Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
J Immunol ; 213(1): 7-13, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38775415

ABSTRACT

Lymphocyte activation gene 3 (LAG3) is an inhibitory receptor that plays a critical role in controlling T cell tolerance and autoimmunity and is a major immunotherapeutic target. LAG3 is expressed on the cell surface as a homodimer but the functional relevance of this is unknown. In this study, we show that the association between the TCR/CD3 complex and a murine LAG3 mutant that cannot dimerize is perturbed in CD8+ T cells. We also show that LAG3 dimerization is required for optimal inhibitory function in a B16-gp100 tumor model. Finally, we demonstrate that a therapeutic LAG3 Ab, C9B7W, which does not block LAG3 interaction with its cognate ligand MHC class II, disrupts LAG3 dimerization and its association with the TCR/CD3 complex. These studies highlight the functional importance of LAG3 dimerization and offer additional approaches to therapeutically target LAG3.


Subject(s)
Antigens, CD , CD8-Positive T-Lymphocytes , Lymphocyte Activation Gene 3 Protein , Protein Multimerization , Animals , Mice , Antigens, CD/immunology , Antigens, CD/metabolism , Antigens, CD/genetics , CD8-Positive T-Lymphocytes/immunology , Melanoma, Experimental/immunology , Mice, Inbred C57BL , Receptor-CD3 Complex, Antigen, T-Cell/immunology , CD3 Complex/immunology , Humans , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Lymphocyte Activation/immunology , Protein Binding
2.
PLoS Genet ; 16(12): e1009255, 2020 12.
Article in English | MEDLINE | ID: mdl-33275594

ABSTRACT

Thirty percent of all cellular proteins are inserted into the endoplasmic reticulum (ER), which spans throughout the cytoplasm. Two well-established stress-induced pathways ensure quality control (QC) at the ER: ER-phagy and ER-associated degradation (ERAD), which shuttle cargo for degradation to the lysosome and proteasome, respectively. In contrast, not much is known about constitutive ER-phagy. We have previously reported that excess of integral-membrane proteins is delivered from the ER to the lysosome via autophagy during normal growth of yeast cells. Whereas endogenously expressed ER resident proteins serve as cargos at a basal level, this level can be induced by overexpression of membrane proteins that are not ER residents. Here, we characterize this pathway as constitutive ER-phagy. Constitutive and stress-induced ER-phagy share the basic macro-autophagy machinery including the conserved Atgs and Ypt1 GTPase. However, induction of stress-induced autophagy is not needed for constitutive ER-phagy to occur. Moreover, the selective receptors needed for starvation-induced ER-phagy, Atg39 and Atg40, are not required for constitutive ER-phagy and neither these receptors nor their cargos are delivered through it to the vacuole. As for ERAD, while constitutive ER-phagy recognizes cargo different from that recognized by ERAD, these two ER-QC pathways can partially substitute for each other. Because accumulation of membrane proteins is associated with disease, and constitutive ER-phagy players are conserved from yeast to mammalian cells, this process could be critical for human health.


Subject(s)
Autophagy , Endoplasmic Reticulum-Associated Degradation , Membrane Proteins/metabolism , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Endoplasmic Reticulum/metabolism , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Stress, Physiological , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism
3.
Brain ; 143(1): 112-130, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31794024

ABSTRACT

The conserved transport protein particle (TRAPP) complexes regulate key trafficking events and are required for autophagy. TRAPPC4, like its yeast Trs23 orthologue, is a core component of the TRAPP complexes and one of the essential subunits for guanine nucleotide exchange factor activity for Rab1 GTPase. Pathogenic variants in specific TRAPP subunits are associated with neurological disorders. We undertook exome sequencing in three unrelated families of Caucasian, Turkish and French-Canadian ethnicities with seven affected children that showed features of early-onset seizures, developmental delay, microcephaly, sensorineural deafness, spastic quadriparesis and progressive cortical and cerebellar atrophy in an effort to determine the genetic aetiology underlying neurodevelopmental disorders. All seven affected subjects shared the same identical rare, homozygous, potentially pathogenic variant in a non-canonical, well-conserved splice site within TRAPPC4 (hg19:chr11:g.118890966A>G; TRAPPC4: NM_016146.5; c.454+3A>G). Single nucleotide polymorphism array analysis revealed there was no haplotype shared between the tested Turkish and Caucasian families suggestive of a variant hotspot region rather than a founder effect. In silico analysis predicted the variant to cause aberrant splicing. Consistent with this, experimental evidence showed both a reduction in full-length transcript levels and an increase in levels of a shorter transcript missing exon 3, suggestive of an incompletely penetrant splice defect. TRAPPC4 protein levels were significantly reduced whilst levels of other TRAPP complex subunits remained unaffected. Native polyacrylamide gel electrophoresis and size exclusion chromatography demonstrated a defect in TRAPP complex assembly and/or stability. Intracellular trafficking through the Golgi using the marker protein VSVG-GFP-ts045 demonstrated significantly delayed entry into and exit from the Golgi in fibroblasts derived from one of the affected subjects. Lentiviral expression of wild-type TRAPPC4 in these fibroblasts restored trafficking, suggesting that the trafficking defect was due to reduced TRAPPC4 levels. Consistent with the recent association of the TRAPP complex with autophagy, we found that the fibroblasts had a basal autophagy defect and a delay in autophagic flux, possibly due to unsealed autophagosomes. These results were validated using a yeast trs23 temperature sensitive variant that exhibits constitutive and stress-induced autophagic defects at permissive temperature and a secretory defect at restrictive temperature. In summary we provide strong evidence for pathogenicity of this variant in a member of the core TRAPP subunit, TRAPPC4 that associates with vesicular trafficking and autophagy defects. This is the first report of a TRAPPC4 variant, and our findings add to the growing number of TRAPP-associated neurological disorders.


Subject(s)
Autophagy/genetics , Craniofacial Abnormalities/genetics , Fibroblasts/metabolism , Nerve Tissue Proteins/genetics , Neurodevelopmental Disorders/genetics , Vesicular Transport Proteins/genetics , Atrophy , Cerebellum/diagnostic imaging , Cerebellum/pathology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Child , Child, Preschool , Craniofacial Abnormalities/diagnostic imaging , Deafness/genetics , Deafness/physiopathology , Developmental Disabilities/genetics , Developmental Disabilities/physiopathology , Epilepsy/genetics , Epilepsy/physiopathology , Female , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/physiopathology , Humans , Infant , Infant, Newborn , Intellectual Disability/genetics , Intellectual Disability/physiopathology , Male , Microcephaly/genetics , Microcephaly/physiopathology , Microscopy, Fluorescence , Muscle Spasticity/genetics , Muscle Spasticity/physiopathology , Neurodevelopmental Disorders/physiopathology , Pedigree , Quadriplegia/genetics , Quadriplegia/physiopathology , RNA Splice Sites/genetics , Syndrome
4.
PLoS Genet ; 13(9): e1007020, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28934205

ABSTRACT

In the conserved autophagy pathway, the double-membrane autophagosome (AP) engulfs cellular components to be delivered for degradation in the lysosome. While only sealed AP can productively fuse with the lysosome, the molecular mechanism of AP closure is currently unknown. Rab GTPases, which regulate all intracellular trafficking pathways in eukaryotes, also regulate autophagy. Rabs function in GTPase modules together with their activators and downstream effectors. In yeast, an autophagy-specific Ypt1 GTPase module, together with a set of autophagy-related proteins (Atgs) and a phosphatidylinositol-3-phosphate (PI3P) kinase, regulates AP formation. Fusion of APs and endosomes with the vacuole (the yeast lysosome) requires the Ypt7 GTPase module. We have previously shown that the Rab5-related Vps21, within its endocytic GTPase module, regulates autophagy. However, it was not clear which autophagy step it regulates. Here, we show that this module, which includes the Vps9 activator, the Rab5-related Vps21, the CORVET tethering complex, and the Pep12 SNARE, functions after AP expansion and before AP closure. Whereas APs are not formed in mutant cells depleted for Atgs, sealed APs accumulate in cells depleted for the Ypt7 GTPase module members. Importantly, depletion of individual members of the Vps21 module results in a novel phenotype: accumulation of unsealed APs. In addition, we show that Vps21-regulated AP closure precedes another AP maturation step, the previously reported PI3P phosphatase-dependent Atg dissociation. Our results delineate three successive steps in the autophagy pathway regulated by Rabs, Ypt1, Vps21 and Ypt7, and provide the first insight into the upstream regulation of AP closure.


Subject(s)
Autophagosomes/metabolism , Endocytosis/genetics , Protein Transport/genetics , rab GTP-Binding Proteins/genetics , rab5 GTP-Binding Proteins/genetics , Autophagy/genetics , Autophagy-Related Proteins/genetics , Endosomes/genetics , Lysosomes/genetics , Phosphatidylinositol 3-Kinases/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Vacuoles/genetics
5.
PLoS Genet ; 11(7): e1005390, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26181331

ABSTRACT

The endoplasmic-reticulum quality-control (ERQC) system shuttles misfolded proteins for degradation by the proteasome through the well-defined ER-associated degradation (ERAD) pathway. In contrast, very little is known about the role of autophagy in ERQC. Macro-autophagy, a collection of pathways that deliver proteins through autophagosomes (APs) for degradation in the lysosome (vacuole in yeast), is mediated by autophagy-specific proteins, Atgs, and regulated by Ypt/Rab GTPases. Until recently, the term ER-phagy was used to describe degradation of ER membrane and proteins in the lysosome under stress: either ER stress induced by drugs or whole-cell stress induced by starvation. These two types of stresses induce micro-ER-phagy, which does not use autophagic organelles and machinery, and non-selective autophagy. Here, we characterize the macro-ER-phagy pathway and uncover its role in ERQC. This pathway delivers 20-50% of certain ER-resident membrane proteins to the vacuole and is further induced to >90% by overexpression of a single integral-membrane protein. Even though such overexpression in cells defective in macro-ER-phagy induces the unfolded-protein response (UPR), UPR is not needed for macro-ER-phagy. We show that macro-ER-phagy is dependent on Atgs and Ypt GTPases and its cargo passes through APs. Moreover, for the first time the role of Atg9, the only integral-membrane core Atg, is uncoupled from that of other core Atgs. Finally, three sequential steps of this pathway are delineated: Atg9-dependent exit from the ER en route to autophagy, Ypt1- and core Atgs-mediated pre-autophagsomal-structure organization, and Ypt51-mediated delivery of APs to the vacuole.


Subject(s)
Autophagy/genetics , Endoplasmic Reticulum-Associated Degradation/genetics , Membrane Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , rab GTP-Binding Proteins/genetics , Animals , Autophagy-Related Proteins , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/genetics , Lysosomes/genetics , Lysosomes/metabolism , Membrane Proteins/chemistry , Protein Folding , Proteolysis , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/chemistry , rab GTP-Binding Proteins/biosynthesis , rab GTP-Binding Proteins/chemistry
6.
Crit Rev Biochem Mol Biol ; 50(3): 203-11, 2015.
Article in English | MEDLINE | ID: mdl-25702751

ABSTRACT

Ypt/Rab GTPases are key regulators of all membrane trafficking events in eukaryotic cells. They act as molecular switches that attach to membranes via lipid tails to recruit their multiple downstream effectors, which mediate vesicular transport. Originally discovered in yeast as Ypts, they were later shown to be conserved from yeast to humans, where Rabs are relevant to a wide array of diseases. Major principles learned from our past studies in yeast are currently accepted in the Ypt/Rab field including: (i) Ypt/Rabs are not transport-step specific, but are rather compartment specific, (ii) stimulation by nucleotide exchangers, GEFs, is critical to their function, whereas GTP hydrolysis plays a role in their cycling between membranes and the cytoplasm for multiple rounds of action, (iii) they mediate diverse functions ranging from vesicle formation to vesicle fusion and (iv) they act in GTPase cascades to regulate intracellular trafficking pathways. Our recent studies on Ypt1 and Ypt31/Ypt32 and their modular GEF complex TRAPP raise three exciting novel paradigms for Ypt/Rab function: (a) coordination of vesicular transport substeps, (b) integration of individual transport steps into pathways and (c) coordination of different transport pathways. In addition to its amenability to genetic analysis, yeast provides a superior model system for future studies on the role of Ypt/Rabs in traffic coordination due to the smaller proteome that results in a simpler traffic grid. We propose that different types of coordination are important also in human cells for fine-tuning of intracellular trafficking, and that coordination defects could result in disease.


Subject(s)
Biological Transport , Eukaryotic Cells/metabolism , Fungal Proteins/metabolism , Transport Vesicles/metabolism , rab GTP-Binding Proteins/metabolism , Eukaryotic Cells/cytology , Humans , Protein Transport , Vesicular Transport Proteins/metabolism , Yeasts/cytology , Yeasts/metabolism
7.
Traffic ; 15(3): 327-37, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24329977

ABSTRACT

The modular TRAPP complex acts as a guanine-nucleotide exchange factor (GEF) for Ypt/Rab GTPases. Whereas TRAPP I and TRAPP II regulate the exocytic pathway, TRAPP III functions in autophagy. The TRAPP subunit Trs20 is not required for assembly of core TRAPP or its Ypt1 GEF activity. Interestingly, mutations in the human functional ortholog of Trs20, Sedlin, cause spondyloepiphyseal dysplasia tarda (SEDT), a cartilage-specific disorder. We have shown that Trs20 is required for TRAPP II assembly and identified a SEDT-linked mutation, Trs20-D46Y, which causes a defect in this process. Here we show that Trs20 is also required for assembly of TRAPP III at the pre-autophagosomal structure (PAS). First, recombinant Trs85, a TRAPP III-specific subunit, associates with TRAPP only in the presence of Trs20, but not Trs20-D46Y mutant protein. Second, a TRAPP complex with Ypt1 GEF activity co-precipitates with Trs85 from wild type, but not trs20ts mutant, cell lysates. Third, live-cell colocalization analysis indicates that Trs85 recruits core TRAPP to the PAS via the linker protein Trs20. Finally, trs20ts mutant cells are defective in selective and non-selective autophagy. Together, our results show that Trs20 plays a role as an adaptor in the assembly of TRAPP II and TRAPP III complexes, and the SEDT-linked mutation causes a defect in both processes.


Subject(s)
Autophagy , Carrier Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Vesicular Transport Proteins/metabolism , Carrier Proteins/genetics , Protein Binding , Protein Multimerization , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Vesicular Transport Proteins/genetics , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism
8.
Traffic ; 14(6): 678-90, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23465091

ABSTRACT

The modular TRAPP complexes act as nucleotide exchangers to activate the Golgi Ypt/Rab GTPases, Ypt1 and Ypt31/Ypt32. In yeast, TRAPP I acts at the cis-Golgi and its assembly and structure are well characterized. In contrast, TRAPP II acts at the trans-Golgi and is poorly understood. Especially puzzling is the role of Trs20, an essential TRAPP I/II subunit required neither for the assembly of TRAPP I nor for its Ypt1-exchange activity. Mutations in Sedlin, the human functional ortholog of Trs20, cause the cartilage-specific disorder SEDT. Here we show that Trs20 interacts with the TRAPP II-specific subunit Trs120. Furthermore, the Trs20-Trs120 interaction is required for assembly of TRAPP II and for its Ypt32-exchange activity. Finally, Trs20-D46Y, with a single-residue substitution equivalent to a SEDT-causing mutation in Sedlin, interacts with TRAPP I, but the resulting TRAPP complex cannot interact with Trs120 and TRAPP II cannot be assembled. These results indicate that Trs20 is crucial for assembly of TRAPP II, and the defective assembly caused by a SEDT-linked mutation suggests that this role is conserved.


Subject(s)
Fungal Proteins/metabolism , Vesicular Transport Proteins/metabolism , Amino Acid Sequence , Fungal Proteins/chemistry , Fungal Proteins/genetics , Models, Molecular , Molecular Sequence Data , Mutation, Missense , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Transport , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Vesicular Transport Proteins/chemistry , Vesicular Transport Proteins/genetics , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism
9.
Proc Natl Acad Sci U S A ; 109(18): 6981-6, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22509044

ABSTRACT

The key regulators of intracellular trafficking, Ypt/Rab GTPases, are stimulated by specific upstream activators and, when activated, recruit specific downstream effectors to mediate membrane-transport events. The yeast Ypt1 and its human functional homolog hRab1 regulate both endoplasmic reticulum (ER)-to-Golgi transport and autophagy. However, it is not clear whether the mechanism by which these GTPases regulate autophagy depends on their well-documented function in ER-to-Golgi transport. Here, we identify Atg11, the preautophagosomal structure (PAS) organizer, as a downstream effector of Ypt1 and show that the Ypt1-Atg11 interaction is required for PAS assembly under normal growth conditions. Moreover, we show that Ypt1 and Atg11 colocalize with Trs85, a Ypt1 activator subunit, and together they regulate selective autophagy. Finally, we show that Ypt1 and Trs85 interact on Atg9-containing membranes, which serve as a source for the membrane component of the PAS. Together our results define a Ypt/Rab module--comprising an activator, GTPase, and effector--that orchestrates the onset of selective autophagy, a process vital for cell homeostasis. Furthermore, because Atg11 does not play a role in ER-to-Golgi transport, we demonstrate here that Ypt/Rabs can regulate two independent membrane-transport processes by recruiting process-specific effectors.


Subject(s)
Autophagy/physiology , Saccharomyces cerevisiae Proteins/physiology , rab GTP-Binding Proteins/physiology , Autophagy/genetics , Autophagy-Related Proteins , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Phagosomes/physiology , Protein Transport , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/physiology , Saccharomyces cerevisiae Proteins/genetics , Signal Transduction , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/physiology , rab GTP-Binding Proteins/genetics
10.
Nat Cell Biol ; 8(11): 1263-9, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17041589

ABSTRACT

Ypt-Rab GTPases are key regulators of the various steps of intracellular trafficking. Guanine nucleotide-exchange factors (GEFs) regulate the conversion of Ypt-Rabs to the GTP-bound state, in which they interact with effectors that mediate all the known aspects of vesicular transport. An interesting possibility is that Ypt-Rabs coordinate separate steps of the transport pathways. The conserved modular complex TRAPP is a GEF for the Golgi gatekeepers Ypt1 and Ypt31/32 (Refs 5-7). However, it is not known how Golgi entry and exit are coordinated. TRAPP comes in two configurations: the seven-subunit TRAPPI is required for endoplasmic reticulum-to-Golgi transport, whereas the ten-subunit TRAPPII functions in late Golgi. The two essential TRAPPII-specific subunits Trs120 and Trs130 have been identified as Ypt31/32 genetic interactors. Here, we show that they are required for switching the GEF specificity of TRAPP from Ypt1 to Ypt31. Moreover, a trs130ts mutation confers opposite effects on the intracellular localization of these GTPases. We suggest that the Trs120-Trs130 subcomplex joins TRAPP in the late Golgi to switch its GEF activity from Ypt1 to Ypt31/32. Such a 'switchable' GEF could ensure sequential activation of these Ypts, thereby coordinating Golgi entry and exit.


Subject(s)
Guanine Nucleotide Exchange Factors/metabolism , Membrane Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Vesicular Transport Proteins/metabolism , rab GTP-Binding Proteins/metabolism , Biological Transport , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Guanosine Diphosphate/metabolism , Membrane Proteins/genetics , Microscopy, Fluorescence , Models, Biological , Mutation/genetics , Protein Binding , Protein Subunits/genetics , Protein Subunits/metabolism , Qc-SNARE Proteins/genetics , Qc-SNARE Proteins/metabolism , SNARE Proteins , Saccharomyces cerevisiae Proteins/genetics , Time Factors , Vesicular Transport Proteins/genetics , rab GTP-Binding Proteins/genetics
11.
Traffic ; 10(12): 1831-44, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19843283

ABSTRACT

TRAPP is a multi-subunit complex that acts as a Ypt/Rab activator at the Golgi apparatus. TRAPP exists in two forms: TRAPP I is comprised of five essential and conserved subunits and TRAPP II contains two additional essential and conserved subunits, Trs120 and Trs130. Previously, we have shown that Trs65, a nonessential fungi-specific TRAPP subunit, plays a role in TRAPP II assembly. TRS33 encodes another nonessential but conserved TRAPP subunit whose function is not known. Here, we show that one of these two subunits, nonessential individually, is required for TRAPP II assembly. Trs33 and Trs65 share sequence, intracellular localization and interaction similarities. Specifically, Trs33 interacts genetically with both Trs120 and Trs130 and physically with Trs120. In addition, trs33 mutant cells contain lower levels of TRAPP II and exhibit aberrant localization of the Golgi Ypts. Together, our results indicate that in yeast, TRAPP II assembly is an essential process that can be accomplished by either of two related TRAPP subunits. Moreover, because humans express two Trs33 homologues, we propose that the requirement of Trs33 for TRAPP II assembly is conserved from yeast to humans.


Subject(s)
Saccharomyces cerevisiae Proteins/metabolism , Vesicular Transport Proteins/metabolism , Amino Acid Sequence , Models, Molecular , Molecular Sequence Data , Protein Binding , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Sequence Homology, Amino Acid , Two-Hybrid System Techniques , Vesicular Transport Proteins/chemistry , Vesicular Transport Proteins/genetics
12.
Autophagy ; 16(5): 965-966, 2020 05.
Article in English | MEDLINE | ID: mdl-32116085

ABSTRACT

The modular complex TRAPP acts as an activator of a subgroup of Ypt/RAB GTPases. The substrate GTPases and TRAPP are conserved from yeast to human cells, required for secretion and macroautophagy/autophagy and implicated in human disease. All TRAPP complexes contain four core subunits essential for cell viability, and until recently there were no human diseases associated with any core TRAPP subunit. Recently, we reported a neurological disorder associated with a pathogenic variant of the core TRAPP subunit TRAPPC4. This variant results in lower levels of full-length TRAPPC4 protein and the TRAPP complex. A conditional mutation of the yeast homolog of TRAPPC4, Trs23, also results in a lower level of the protein and the TRAPP complex. Phenotypic analysis of the yeast mutant cells reveals a minor defect in secretion and a major defect in autophagy. Similarly, primary fibroblasts derived from human patients also exhibit minor and severe defects in secretion and autophagy, respectively. We propose that the autophagy defect caused by the pathogenic-TRAPPC4 variant results in the severe neurological disorder. Moreover, we hypothesize that low levels of the core TRAPP complex are more detrimental to autophagy than to secretion, and that the long-term autophagy defect is especially harmful to neuronal cells.Abbreviations: ER: endoplasmic reticulum; PM: plasma membrane; TRAPP: transport protein particle; Ypt: yeast protein transport.


Subject(s)
Autophagy/physiology , Endoplasmic Reticulum/metabolism , Protein Transport/physiology , Saccharomyces cerevisiae Proteins/metabolism , Cell Membrane/metabolism , Humans , Nervous System Diseases/metabolism , Saccharomyces cerevisiae/metabolism
13.
FEBS Lett ; 593(17): 2488-2500, 2019 09.
Article in English | MEDLINE | ID: mdl-31400292

ABSTRACT

The conserved Ypt/Rab GTPases regulate the different steps of all intracellular trafficking pathways. Ypt/Rabs are activated by their specific nucleotide exchangers termed GEFs, and when GTP bound, they recruit their downstream effectors, which mediate vesicular transport substeps. In the yeast exocytic pathway, Ypt1 and Ypt31/32 regulate traffic through the Golgi and the conserved modular TRAPP complex acts a GEF for both Ypt1 and Ypt31/32. However, the precise localization and function of these Ypts have been under debate, as is the identity of their corresponding GEFs. We have established that Ypt1 and Ypt31 reside on the two sides of the Golgi, early and late, respectively, and regulate Golgi cisternal progression. We and others have shown that whereas a single TRAPP complex, TRAPP II, activates Ypt31, three TRAPP complexes can activate Ypt1: TRAPPs I, III, and IV. We propose that TRAPP I and II activate Ypt1 and Ypt31, respectively, at the Golgi, whereas TRAPP III and IV activate Ypt1 in autophagy. Resolving these issues is important because both Rabs and TRAPPs are implicated in multiple human diseases, ranging from cancer to neurodegenerative diseases.


Subject(s)
Golgi Apparatus/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Vesicular Transport Proteins/metabolism , rab GTP-Binding Proteins/metabolism , Animals , Humans , Protein Transport
14.
Genetics ; 204(3): 1117-1128, 2016 11.
Article in English | MEDLINE | ID: mdl-27672095

ABSTRACT

Ypt/Rab GTPases, key regulators of intracellular trafficking pathways, are activated by guanine-nucleotide exchange factors (GEFs). Here, we identify a novel GEF complex, TRAPP IV, which regulates Ypt1-mediated autophagy. In the yeast Saccharomyces cerevisiae, Ypt1 GTPase is required for the initiation of secretion and autophagy, suggesting that it regulates these two distinct pathways. However, whether these pathways are coordinated by Ypt1 and by what mechanism is still unknown. TRAPP is a conserved modular complex that acts as a Ypt/Rab GEF. Two different TRAPP complexes, TRAPP I and the Trs85-containing TRAPP III, activate Ypt1 in the secretory and autophagic pathways, respectively. Importantly, whereas TRAPP I depletion copies Ypt1 deficiency in secretion, depletion of TRAPP III does not fully copy the autophagy phenotypes of autophagy-specific ypt1 mutations. If GEFs are required for Ypt/Rab function, this discrepancy implies the existence of an additional GEF that activates Ypt1 in autophagy. Trs33, a nonessential TRAPP subunit, was assigned to TRAPP I without functional evidence. We show that in the absence of Trs85, Trs33 is required for Ypt1-mediated autophagy and for the recruitment of core-TRAPP and Ypt1 to the preautophagosomal structure, which marks the onset of autophagy. In addition, Trs33 and Trs85 assemble into distinct TRAPP complexes, and we term the Trs33-containing autophagy-specific complex TRAPP IV. Because TRAPP I is required for Ypt1-mediated secretion, and either TRAPP III or TRAPP IV is required for Ypt1-mediated autophagy, we propose that pathway-specific GEFs activate Ypt1 in secretion and autophagy.


Subject(s)
Autophagy , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , rab GTP-Binding Proteins/genetics , Protein Binding , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , rab GTP-Binding Proteins/metabolism
15.
Front Cell Dev Biol ; 4: 20, 2016.
Article in English | MEDLINE | ID: mdl-27066478

ABSTRACT

TRAPP is a highly conserved modular multi-subunit protein complex. Originally identified as a "transport protein particle" with a role in endoplasmic reticulum-to-Golgi transport, its multiple subunits and their conservation from yeast to humans were characterized in the late 1990s. TRAPP attracted attention when it was shown to act as a Ypt/Rab GTPase nucleotide exchanger, GEF, in the 2000s. Currently, three TRAPP complexes are known in yeast, I, II, and III, and they regulate two different intracellular trafficking pathways: secretion and autophagy. Core TRAPP contains four small subunits that self assemble to a stable complex, which has a GEF activity on Ypt1. Another small subunit, Trs20/Sedlin, is an adaptor required for the association of core TRAPP with larger subunits to form TRAPP II and TRAPP III. Whereas the molecular structure of the core TRAPP complex is resolved, the architecture of the larger TRAPP complexes, including their existence as dimers and multimers, is less clear. In addition to its Ypt/Rab GEF activity, and thereby an indirect role in vesicle tethering through Ypt/Rabs, a direct role for TRAPP as a vesicle tether has been suggested. This idea is based on TRAPP interactions with vesicle coat components. While much of the basic information about TRAPP complexes comes from yeast, mutations in TRAPP subunits were connected to human disease. In this review we will summarize new information about TRAPP complexes, highlight new insights about their function and discuss current controversies and future perspectives.

16.
Dev Cell ; 36(4): 440-52, 2016 Feb 22.
Article in English | MEDLINE | ID: mdl-26906739

ABSTRACT

Current models entail that transport through the Golgi-the main sorting compartment of the cell-occurs via cisternal progression/maturation and that Ypt/Rab GTPases regulate this process. However, there is very limited evidence that cisternal progression is regulated, and no evidence for involvement of Ypt/Rab GTPases in such a regulation. Moreover, controversy about the placement of two of the founding members of the Ypt/Rab family, Ypt1 and Ypt31, to specific Golgi cisternae interferes with addressing this question in yeast, where cisternal progression has been extensively studied. Here, we establish the localization of Ypt1 and Ypt31 to opposite faces of the Golgi: early and late, respectively. Moreover, we show that they partially overlap on a transitional compartment. Finally, we determine that changes in Ypt1 and Ypt31 activity affect Golgi cisternal progression, early-to-transitional and transitional-to-late, respectively. These results show that Ypt/Rab GTPases regulate two separate steps of Golgi cisternal progression.


Subject(s)
Golgi Apparatus/metabolism , Saccharomyces cerevisiae Proteins/metabolism , rab GTP-Binding Proteins/metabolism , Biological Transport , Protein Transport/physiology , Saccharomyces cerevisiae/metabolism , Vesicular Transport Proteins/metabolism
17.
Methods Mol Biol ; 1298: 107-16, 2015.
Article in English | MEDLINE | ID: mdl-25800836

ABSTRACT

Ypt/Rab GTPases are conserved molecular switches that regulate the multiple vesicular transport steps of all intracellular trafficking pathways. They are stimulated by guanine-nucleotide exchange factors (GEFs). In yeast, Ypt1 regulates transport from the endoplasmic reticulum (ER) to two alternative pathways: secretion and autophagy. Ypt1 is activated by TRAPP, a modular multi-subunit GEF. Whereas TRAPP I activates Ypt1 to mediate transport through the Golgi, TRAPP III, which contains all the subunits of TRAPP I plus Trs85, activates Ypt1-mediated transport to autophagosomes. The functional pair Ypt31/32 regulates traffic in and out of the trans-Golgi and is activated by TRAPP II, which consists of TRAPP I plus two specific subunits, Trs120 and Trs130. To study the interaction of Ypts with specific TRAPP subunits and interactions between the different subunits of TRAPP, including the cellular sites of these interactions, we have employed a number of approaches. One approach that we have recently optimized for the use in yeast is multicolor bimolecular fluorescence complementation (BiFC). BiFC, which employs split fluorescent tags, has emerged as a powerful approach for determining protein interaction in vivo. Because proteins work in complexes, the ability to determine more than one interaction at a time using multicolor BiFC is even more powerful. Defining the sites of protein interaction is possible by co-localization of the BiFC puncta with compartmental markers. Here, we describe a set of plasmids for multicolor BiFC optimized for use in yeast. We combined their use with a set of available yeast strains that express red fluorescence compartmental markers. We have recently used these constructs to determine Ypt1 and TRAPP interactions in two different processes: intracellular trafficking and autophagy.


Subject(s)
Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Spectrometry, Fluorescence/methods , Vesicular Transport Proteins/metabolism , rab GTP-Binding Proteins/metabolism , Color , Mutation , Plasmids/genetics , Protein Binding , Protein Transport , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , rab GTP-Binding Proteins/genetics
18.
Cell Logist ; 4(3): e954870, 2014.
Article in English | MEDLINE | ID: mdl-25610722

ABSTRACT

A prevailing question in the Ypt/Rab field is whether these conserved GTPases are specific to cellular compartments. The established role for Ypt1 and its human homolog Rab1 is in endoplasmic reticulum (ER)-to-Golgi transport. More recently these regulators were implicated also in autophagy. Two different TRAPP complexes, I and III, were identified as the guanine-nucleotide-exchange factors (GEFs) of Ypt1 in ER-to-Golgi transport and autophagy, respectively. Confusingly, Ypt1 and TRAPP III were also suggested to regulate endosome-to-Golgi transport, implying that they function at multiple cellular compartments, and bringing into question the nature of Ypt/Rab specificity. Recently, we showed that the role of TRAPP III and Ypt1 in autophagy occurs at the ER and that they do not regulate endosome-to-Golgi transport. Here, we discuss the significance of this conclusion to the idea that Ypt/Rabs are specific to cellular compartments. We postulate that Ypt1 regulates 2 alternative routes emanating from the ER toward the Golgi and the lysosome/vacuole. We further propose that the secretory and endocytic/lysosomal pathways intersect in 2 junctures, and 2 Ypts, Ypt1 and Ypt31, coordinate transport in the 2 intersections: Ypt1 links ER-to-Golgi and ER-to-autophagy transport, whereas Ypt31 links Golgi-to-plasma membrane (PM) transport with PM-to-Golgi recycling through endosomes.

19.
Mol Biol Cell ; 25(20): 3166-77, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25143401

ABSTRACT

In autophagy, the double-membrane autophagosome delivers cellular components for their degradation in the lysosome. The conserved Ypt/Rab GTPases regulate all cellular trafficking pathways, including autophagy. These GTPases function in modules that include guanine-nucleotide exchange factor (GEF) activators and downstream effectors. Rab7 and its yeast homologue, Ypt7, in the context of such a module, regulate the fusion of both late endosomes and autophagosomes with the lysosome. In yeast, the Rab5-related Vps21 is known for its role in early- to late-endosome transport. Here we show an additional role for Vps21 in autophagy. First, vps21∆ mutant cells are defective in selective and nonselective autophagy. Second, fluorescence and electron microscopy analyses show that vps21∆ mutant cells accumulate clusters of autophagosomal structures outside the vacuole. Third, cells with mutations in other members of the endocytic Vps21 module, including the GEF Vps9 and factors that function downstream of Vps21, Vac1, CORVET, Pep12, and Vps45, are also defective in autophagy and accumulate clusters of autophagosomes. Finally, Vps21 localizes to PAS. We propose that the endocytic Vps21 module also regulates autophagy. These findings support the idea that the two pathways leading to the lysosome--endocytosis and autophagy--converge through the Vps21 and Ypt7 GTPase modules.


Subject(s)
Autophagy/physiology , Endocytosis , Endosomes/metabolism , Lysosomes/metabolism , Phagosomes/metabolism , Vacuoles/metabolism , rab GTP-Binding Proteins/metabolism , Biological Transport , Guanine Nucleotide Exchange Factors/metabolism , Yeasts/metabolism
20.
Mol Biol Cell ; 24(19): 3133-44, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23924895

ABSTRACT

Accumulation of misfolded proteins on intracellular membranes has been implicated in neurodegenerative diseases. One cellular pathway that clears such aggregates is endoplasmic reticulum autophagy (ER-phagy), a selective autophagy pathway that delivers excess ER to the lysosome for degradation. Not much is known about the regulation of ER-phagy. The conserved Ypt/Rab GTPases regulate all membrane trafficking events in eukaryotic cells. We recently showed that a Ypt module, consisting of Ypt1 and autophagy-specific upstream activator and downstream effector, regulates the onset of selective autophagy in yeast. Here we show that this module acts at the ER. Autophagy-specific mutations in its components cause accumulation of excess membrane proteins on aberrant ER structures and induction of ER stress. This accumulation is due to a block in transport of these membranes to the lysosome, where they are normally cleared. These findings establish a role for an autophagy-specific Ypt1 module in the regulation of ER-phagy. Moreover, because Ypt1 is a known key regulator of ER-to-Golgi transport, these findings establish a second role for Ypt1 at the ER. We therefore propose that individual Ypt/Rabs, in the context of distinct modules, can coordinate alternative trafficking steps from one cellular compartment to different destinations.


Subject(s)
Autophagy/genetics , Endoplasmic Reticulum/genetics , Saccharomyces cerevisiae Proteins/genetics , rab GTP-Binding Proteins/genetics , Endoplasmic Reticulum/metabolism , Gene Expression Regulation, Fungal , Golgi Apparatus/metabolism , Lysosomes , Membrane Proteins/metabolism , Mutation , Protein Transport/genetics , Proteolysis , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , rab GTP-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL