vitro and could be considered a potential intervention at processor level.
Subject(s)
Campylobacter coli/drug effects , Chickens/microbiology , Food Microbiology , Skin/microbiology , Animals , Anti-Bacterial Agents/pharmacology , Hydrogen Peroxide/pharmacologyABSTRACT
Eimeria tenella and Eimeria bovis are complex parasites responsible for the condition of coccidiosis, that invade the animal gastrointestinal intestinal mucosa causing severe diarrhoea, loss of appetite or abortions, with devastating impacts on the farming industry. The negative impacts of these parasitic infections are enhanced by their role in promoting the colonisation of the gut by common foodborne pathogens. The aim of this study was to test the anti-Eimeria efficacy of maltodextrin, sodium chloride, citric acid, sodium citrate, silica, malic acid, citrus extract, and olive extract individually, in vitro and in combination, in vivo. Firstly, in vitro infection models demonstrated that antimicrobials reduced (p < 0.05), both singly and in combination (AG), the ability of E. tenella and E. bovis to infect MDBK and CLEC-213 epithelial cells, and the virulence reduction was similar to that of the anti-coccidial drug Robenidine. Secondly, using an in vivo broiler infection model, we demonstrated that AG reduced (p = 0.001) E. tenella levels in the caeca and excreted faeces, reduced inflammatory oxidative stress, improved the immune response through reduced ROS, increased Mn-SOD and SCFA levels. Levels of IgA and IgM were significantly increased in caecal tissues of broilers that received 0.5% AG and were associated with improved (p < 0.0001) tissue lesion scores. A prophylactic approach increased the anti-parasitic effect in vivo, and results indicated that administration from day 0, 5 and 10 post-hatch reduced tissue lesion scores (p < 0.0001) and parasite excretion levels (p = 0.002). Conclusively, our in vitro and in vivo results demonstrate that the natural antimicrobial mixture (AG) reduced parasitic infections through mechanisms that reduced pathogen virulence and attenuated host inflammatory events.
Subject(s)
Acids/pharmacology , Antiparasitic Agents/pharmacology , Coccidiosis/drug therapy , Epithelial Cells/drug effects , Organic Chemicals/pharmacology , Poultry Diseases/drug therapy , Sporozoites/drug effects , Animals , Cattle , Chickens , Coccidiosis/parasitology , Coccidiosis/veterinary , Eimeria/drug effects , Eimeria tenella/drug effects , Epithelial Cells/parasitology , In Vitro Techniques , Lung/drug effects , Lung/parasitology , Poultry Diseases/parasitologyABSTRACT
BACKGROUND: The classification of natural antimicrobials as potential antibiotic replacements is still hampered by the absence of clear biological mechanisms behind their mode of action. This study investigated the mechanisms underlying the anti-bacterial effect of a mixture of natural antimicrobials (maltodextrin, citric acid, sodium citrate, malic acid, citrus extract and olive extract) against Campylobacter jejuni RC039, Salmonella enterica SE 10/72 and Clostridium perfringens ATCC® 13124 invasion of Madin-Darby Canine Kidney cells (MDCK). RESULTS: Minimum sub-inhibitory concentrations were determined for Campylobacter jejuni (0.25%), Salmonella enterica (0.50%) and Clostridium perfringens (0.50%) required for the in vitro infection assays with MDCK cells. The antimicrobial mixture significantly reduced the virulence of all three pathogens towards MDCK cells and restored the integrity of cellular tight junctions through increased transepithelial resistance (TEER) and higher expression levels of ZO-1 (zonula occludens 1) and occludin. This study also identified the ERK (external regulated kinase) signalling pathway as a key mechanism in blocking the pro-inflammatory cytokine production (IL-1ß, IL-6, IL-8, TNF-α) in infected cells. The reduction in hydrogen peroxide (H2O2) production and release by infected MDCK cells, in the presence of the antimicrobial mixture, was also associated with less tetrathionate formed by oxidation of thiosulphate (p < 0.0001). CONCLUSION: The present study describes for the first time that mixtures of natural antimicrobials can prevent the formation of substrates used by bacterial pathogens to grow and survive in anaerobic environments (e.g. tetrathionate). Moreover, we provide further insights into pathogen invasion mechanisms through restoration of cellular structures and describe their ability to block the ERK-MAPK kinase pathway responsible for inflammatory cytokine release.
ABSTRACT
Vacuum-packaged cooked poultry meat was treated at a range of pressures (400-600 MPa) and hold times (1, 2 and 10 min), followed by storage at 4 degrees , 8 degrees or 12 degrees C for up to 35 days. Weissella viridescens was found to be the dominant microorganism in the pressure-treated meat, constituting 100% of the microflora identified at 500 and 600 MPa. None of the pressure-treated samples had obvious signs of spoilage during the 35 day storage period, even when the Weissella count was >7 log(10) cfu/g. Studies on a typical W. viridescens isolate showed it to be relatively pressure-resistant in poultry meat, with <1 log reduction in numbers after a treatment of 2 min at 600 MPa. Agar diffusion assays showed that the isolate also caused the inhibition of a number of Gram-positive and Gram-negative pathogens, including strains of Clostridium botulinum, Listeria monocytogenes, Bacillus cereus and Escherichia coli. The selection of a pressure-resistant organism, such as this Weissella sp. could be advantageous in extending the shelf-life, and also microbiological safety, of the cooked meat, as it could give protection in addition to the pressure treatment itself.
Subject(s)
Food Microbiology , Food Preservation/methods , Meat/microbiology , Refrigeration/methods , Animals , Bacteria/classification , Bacteria/growth & development , Bacteria/isolation & purification , Chickens , Cooking , Food Handling/methods , Leuconostocaceae/growth & development , Leuconostocaceae/isolation & purification , Microbial Interactions , PressureABSTRACT
Seaweeds offer a natural source of antimicrobials that may help curb antibiotic resistance in livestock. The antibacterial activity of phlorotannin extracts isolated from two brown seaweeds Ascophyllum nodosum and Fucus serratus was tested. The mechanism of action of phlorotannin extracts against Escherichia coli O157, Salmonella agona, and Streptococcus suis was elucidated by observing cell membrane permeability and intracellular adenosine triphosphate (ATP). The two extracts were effective at killing three foodborne pathogens without negatively affecting the pig intestinal cells. A. nodosum minimum inhibitory concentration (MIC) range for the different pathogens was between 1.56 and 0.78 mg/mL, whereas F. serratus was 3.13 mg/mL for all pathogens tested. A. nodosum was found to be much more potent compared to F. serratus. The difference in potency in the seaweeds may be a result of the phlorotannins' structural linkages. The antimicrobial properties of the seaweed extracts tested may provide alternative and complementary treatments to antibiotics and zinc oxide in animal feeds. The seasonal screening was performed on both species to assess the availability of phenolics throughout the year using two quantification methods, the Folin-Ciocalteu (FC) assay and quantitative nuclear magnetic resonance (NMR). The variation between the methods highlights the challenges involved in the quantification of complex phenolic structures. However, both methods show that the phenolics are subject to seasonal variation, which may prove problematic to the animal feed industry.
ABSTRACT
Black soldier fly larvae (BSFL) are gaining importance in animal feeding due to their ability to upcycle low-value agroindustry by-products into high-protein biomass. The present study evaluated the nutritional composition of BSFL reared on brewer's by-product (BBP) and the impact of thermal (90 °C for 10/15 min) and high-pressure processing (HPP; 400/600MPa for 1.5/10 min) treatments on the microbial levels and in vitro digestibility in both ruminant and monogastric models. BBP-reared BSFL contained a high level of protein, amino acids, lauric acid, and calcium, and high counts of total viable counts (TVC; 7.97), Enterobacteriaceae (7.65), lactic acid bacteria (LAB; 6.50), and yeasts and moulds (YM; 5.07). Thermal processing was more effective (p < 0.05) than any of the HPP treatments in reducing TVC. Both temperature of 90 °C and pressure of 600 MPa reduced the levels of Enterobacteriaceae, LAB, and YM below the detection limit. In contrast, the application of the 400 MPa showed a reduced inactivation (p < 0.05) potential. Heat-treated samples did not result in any significant changes (p > 0.05) on any of the in vitro digestibility models, whereas HPP showed increased and decreased ruminal and monogastric digestibility, respectively. HPP did not seem to be a suitable, cost-effective method as an alternative to heat-processing for the large-scale treatment of BSFL.
ABSTRACT
BACKGROUND: The factors affecting host-pathogen ecology in terms of the microbiome remain poorly studied. Chickens are a key source of protein with gut health heavily dependent on the complex microbiome which has key roles in nutrient assimilation and vitamin and amino acid biosynthesis. The chicken gut microbiome may be influenced by extrinsic production system parameters such as Placement Birds/m2 (stocking density), feed type and additives. Such parameters, in addition to on-farm biosecurity may influence performance and also pathogenic bacterial numbers such as Campylobacter. In this study, three different production systems 'Normal' (N), 'Higher Welfare' (HW) and 'Omega-3 Higher Welfare' (O) were investigated in an industrial farm environment at day 7 and day 30 with a range of extrinsic parameters correlating performance with microbial dynamics and Campylobacter presence. RESULTS: Our data identified production system N as significantly dissimilar from production systems HW and O when comparing the prevalence of genera. An increase in Placement Birds/m2 density led to a decrease in environmental pressure influencing the microbial community structure. Prevalence of genera, such as Eisenbergiella within HW and O, and likewise Alistipes within N were representative. These genera have roles directly relating to energy metabolism, amino acid, nucleotide and short chain fatty acid (SCFA) utilisation. Thus, an association exists between consistent and differentiating parameters of the production systems that affect feed utilisation, leading to competitive exclusion of genera based on competition for nutrients and other factors. Campylobacter was identified within specific production system and presence was linked with the increased diversity and increased environmental pressure on microbial community structure. Addition of Omega-3 though did alter prevalence of specific genera, in our analysis did not differentiate itself from HW production system. However, Omega-3 was linked with a positive impact on weight gain. CONCLUSIONS: Overall, our results show that microbial communities in different industrial production systems are deterministic in elucidating the underlying biological confounders, and these recommendations are transferable to farm practices and diet manipulation leading to improved performance and better intervention strategies against Campylobacter within the food chain. Video Abstract.
Subject(s)
Animal Husbandry , Campylobacter/isolation & purification , Chickens/microbiology , Gastrointestinal Microbiome , Animal Welfare , Animals , Campylobacter Infections/microbiology , Campylobacter Infections/veterinary , Chickens/metabolism , Weight GainABSTRACT
BACKGROUND: The degradation of nucleotides and their enzymes had been widely used to evaluate fish freshness. Immediately after fish death, adenosine triphosphate (ATP) degrades into inosine-5-monophosphate (IMP) via adenosine-5-diphosphate (ADP) and adenosine-5-monophosphate (AMP). IMP degradation continues to produce inosine (ino) and hypoxanthine (Hx) and further deteriorates the fish by producing xanthine and uric acid. The dephosphorylation of IMP to Ino is carried out by the enzyme 5'-nucleotidase (5'-NT), whereas the degradation of Ino to Hx is carried out by the enzyme nucleoside phosphorylase (NP). This study assesses the application of high pressure processing (HPP) in two species of fishes; haddock (Melanogrammus aeglefinus) and herring (Clupea harengus) as a means to extend the shelf-life by slowing down the rate of nucleotides degradation. METHODS: Haddock (Melanogrammus aeglefinus) and herring (Clupea harengus) fillets were subjected to HPP at 200, 250 and 300 MPa for 1 and 3 min before being stored for 14 days. In addition, 5'-NT and NP enzyme activities were determined on both fish species that were subjected to 100-600 MPa for 1 and 3 min. RESULTS: Adenosine triphosphate, ADP and AMP in both haddock and herring were lower at higher pressure levels. Inosine (Ino) increased (p < 0.05) after treatment at higher pressures in both species. Hx in herring decreased significantly (p < 0.05) at higher pressures but not in haddock. K values are the ratio of Ino and Hx to all nucleotides. K values in haddock were not significantly (p > 0.05) affected by the pressure treatment. H values are ratio of Hx to the sum of IMP, Ino and Hx. H values in haddock were significantly decreased (p < 0.05) with increasing pressure level. F values are ratio of IMP to the sum of IMP, Ino and Hx. F values showed no significant effects (p > 0.05) after pressure treatment. Furthermore, K values in control herring were significantly higher (p < 0.05) than those of the pressure-treated samples. H values in herring decreased significantly (p < 0.05) with increasing pressure level. F values in herring showed no significant effects (p > 0.05) after pressure treatment. Pressure treatment brought a significant decrease (p < 0.05) in protein content in both haddock and herring. 5'-NT activity was 20-35 fold higher compared to NP activity in haddock and 15-44 fold higher than NP activity in herring. 5'-NT and NP activities decreased significantly with increasing pressure level in both species. DISCUSSION: High pressure processing effectively slows down the conversion of Ino to Hx, delaying the undesirable flavour that develops in spoiling fish. The autolytic conversion of IMP to Ino by endogenous 5'-NT predominates in the earliest stages of storage is an autolytic process. However, both bacterial and endogenous NP enzymes are probably responsible for the gradual accumulation of Hx in fish. K values are recommended as a useful measurement of fish freshness.
ABSTRACT
Reducing acute mortality in aquatic crustaceans using natural alternatives to antibiotics has become a necessity, firstly for its positive impact on the aquaculture industry and, secondly, because the extensive use of antibiotics may lead to increased levels of drug resistance in pathogenic microorganisms. This study aimed to investigate the effect of a mixture of natural antimicrobials on the in vitro and in vivo virulence abilities of Type VI secretion system (T6SS)-positive Vibrio parahaemolyticus (A3 and D4), strains known as having potentially harmful health consequences for aquatic crustaceans and consumers. Herein, we report that a natural antimicrobial mixture (A3009) was capable of significantly reducing the virulence of V. parahaemolyticus strains A3 and D4 in an in vitro infection model, using the fish cell line CHSE-214, an effect which correlates with the bacterial downregulation of hcp1 and hcp2 gene expression and with the ability of the antimicrobial to efficiently retain low cytotoxic levels (p < 0.001). We show for the first time that a natural antimicrobial is able to significantly reduce the mortality of shrimps in a challenge experiment and is able to significantly attenuate H2O2 release during infection (p < 0.001), indicating that it could harbor positive intestinal redox balance effects.
ABSTRACT
Chickens are a key food source for humans yet their microbiome contains bacteria that can be pathogenic to humans, and indeed potentially to chickens themselves. Campylobacter is present within the chicken gut and is the leading cause of bacterial foodborne gastroenteritis within humans worldwide. Infection can lead to secondary sequelae such as Guillain-Barré syndrome and stunted growth in children from low-resource areas. Despite the global health impact and economic burden of Campylobacter, how and when Campylobacter appears within chickens remains unclear. The lack of day to day microbiome data with replicates, relevant metadata, and a lack of natural infection studies have delayed our understanding of the chicken gut microbiome and Campylobacter. Here, we performed a comprehensive day to day microbiome analysis of the chicken cecum from day 3 to 35 (12 replicates each day; final n = 379). We combined metadata such as chicken weight and feed conversion rates to investigate what the driving forces are for the microbial changes within the chicken gut over time, and how this relates to Campylobacter appearance within a natural habitat setting. We found a rapidly increasing microbial diversity up to day 12 with variation observed both in terms of genera and abundance, before a stabilization of the microbial diversity after day 20. In particular, we identified a shift from competitive to environmental drivers of microbial community from days 12 to 20 creating a window of opportunity whereby Campylobacter can appear. Campylobacter was identified at day 16 which was 1 day after the most substantial changes in metabolic profiles observed. In addition, microbial variation over time is most likely influenced by the diet of the chickens whereby significant shifts in OTU abundances and beta dispersion of samples often corresponded with changes in feed. This study is unique in comparison to the most recent studies as neither sampling was sporadic nor Campylobacter was artificially introduced, thus the experiments were performed in a natural setting. We believe that our findings can be useful for future intervention strategies and help reduce the burden of Campylobacter within the food chain.
ABSTRACT
Human campylobacteriosis is considered one of the most common foodborne diseases worldwide with poultry identified as the main source of infection accounting for 50-80% of human cases. Highly virulent Campylobacter spp., positive for the Type VI secretion system (T6SS), which have an increased ability to adhere to and invade the host gastrointestinal epithelium are highly prevalent in poultry. Multidrug resistant strains of bacteria are rapidly evolving and therefore, new antimicrobials to supplement animal feed that are able to control Campylobacter species, are in great need. The work presented herein indicates that a novel phenolic antimicrobial, Auranta 3001, is able to reduce the adhesion and invasion of human intestinal epithelial cells (HCT-8) by two T6SS positive chicken isolates, C. jejuni RC039 (p < 0.05) and C. coli RC013 (p < 0.001). Exposure of C. jejuni RC039 and C. coli RC013 to Auranta 3001 downregulated the expression of hcp and cetB genes, known to be important in the functionality of T6SS. Furthermore, the reduced adhesion and invasion is associated with a significant decrease in bacterial motility of both isolates (p < 0.05-p < 0.001) in vitro. Most importantly our in vivo results show that Auranta 3001 is able to reduce cecum colonization levels from log 8 CFU/ml to log 2 CFU/ml for C. jejuni RC039 and from log 7 CFU/ml to log 2 CFU/ml for C. coli RC013. In conclusion, this novel antimicrobial is able to reduce the pathogenic properties of T6SS campylobacters in vitro and also to decrease colonization in vivo.
ABSTRACT
BACKGROUND: Cryptosporidium is a major cause of diarrhea worldwide in both humans and farm animals with no completely effective treatment available at present. In this study, we assessed the inhibitory effect of different concentrations of Auranta 3001 (0.1, 0.5 and 1%), a novel natural feed supplement, on C. hominis and C. parvum invasion of human ileocecal adenocarcinoma (HCT-8), bovine primary cells and C. parvum invasion of HCT-8, bovine primary cells and bovine intestinal biopsies. The effect of the feed supplement on the production of pro-inflammatory cytokines IL-8 and INF-γ, the anti-inflammatory cytokine IL-10, the expression of CpSUB1 protease gene during infection was also assessed by quantitative PCR (q-PCR). Transepithelial electrical resistance (TEER) was employed to measure the integrity of tight junction dynamics of the culture models. RESULTS: Pre-treatment of intestinal cells or oocysts with the Auranta 3001 significantly reduced the invasiveness of C. hominis and C. parvum against HCT-8 and bovine primary cells in a dose dependent manner. The most pronounced reduction in the invasiveness of both parasites was observed when Auranta 3001 was present during infection. Levels of IL-8 were significantly reduced in both HCT-8 and bovine primary cells, while the levels of INF-γ and IL-10 showed opposite trends in the two cell lines during infection in the presence of Auranta 3001. CpSUB1 gene protease expression, which mediates infection, was significantly reduced suggesting that this enzyme is a possible target of Auranta 3001. CONCLUSIONS: Although, C. hominis and C. parvum use different invasion mechanisms to infect cells, the novel feed additive can significantly attenuate the entry of Cryptosporidium in HCT-8 cells, primary bovine cells and bovine intestinal biopsies and thus provide an alternative method to control cryptosporidiosis.
ABSTRACT
This study evaluated the effect of an industrial scale continuous flow microwave volumetric heating system in comparison to conventional commercial scale pasteurisation for the processing of tomato juice in terms of physicochemical properties, microbial characteristics and antioxidant capacity. The effect against oxidative stress in Caco-2 cells, after in vitro digestion was also investigated. Physicochemical and colour characteristics of juices were very similar between technologies and during storage. Both conventional and microwave pasteurisation inactivated microorganisms and kept them in low levels throughout storage. ABTS[Symbol: see text](+) values, but not ORAC, were higher for the microwave pasteurised juice at day 0 however no significant differences between juices were observed during storage. Juice processed with the microwave system showed an increased cytoprotective effect against H2O2 induced oxidation in Caco-2 cells. Organoleptic analysis revealed that the two tomato juices were very similar. The continuous microwave volumetric heating system appears to be a viable alternative to conventional pasteurisation.