Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Am J Physiol Lung Cell Mol Physiol ; 311(5): L913-L923, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27612966

ABSTRACT

Acrolein is a major thiol-reactive component of cigarette smoke (CS) that is thought to contribute to increased asthma incidence associated with smoking. Here, we explored the effects of acute acrolein exposure on innate airway responses to two common airborne allergens, house dust mite and Alternaria alternata, and observed that acrolein exposure of C57BL/6 mice (5 ppm, 4 h) dramatically inhibited innate airway responses to subsequent allergen challenge, demonstrated by attenuated release of the epithelial-derived cytokines IL-33, IL-25, and IL-1α. Acrolein and other anti-inflammatory thiol-reactive electrophiles, cinnamaldehyde, curcumin, and sulforaphane, similarly inhibited allergen-induced production of these cytokines from human or murine airway epithelial cells in vitro. Based on our previous observations indicating the importance of Ca2+-dependent signaling, activation of the NADPH oxidase DUOX1, and Src/EGFR-dependent signaling in allergen-induced epithelial secretion of these cytokines, we explored the impact of acrolein on these pathways. Acrolein and other thiol-reactive electrophiles were found to dramatically prevent allergen-induced activation of DUOX1 as well as EGFR, and acrolein was capable of inhibiting EGFR tyrosine kinase activity via modification of C797. Biotin-labeling strategies indicated increased cysteine modification and carbonylation of Src, EGFR, as well as DUOX1, in response to acrolein exposure in vitro and in vivo, suggesting that direct alkylation of these proteins on accessible cysteine residues may be responsible for their inhibition. Collectively, our findings indicate a novel anti-inflammatory mechanism of CS-derived acrolein and other thiol-reactive electrophiles, by directly inhibiting DUOX1- and EGFR-mediated airway epithelial responses to airborne allergens.


Subject(s)
Acrolein/pharmacology , Allergens/adverse effects , Bronchi/pathology , Epithelial Cells/metabolism , ErbB Receptors/metabolism , NADPH Oxidases/antagonists & inhibitors , Sulfhydryl Compounds/pharmacology , Acrolein/chemistry , Administration, Inhalation , Animals , Calcium/metabolism , Cysteine/metabolism , Dual Oxidases , Enzyme Activation/drug effects , Epithelial Cells/drug effects , Humans , Hydrogen Peroxide/metabolism , Immunity, Innate/drug effects , Interleukin-33/metabolism , Mice, Inbred C57BL , NADPH Oxidases/metabolism , Protein Carbonylation/drug effects , Pyroglyphidae/drug effects , Pyroglyphidae/physiology , Sulfhydryl Compounds/chemistry , src-Family Kinases/metabolism
2.
Front Oncol ; 11: 712041, 2021.
Article in English | MEDLINE | ID: mdl-34513691

ABSTRACT

Metastases are the leading cause of death in cancer patients. RhoC, a member of the Rho GTPase family, has been shown to facilitate metastasis of aggressive breast cancer cells by influencing motility, invasion, and chemokine secretion, but as yet there is no integrated model of the precise mechanism of how RhoC promotes metastasis. A common phenotypic characteristic of metastatic cells influenced by these mechanisms is dysregulation of cell-cell junctions. Thus, we set out to study how RhoA- and RhoC-GTPase influence the cell-cell junctions in aggressive breast cancers. We demonstrate that CRISPR-Cas9 knockout of RhoC in SUM 149 and MDA 231 breast cancer cells results in increased normalization of junctional integrity denoted by junction protein expression/colocalization. In functional assessments of junction stability, RhoC knockout cells have increased barrier integrity and increased cell-cell adhesion compared to wild-type cells. Whole exome RNA sequencing and targeted gene expression profiling demonstrate decreased expression of Type I interferon-stimulated genes in RhoC knockout cells compared to wild-type, and subsequent treatment with interferon-alpha resulted in significant increases in adhesion and decreases in invasiveness of wild-type cells and a dampened response to interferon-alpha stimulation with respect to adhesion and invasiveness in RhoC knockout cells. We delineate a key role of RhoC-GTPase in modulation of junctions and response to interferon, which supports inhibition of RhoC as a potential anti-invasion therapeutic strategy.

3.
SLAS Technol ; 26(2): 200-208, 2021 04.
Article in English | MEDLINE | ID: mdl-33183152

ABSTRACT

It is often desirable to evaluate the ability of cells to move in an unrestricted manner in multiple directions without chemical gradients. By combining the standard radial migration assay with injection-molded gaskets and a rigid fixture, we have developed a highly reliable and sensitive method for observing and measuring radial cell migration. This method is adapted for use on high-throughput automated imaging systems. The use of injection-molded gaskets enables low-cost replacement of cell-wetted components. Moreover, the design enables secondary placement of attractants and co-cultures. This device and its enhanced throughput permit the use of therapeutic screening to evaluate phenotypic responses, for example, cancer cell migration response due to drugs or chemical signals. This approach is orthogonal to other 2D cell migration applications, such as scratch wound assays, although here we offer a noninvasive, enhanced-throughput device, which currently is not commercially available but is easily constructed. The proposed device is a systematic, reliable, rapid application to monitor phenotypic responses to chemotherapeutic screens, genetic alterations (e.g., RNAi and CRISPR), supplemental regimens, and other approaches, offering a reliable methodology to survey unbiased and noninvasive cell migration.


Subject(s)
Neoplasms , Biological Assay , Cell Movement , Humans
4.
Nat Commun ; 12(1): 4860, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34381026

ABSTRACT

Cancer metabolism is rewired to support cell survival in response to intrinsic and environmental stressors. Identification of strategies to target these adaptions is an area of active research. We previously described a cytosolic aspartate aminotransaminase (GOT1)-driven pathway in pancreatic cancer used to maintain redox balance. Here, we sought to identify metabolic dependencies following GOT1 inhibition to exploit this feature of pancreatic cancer and to provide additional insight into regulation of redox metabolism. Using pharmacological methods, we identify cysteine, glutathione, and lipid antioxidant function as metabolic vulnerabilities following GOT1 withdrawal. We demonstrate that targeting any of these pathways triggers ferroptosis, an oxidative, iron-dependent form of cell death, in GOT1 knockdown cells. Mechanistically, we reveal that GOT1 inhibition represses mitochondrial metabolism and promotes a catabolic state. Consequently, we find that this enhances labile iron availability through autophagy, which potentiates the activity of ferroptotic stimuli. Overall, our study identifies a biochemical connection between GOT1, iron regulation, and ferroptosis.


Subject(s)
Aspartate Aminotransferase, Cytoplasmic/antagonists & inhibitors , Ferroptosis , Pancreatic Neoplasms/metabolism , Animals , Antioxidants/pharmacology , Aspartate Aminotransferase, Cytoplasmic/genetics , Aspartate Aminotransferase, Cytoplasmic/metabolism , Cell Line, Tumor , Cell Proliferation , Cell Survival/drug effects , Cystine/metabolism , Ferroptosis/drug effects , Glutathione/biosynthesis , Humans , Iron/metabolism , Mice , Mitochondria/metabolism , Pancreatic Neoplasms/pathology
5.
Nanomaterials (Basel) ; 10(4)2020 Mar 27.
Article in English | MEDLINE | ID: mdl-32230722

ABSTRACT

: Innovative cancer treatments, which improve adjuvant therapy and reduce adverse events, are desperately needed. Nanoparticles provide controlled intracellular biomolecule delivery in the absence of activating external cell surface receptors. Prior reports suggest that intracrine signaling, following overexpression of basic fibroblast growth factor (FGF-2) after viral transduction, has a toxic effect on diseased cells. Herein, the research goals were to 1) encapsulate recombinant FGF-2 within stable, alginate-based nanoparticles (ABNs) for non-specific cellular uptake, and 2) determine the effects of ABN-mediated intracellular delivery of FGF-2 on cancer cell proliferation/survival. In culture, human alveolar adenocarcinoma basal epithelial cell line (A549s) and immortalized human bronchial epithelial cell line (HBE1s) internalized ABNs through non-selective endocytosis. Compared to A549s exposed to empty (i.e., blank) ABNs, the intracellular delivery of FGF-2 via ABNs significantly increased the levels of lactate dehydrogenase, indicating that FGF-2-ABN treatment decreased the transformed cell integrity. Noticeably, the nontransformed cells were not significantly affected by FGF-2-loaded ABN treatment. Furthermore, FGF-2-loaded ABNs significantly increased nuclear levels of activated-extracellular signal-regulated kinase Ā½ (ERK1/2) in A549s but had no significant effect on HBE1 nuclear ERK1/2 expression. Our novel intracellular delivery method of FGF-2 via nanoparticles resulted in increased cancer cell death via increased nuclear ERK1/2 activation.

6.
Front Oncol ; 9: 456, 2019.
Article in English | MEDLINE | ID: mdl-31214501

ABSTRACT

Tumor associated macrophages (TAMs) are increasingly recognized as major contributors to the metastatic progression of breast cancer and enriched levels of TAMs often correlate with poor prognosis. Despite our current advances it remains unclear which subset of M2-like macrophages have the highest capacity to enhance the metastatic program and which mechanisms regulate this process. Effective targeting of macrophages that aid cancer progression requires knowledge of the specific mechanisms underlying their pro-metastatic actions, as to avoid the anticipated toxicities from generalized targeting of macrophages. To this end, we set out to understand the relationship between the regulation of tumor secretions by Rho-GTPases, which were previously demonstrated to affect them, macrophage differentiation, and the converse influence of macrophages on cancer cell phenotype. Our data show that IL-4/IL-13 in vitro differentiated M2a macrophages significantly increase migratory and invasive potential of breast cancer cells at a greater rate than M2b or M2c macrophages. Our previous work demonstrated that the Rho-GTPases are potent regulators of macrophage-induced migratory responses; therefore, we examined M2a-mediated responses in RhoA or RhoC knockout breast cancer cell models. We find that both RhoA and RhoC regulate migration and invasion in MDA-MB-231 and SUM-149 cells following stimulation with M2a conditioned media. Secretome analysis of M2a conditioned media reveals high levels of vascular endothelial growth factor (VEGF) and chemokine (C-C motif) ligand 18 (CCL-18). Results from our functional assays reveal that M2a TAMs synergistically utilize VEGF and CCL-18 to promote migratory and invasive responses. Lastly, we show that pretreatment with ROCK inhibitors Y-276332 or GSK42986A attenuated VEGF/CCL-18 and M2a-induced migration and invasion. These results support Rho-GTPase signaling regulates downstream responses induced by TAMs, offering a novel approach for the prevention of breast cancer metastasis by anti-RhoA/C therapies.

7.
PLoS One ; 14(9): e0220973, 2019.
Article in English | MEDLINE | ID: mdl-31536495

ABSTRACT

In breast cancer, tumor hypoxia has been linked to poor prognosis and increased metastasis. Hypoxia activates transcriptional programs in cancer cells that lead to increased motility and invasion, as well as various metabolic changes. One of these metabolic changes, an increase in glycogen metabolism, has been further associated with protection from reactive oxygen species damage that may lead to premature senescence. Here we report that breast cancer cells significantly increase glycogen stores in response to hypoxia. We found that knockdown of the brain isoform of an enzyme that catalyzes glycogen breakdown, glycogen phosphorylase B (PYGB), but not the liver isoform, PYGL, inhibited glycogen utilization in estrogen receptor negative and positive breast cancer cells; whereas both independently inhibited glycogen utilization in the normal-like breast epithelial cell line MCF-10A. Functionally, PYGB knockdown and the resulting inhibition of glycogen utilization resulted in significantly decreased wound-healing capability in MCF-7 cells and a decrease in invasive potential of MDA-MB-231 cells. Thus, we identify PYGB as a novel metabolic target with potential applications in the management and/or prevention of metastasis in breast cancer.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Glycogen/metabolism , Hypoxia/metabolism , Phenotype , Phosphorylase b/metabolism , Breast Neoplasms/genetics , Cell Line, Tumor , Female , Gene Knockdown Techniques , Humans , Metabolic Networks and Pathways , Neoplasm Metastasis , Neoplasm Staging , Phosphorylase b/genetics , Protein Isoforms , RNA Interference , RNA, Small Interfering/genetics
8.
Sci Rep ; 9(1): 4844, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30890751

ABSTRACT

Lung cancers are frequently characterized by inappropriate activation of epidermal growth factor receptor (EGFR)-dependent signaling and epigenetic silencing of the NADPH oxidase (NOX) enzyme DUOX1, both potentially contributing to worse prognosis. Based on previous findings linking DUOX1 with redox-dependent EGFR activation, the present studies were designed to evaluate whether DUOX1 silencing in lung cancers may be responsible for altered EGFR regulation. In contrast to normal epithelial cells, EGF stimulation of lung cancer cell lines that lack DUOX1 promotes EGF-induced EGFR internalization and nuclear localization, associated with induction of EGFR-regulated genes and related tumorigenic outcomes. Each of these outcomes could be reversed by overexpression of DUOX1 or enhanced by shRNA-dependent DUOX1 silencing. EGF-induced nuclear EGFR localization in DUOX1-deficient lung cancer cells was associated with altered dynamics of cysteine oxidation of EGFR, and an overall reduction of EGFR cysteines. These various outcomes could also be attenuated by silencing of glutathione S-transferase P1 (GSTP1), a mediator of metabolic alterations and drug resistance in various cancers, and a regulator of cysteine oxidation. Collectively, our findings indicate DUOX1 deficiency in lung cancers promotes dysregulated EGFR signaling and enhanced GSTP1-mediated turnover of EGFR cysteine oxidation, which result in enhanced nuclear EGFR localization and tumorigenic properties.


Subject(s)
Cell Nucleolus/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , A549 Cells , Carcinogenesis/metabolism , Carcinogenesis/pathology , Cell Line, Tumor , Dual Oxidases/metabolism , ErbB Receptors/metabolism , Humans , NADPH Oxidases/metabolism , Oxidation-Reduction , Signal Transduction/physiology
9.
Nat Commun ; 9(1): 4522, 2018 10 30.
Article in English | MEDLINE | ID: mdl-30375386

ABSTRACT

The Src kinase controls aspects of cell biology and its activity is regulated by intramolecular structural changes induced by protein interactions and tyrosine phosphorylation. Recent studies indicate that Src is additionally regulated by redox-dependent mechanisms, involving oxidative modification(s) of cysteines within the Src protein, although the nature and molecular-level impact of Src cysteine oxidation are unknown. Using a combination of biochemical and cell-based studies, we establish the critical importance of two Src cysteine residues, Cys-185 and Cys-277, as targets for H2O2-mediated sulfenylation (Cys-SOH) in redox-dependent kinase activation in response to NADPH oxidase-dependent signaling. Molecular dynamics and metadynamics simulations reveal the structural impact of sulfenylation of these cysteines, indicating that Cys-277-SOH enables solvent exposure of Tyr-416 to promote its (auto)phosphorylation, and that Cys-185-SOH destabilizes pTyr-527 binding to the SH2 domain. These redox-dependent Src activation mechanisms offer opportunities for development of Src-selective inhibitors in treatment of diseases where Src is aberrantly activated.


Subject(s)
Cysteine/metabolism , Proto-Oncogene Proteins pp60(c-src)/metabolism , Cell Line, Tumor , Humans , Hydrogen Peroxide/metabolism , Molecular Dynamics Simulation , Oxidation-Reduction , Phosphorylation , Protein Binding , Protein Structure, Tertiary , src Homology Domains
10.
Free Radic Biol Med ; 110: 117-132, 2017 09.
Article in English | MEDLINE | ID: mdl-28578013

ABSTRACT

Dysregulated oxidative metabolism is a well-recognized aspect of cancer biology, and many therapeutic strategies are based on targeting cancers by altering cellular redox pathways. The NADPH oxidases (NOXes) present an important enzymatic source of biological oxidants, and the expression and activation of several NOX isoforms are frequently dysregulated in many cancers. Cell-based studies have demonstrated a role for several NOX isozymes in controlling cell proliferation and/or cell migration, further supporting a potential contributing role for NOX in promoting cancer. While various NOX isoforms are often upregulated in cancers, paradoxical recent findings indicate that dual oxidases (DUOXes), normally prominently expressed in epithelial lineages, are frequently suppressed in epithelial-derived cancers by epigenetic mechanisms, although the functional relevance of such DUOX silencing has remained unclear. This review will briefly summarize our current understanding regarding the importance of reactive oxygen species (ROS) and NOXes in cancer biology, and focus on recent observations indicating the unique and seemingly opposing roles of DUOX enzymes in cancer biology. We will discuss current knowledge regarding the functional properties of DUOX, and recent studies highlighting mechanistic consequences of DUOX1 loss in lung cancer, and its consequences for tumor invasiveness and current anticancer therapy. Finally, we will also discuss potentially unique roles for the DUOX maturation factors. Overall, a better understanding of mechanisms that regulate DUOX and the functional consequences of DUOX silencing in cancer may offer valuable new diagnostic insights and novel therapeutic opportunities.


Subject(s)
Dual Oxidases/genetics , Gene Expression Regulation, Neoplastic , Neoplasms/genetics , Reactive Oxygen Species/metabolism , Animals , Dual Oxidases/metabolism , Humans , Neoplasm Invasiveness , Neoplasms/classification , Neoplasms/enzymology , Neoplasms/pathology , Oxidation-Reduction , Oxidative Stress , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL