Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
J Immunol ; 210(7): 991-1003, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36881882

ABSTRACT

Checkpoint blockade immunotherapy has failed in pancreatic cancer and other poorly responsive tumor types in part due to inadequate T cell priming. Naive T cells can receive costimulation not only via CD28 but also through TNF superfamily receptors that signal via NF-κB. Antagonists of the ubiquitin ligases cellular inhibitor of apoptosis protein (cIAP)1/2, also called second mitochondria-derived activator of caspases (SMAC) mimetics, induce degradation of cIAP1/2 proteins, allowing for the accumulation of NIK and constitutive, ligand-independent activation of alternate NF-κB signaling that mimics costimulation in T cells. In tumor cells, cIAP1/2 antagonists can increase TNF production and TNF-mediated apoptosis; however, pancreatic cancer cells are resistant to cytokine-mediated apoptosis, even in the presence of cIAP1/2 antagonism. Dendritic cell activation is enhanced by cIAP1/2 antagonism in vitro, and intratumoral dendritic cells show higher expression of MHC class II in tumors from cIAP1/2 antagonism-treated mice. In this study, we use in vivo mouse models of syngeneic pancreatic cancer that generate endogenous T cell responses ranging from moderate to poor. Across multiple models, cIAP1/2 antagonism has pleiotropic beneficial effects on antitumor immunity, including direct effects on tumor-specific T cells leading to overall increased activation, increased control of tumor growth in vivo, synergy with multiple immunotherapy modalities, and immunologic memory. In contrast to checkpoint blockade, cIAP1/2 antagonism does not increase intratumoral T cell frequencies. Furthermore, we confirm our previous findings that even poorly immunogenic tumors with a paucity of T cells can experience T cell-dependent antitumor immunity, and we provide transcriptional clues into how these rare T cells coordinate downstream immune responses.


Subject(s)
NF-kappa B , Pancreatic Neoplasms , Mice , Animals , NF-kappa B/metabolism , Cell Line, Tumor , T-Lymphocytes/metabolism , Inhibitor of Apoptosis Proteins , Apoptosis , Immunity
2.
Sci Adv ; 9(47): eadk1853, 2023 11 24.
Article in English | MEDLINE | ID: mdl-38000024

ABSTRACT

Diacylglycerol kinases (DGKs) attenuate diacylglycerol (DAG) signaling by converting DAG to phosphatidic acid, thereby suppressing pathways downstream of T cell receptor signaling. Using a dual DGKα/ζ inhibitor (DGKi), tumor-specific CD8 T cells with different affinities (TRP1high and TRP1low), and altered peptide ligands, we demonstrate that inhibition of DGKα/ζ can lower the signaling threshold for T cell priming. TRP1high and TRP1low CD8 T cells produced more effector cytokines in the presence of cognate antigen and DGKi. Effector TRP1high- and TRP1low-mediated cytolysis of tumor cells with low antigen load required antigen recognition, was mediated by interferon-γ, and augmented by DGKi. Adoptive T cell transfer into mice bearing pancreatic or melanoma tumors synergized with single-agent DGKi or DGKi and antiprogrammed cell death protein 1 (PD-1), with increased expansion of low-affinity T cells and increased cytokine production observed in tumors of treated mice. Collectively, our findings highlight DGKα/ζ as therapeutic targets for augmenting tumor-specific CD8 T cell function.


Subject(s)
Diglycerides , Neoplasms , Mice , Animals , Diglycerides/metabolism , CD8-Positive T-Lymphocytes , Signal Transduction , Receptors, Antigen, T-Cell/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL