Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 125
Filter
Add more filters

Publication year range
1.
Am J Hum Genet ; 109(1): 81-96, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34932938

ABSTRACT

Large-scale gene sequencing studies for complex traits have the potential to identify causal genes with therapeutic implications. We performed gene-based association testing of blood lipid levels with rare (minor allele frequency < 1%) predicted damaging coding variation by using sequence data from >170,000 individuals from multiple ancestries: 97,493 European, 30,025 South Asian, 16,507 African, 16,440 Hispanic/Latino, 10,420 East Asian, and 1,182 Samoan. We identified 35 genes associated with circulating lipid levels; some of these genes have not been previously associated with lipid levels when using rare coding variation from population-based samples. We prioritize 32 genes in array-based genome-wide association study (GWAS) loci based on aggregations of rare coding variants; three (EVI5, SH2B3, and PLIN1) had no prior association of rare coding variants with lipid levels. Most of our associated genes showed evidence of association among multiple ancestries. Finally, we observed an enrichment of gene-based associations for low-density lipoprotein cholesterol drug target genes and for genes closest to GWAS index single-nucleotide polymorphisms (SNPs). Our results demonstrate that gene-based associations can be beneficial for drug target development and provide evidence that the gene closest to the array-based GWAS index SNP is often the functional gene for blood lipid levels.


Subject(s)
Exome , Genetic Variation , Genome-Wide Association Study , Lipids/blood , Open Reading Frames , Alleles , Blood Glucose/genetics , Case-Control Studies , Computational Biology/methods , Databases, Genetic , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Genetic Predisposition to Disease , Genetics, Population , Genome-Wide Association Study/methods , Humans , Lipid Metabolism/genetics , Liver/metabolism , Liver/pathology , Molecular Sequence Annotation , Multifactorial Inheritance , Phenotype , Polymorphism, Single Nucleotide
2.
Genome Res ; 31(9): 1629-1637, 2021 09.
Article in English | MEDLINE | ID: mdl-34426515

ABSTRACT

The X Chromosome plays an important role in human development and disease. However, functional genomic and disease association studies of X genes greatly lag behind autosomal gene studies, in part owing to the unique biology of X-Chromosome inactivation (XCI). Because of XCI, most genes are only expressed from one allele. Yet, ∼30% of X genes "escape" XCI and are transcribed from both alleles, many only in a proportion of the population. Such interindividual differences are likely to be disease relevant, particularly for sex-biased disorders. To understand the functional biology for X-linked genes, we developed X-Chromosome inactivation for RNA-seq (XCIR), a novel approach to identify escape genes using bulk RNA-seq data. Our method, available as an R package, is more powerful than alternative approaches and is computationally efficient to handle large population-scale data sets. Using annotated XCI states, we examined the contribution of X-linked genes to the disease heritability in the United Kingdom Biobank data set. We show that escape and variable escape genes explain the largest proportion of X heritability, which is in large part attributable to X genes with Y homology. Finally, we investigated the role of each XCI state in sex-biased diseases and found that although XY homologous gene pairs have a larger overall effect size, enrichment for variable escape genes is significantly increased in female-biased diseases. Our results, for the first time, quantitate the importance of variable escape genes for the etiology of sex-biased disease, and our pipeline allows analysis of larger data sets for a broad range of phenotypes.


Subject(s)
Genes, X-Linked , X Chromosome Inactivation , Alleles , Animals , Female , Genomics , X Chromosome/genetics
3.
Phys Chem Chem Phys ; 25(7): 5348-5360, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36399032

ABSTRACT

Dynamics play significant roles in chemistry and biochemistry-molecular motions impact both large- and small-scale chemical reactions in addition to biochemical processes. In many systems, including heterogeneous catalysts, the characterization of dynamics remains a challenge. The most common approaches involve the solid-state NMR measurement of anisotropic interactions, in particular 2H quadrupolar coupling and 1H-X dipolar coupling, which generally require isotope enrichment. Due to the high sensitivity of 1H NMR, 1H chemical shift anisotropy (CSA) is a particularly enticing, and underexplored, dynamics probe. We carried out 1H CSA and 1H-13C dipolar coupling measurements in a series of model supported complexes to understand how 1H CSA can be leveraged to gain dynamic information for heterogeneous catalysts. Mathematical descriptions are given for the dynamic averaging of the CSA tensor, and its dependence on orientation and asymmetry. The variability of the orientation of the tensor in the molecular frame, in addition to its magnitude and asymmetry, negatively impacts attempts to extract quantitative dynamic information. Nevertheless, 1H CSA measurements can reveal useful qualitative insights into the motions of a particularly dilute site, such as from a surface species.

4.
J Chem Phys ; 159(2)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37428050

ABSTRACT

Supported metallic nanoparticles play a central role in catalysis. However, predictive modeling is particularly challenging due to the structural and dynamic complexity of the nanoparticle and its interface with the support, given that the sizes of interest are often well beyond those accessible via traditional ab initio methods. With recent advances in machine learning, it is now feasible to perform MD simulations with potentials retaining near-density-functional theory (DFT) accuracy, which can elucidate the growth and relaxation of supported metal nanoparticles, as well as reactions on those catalysts, at temperatures and time scales approaching those relevant to experiments. Furthermore, the surfaces of the support materials can also be modeled realistically through simulated annealing to include effects such as defects and amorphous structures. We study the adsorption of fluorine atoms on ceria and silica supported palladium nanoparticles using machine learning potential trained by DFT data using the DeePMD framework. We show defects on ceria and Pd/ceria interfaces are crucial for the initial adsorption of fluorine, while the interplay between Pd and ceria and the reverse oxygen migration from ceria to Pd control spillover of fluorine from Pd to ceria at later stages. In contrast, silica supports do not induce fluorine spillover from Pd particles.

5.
J Chem Phys ; 158(10): 104102, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36922149

ABSTRACT

Shape stability is key to avoiding degradation of performance for metallic nanocrystals synthesized with facetted non-equilibrium shapes to optimize properties for catalysis, plasmonics, and so on. Reshaping of facetted nanocrystals is controlled by the surface diffusion-mediated nucleation and growth of new outer layers of atoms. Kinetic Monte Carlo (KMC) simulation of a realistic stochastic atomistic-level model is applied to precisely track the reshaping of Pd octahedra and nanocubes. Unexpectedly, separate constrained equilibrium Monte Carlo analysis of the free energy profile during reshaping reveals a fundamental failure of the classical nucleation theory (CNT) prediction for the reshaping barrier and rate. Why? Nucleation barriers can be relatively low for these processes, so the system is not locally equilibrated before crossing the barrier, as assumed in CNT. This claim is supported by an analysis of a first-passage problem for reshaping within a master equation framework for the model that reasonably captures the behavior in KMC simulations.

6.
Pediatr Int ; 65(1): e15672, 2023.
Article in English | MEDLINE | ID: mdl-37888536

ABSTRACT

BACKGROUND: Interactions among single nucleotide polymorphisms (SNPs) of surfactant protein (SP) are associated with acute respiratory failure (ARF) and its short-term outcome, pulmonary dysfunction at discharge (PDAD) in children. However, genetic association studies using individual SNPs have not been conducted before. We hypothesize that SP genetic variants are associated with pediatric ARF and its short-term complications by themselves. METHODS: We used available genotype and clinical data in the Floros biobank consisting of 248 children aged ≤24 months with ARF; 86 developed PDAD. A logistic regression analysis was performed for each of the 14 selected SNPs, SP-A1 and SP-A2 genotypes. A p-value less than the Bonferroni correction threshold was considered significant. A likelihood ratio test was done to compare two models (one with demographic data and another with genetic variants). RESULTS: Before Bonferroni correction, female sex is associated with a decreased risk of ARF. Black race and the rs721917 of the SFTPD are associated with increased risk of ARF. After Bonferroni correction, the 1A0 1A1 genotype of SFTPA2 was associated with decreased risk of ARF. The likelihood ratio test showed that the model of the genotype information with demographic data was a better fit to predict ARF risk. None of the SP SNPs and SP-A1, SP-A2 genotypes were associated with PDAD. CONCLUSION: Our results indicate that SNPs and genotypes of SPs involved in innate immunity and host defense play an important role in ARF and, in the future, may be used as biomarkers.


Subject(s)
Pulmonary Surfactants , Respiratory Insufficiency , Humans , Child , Female , Pulmonary Surfactant-Associated Protein A/genetics , Polymorphism, Single Nucleotide , Surface-Active Agents , Respiratory Insufficiency/genetics
7.
BMC Biol ; 20(1): 191, 2022 08 24.
Article in English | MEDLINE | ID: mdl-36002830

ABSTRACT

BACKGROUND: Natural killer (NK) cells represent a critical component of the innate immune system's response against cancer and viral infections, among other diseases. To distinguish healthy host cells from infected or tumor cells, killer immunoglobulin receptors (KIR) on NK cells bind and recognize Human Leukocyte Antigen (HLA) complexes on their target cells. However, NK cells exhibit great diversity in their mechanism of activation, and the outcomes of their activation are not yet understood fully. Just like the HLAs they bind, KIR receptors exhibit high allelic diversity in the human population. Here we provide a method to identify KIR allele variants from whole exome sequencing data and uncover novel associations between these variants and various molecular and clinical correlates. RESULTS: In order to better understand KIRs, we have developed KIRCLE, a novel method for genotyping individual KIR genes from whole exome sequencing data, and used it to analyze approximately sixty-thousand patient samples in The Cancer Genome Atlas (TCGA) and UK Biobank. We were able to assess population frequencies for different KIR alleles and demonstrate that, similar to HLA alleles, individuals' KIR alleles correlate strongly with their ethnicities. In addition, we observed associations between different KIR alleles and HLA alleles, including HLA-B*53 with KIR3DL2*013 (Fisher's exact FDR = 7.64e-51). Finally, we showcased statistically significant associations between KIR alleles and various clinical correlates, including peptic ulcer disease (Fisher's exact FDR = 0.0429) and age of onset of atopy (Mann-Whitney U FDR = 0.0751). CONCLUSIONS: We show that KIRCLE is able to infer KIR variants accurately and consistently, and we demonstrate its utility using data from approximately sixty-thousand individuals from TCGA and UK Biobank to discover novel molecular and clinical correlations with KIR germline variants. Peptic ulcer disease and atopy are just two diseases in which NK cells may play a role beyond their "classical" realm of anti-tumor and anti-viral responses. This tool may be used both as a benchmark for future KIR-variant-inference algorithms, and to better understand the immunogenomics of and disease processes involving KIRs.


Subject(s)
Neoplasms , Peptic Ulcer , Alleles , Biological Specimen Banks , Genotype , Humans , Neoplasms/genetics , Peptic Ulcer/genetics , Receptors, KIR/genetics , United Kingdom
8.
Psychol Med ; 52(5): 968-978, 2022 04.
Article in English | MEDLINE | ID: mdl-32762793

ABSTRACT

BACKGROUND: Substance use occurs at a high rate in persons with a psychiatric disorder. Genetically informative studies have the potential to elucidate the etiology of these phenomena. Recent developments in genome-wide association studies (GWAS) allow new avenues of investigation. METHOD: Using results of GWAS meta-analyses, we performed a factor analysis of the genetic correlation structure, a genome-wide search of shared loci, and causally informative tests for six substance use phenotypes (four smoking, one alcohol, and one cannabis use) and five psychiatric disorders (ADHD, anorexia, depression, bipolar disorder, and schizophrenia). RESULTS: Two correlated externalizing and internalizing/psychosis factor were found, although model fit was beneath conventional standards. Of 458 loci reported in previous univariate GWAS of substance use and psychiatric disorders, about 50% (230 loci) were pleiotropic with additional 111 pleiotropic loci not reported from past GWAS. Of the 341 pleiotropic loci, 152 were associated with both substance use and psychiatric disorders, implicating neurodevelopment, cell morphogenesis, biological adhesion pathways, and enrichment in 13 different brain tissues. Seventy-five and 114 pleiotropic loci were specific to either psychiatric disorders or substance use phenotypes, implicating neuronal signaling pathway and clathrin-binding functions/structures, respectively. No consistent evidence for phenotypic causation was found across different Mendelian randomization methods. CONCLUSIONS: Genetic etiology of substance use and psychiatric disorders is highly pleiotropic and involves shared neurodevelopmental path, neurotransmission, and intracellular trafficking. In aggregate, the patterns are not consistent with vertical pleiotropy, more likely reflecting horizontal pleiotropy or more complex forms of phenotypic causation.


Subject(s)
Mental Disorders , Schizophrenia , Substance-Related Disorders , Genetic Pleiotropy , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Mental Disorders/epidemiology , Mental Disorders/genetics , Phenotype , Polymorphism, Single Nucleotide , Schizophrenia/epidemiology , Schizophrenia/genetics , Substance-Related Disorders/epidemiology , Substance-Related Disorders/genetics
9.
J Chem Phys ; 156(20): 204106, 2022 May 28.
Article in English | MEDLINE | ID: mdl-35649862

ABSTRACT

A variety of complexation, reconstruction, and sulfide formation processes can occur at step edges on the {111} surfaces of coinage metals (M) in the presence of adsorbed S under ultra-high vacuum conditions. Given the cooperative many-atom nature of these reaction processes, Molecular Dynamics (MD) simulation of the associated dynamics is instructive. However, only quite restricted Density Functional Theory (DFT)-level ab initio MD is viable. Thus, for M = Ag and Cu, we instead utilize the DeePMD framework to develop machine-learning derived potentials, retaining near-DFT accuracy for the M-S systems, which should have broad applicability. These potentials are validated by comparison with DFT predictions for various key quantities related to the energetics of S on M(111) surfaces. The potentials are then utilized to perform extensive MD simulations elucidating the above diverse restructuring and reaction processes at step edges. Key observations from MD simulations include the formation of small metal-sulfur complexes, especially MS2; development of a local reconstruction at A-steps featuring an S-decorated {100} motif; and 3D sulfide formation. Additional analysis yields further information on the kinetics for metal-sulfur complex formation, where these complexes can strongly enhance surface mass transport, and on the propensity for sulfide formation.

10.
Bioinformatics ; 36(19): 4951-4954, 2020 12 08.
Article in English | MEDLINE | ID: mdl-32756942

ABSTRACT

SUMMARY: Here, we present a highly efficient R-package seqminer2 for querying and retrieving sequence variants from biobank scale datasets of millions of individuals and hundreds of millions of genetic variants. Seqminer2 implements a novel variant-based index for querying VCF/BCF files. It improves the speed of query and retrieval by several magnitudes compared to the state-of-the-art tools based upon tabix. It also reimplements support for BGEN and PLINK format, which improves speed over alternative implementations. The improved efficiency and comprehensive support for popular file formats will facilitate method development, software prototyping and data analysis of biobank scale sequence datasets in R. AVAILABILITY AND IMPLEMENTATION: The seqminer2 R package is available from https://github.com/zhanxw/seqminer. Scripts used for the benchmarks are available in https://github.com/yang-lina/seqminer/blob/master/seqminer2%20benchmark%20script.txt. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Biological Specimen Banks , Software , Genotype , Humans
11.
Bioinformatics ; 36(12): 3811-3817, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32246825

ABSTRACT

MOTIVATION: Large scale genome-wide association studies (GWAS) have resulted in the identification of a wide range of genetic variants related to a host of complex traits and disorders. Despite their success, the individual single-nucleotide polymorphism (SNP) analysis approach adopted in most current GWAS can be limited in that it is usually biologically simple to elucidate a comprehensive genetic architecture of phenotypes and statistically underpowered due to heavy multiple-testing correction burden. On the other hand, multiple-SNP analyses (e.g. gene-based or region-based SNP-set analysis) are usually more powerful to examine the joint effects of a set of SNPs on the phenotype of interest. However, current multiple-SNP approaches can only draw an overall conclusion at the SNP-set level and does not directly inform which SNPs in the SNP-set are driving the overall genotype-phenotype association. RESULTS: In this article, we propose a new permutation-assisted tuning procedure in lasso (plasso) to identify phenotype-associated SNPs in a joint multiple-SNP regression model in GWAS. The tuning parameter of lasso determines the amount of shrinkage and is essential to the performance of variable selection. In the proposed plasso procedure, we first generate permutations as pseudo-SNPs that are not associated with the phenotype. Then, the lasso tuning parameter is delicately chosen to separate true signal SNPs and non-informative pseudo-SNPs. We illustrate plasso using simulations to demonstrate its superior performance over existing methods, and application of plasso to a real GWAS dataset gains new additional insights into the genetic control of complex traits. AVAILABILITY AND IMPLEMENTATION: R codes to implement the proposed methodology is available at https://github.com/xyz5074/plasso. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Genome-Wide Association Study , Polymorphism, Single Nucleotide , Genetic Association Studies , Phenotype
12.
Chemphyschem ; 22(4): 349-358, 2021 Feb 16.
Article in English | MEDLINE | ID: mdl-33370489

ABSTRACT

Chemisorbed species can enhance the fluxional dynamics of nanostructured metal surfaces which has implications for applications such as catalysis. Scanning tunneling microscopy studies at room temperature reveal that the presence of adsorbed sulfur (S) greatly enhances the decay rate of 2D Au islands in the vicinity of extended step edges on Au(111). This enhancement is already significant at S coverages, θS , of a few hundredths of a monolayer (ML), and is most pronounced for 0.1-0.3 ML where the decay rate is increased by a factor of around 30. For θS close to saturation at about 0.6 ML, sulfur induces pitting and reconstruction of the entire surface, and Au islands are stabilized. Enhanced coarsening at lower θS is attributed to the formation and diffusion across terraces of Au-S complexes, particularly AuS2 and Au4 S4 , with some lesser contribution from Au3 S4 . This picture is supported by density functional theory analysis of complex formation energies and diffusion barriers.

13.
Chem Rev ; 119(11): 6670-6768, 2019 06 12.
Article in English | MEDLINE | ID: mdl-31181906

ABSTRACT

Self-assembly of supported 2D or 3D nanocrystals (NCs) by vacuum deposition and of 3D NCs by solution-phase synthesis (with possible subsequent transfer to a support) produces intrinsically nonequilibrium systems. Individual NCs can have far-from-equilibrium shapes and composition profiles. The free energy of NC ensembles is lowered by coarsening which can involve Ostwald ripening or Smoluchowski ripening (NC diffusion and coalescence). Preservation of individual NC structure and inhibition of coarsening are key, e.g., for avoiding catalyst degradation. This review focuses on postsynthesis evolution of metallic NCs. Atomistic-level modeling typically utilizes stochastic lattice-gas models to access appropriate time and length scales. However, predictive modeling requires incorporation of realistic rates for relaxation mechanisms, e.g., periphery diffusion and intermixing, in numerous local environments (rather than the use of generic prescriptions). Alternative coarse-grained modeling must also incorporate appropriate mechanisms and kinetics. At the level of individual NCs, we present analyses of reshaping, including sintering and pinch-off, and of compositional evolution in a vacuum environment. We also discuss modeling of coarsening including diffusion and decay of individual NCs and unconventional coarsening processes. We describe high-level modeling integrated with scanning tunneling microscopy (STM) studies for supported 2D epitaxial nanoclusters and developments in modeling for 3D NCs motivated by in situ transmission electron microscopy (TEM) studies.

14.
PLoS Genet ; 14(7): e1007452, 2018 07.
Article in English | MEDLINE | ID: mdl-30016313

ABSTRACT

Meta-analysis of genetic association studies increases sample size and the power for mapping complex traits. Existing methods are mostly developed for datasets without missing values, i.e. the summary association statistics are measured for all variants in contributing studies. In practice, genotype imputation is not always effective. This may be the case when targeted genotyping/sequencing assays are used or when the un-typed genetic variant is rare. Therefore, contributed summary statistics often contain missing values. Existing methods for imputing missing summary association statistics and using imputed values in meta-analysis, approximate conditional analysis, or simple strategies such as complete case analysis all have theoretical limitations. Applying these approaches can bias genetic effect estimates and lead to seriously inflated type-I or type-II errors in conditional analysis, which is a critical tool for identifying independently associated variants. To address this challenge and complement imputation methods, we developed a method to combine summary statistics across participating studies and consistently estimate joint effects, even when the contributed summary statistics contain large amounts of missing values. Based on this estimator, we proposed a score statistic called PCBS (partial correlation based score statistic) for conditional analysis of single-variant and gene-level associations. Through extensive analysis of simulated and real data, we showed that the new method produces well-calibrated type-I errors and is substantially more powerful than existing approaches. We applied the proposed approach to one of the largest meta-analyses to date for the cigarettes-per-day phenotype. Using the new method, we identified multiple novel independently associated variants at known loci for tobacco use, which were otherwise missed by alternative methods. Together, the phenotypic variance explained by these variants was 1.1%, improving that of previously reported associations by 71%. These findings illustrate the extent of locus allelic heterogeneity and can help pinpoint causal variants.


Subject(s)
Data Analysis , Tobacco Products/statistics & numerical data , Tobacco Use/genetics , Alleles , Data Interpretation, Statistical , Datasets as Topic , Genetic Loci/genetics , Genome-Wide Association Study , Genotype , Humans , Phenotype , Polymorphism, Single Nucleotide
15.
Am J Hum Genet ; 101(1): 115-122, 2017 Jul 06.
Article in English | MEDLINE | ID: mdl-28669402

ABSTRACT

Massively parallel sequencing technologies provide great opportunities for discovering rare susceptibility variants involved in complex disease etiology via large-scale imputation and exome and whole-genome sequence-based association studies. Due to modest effect sizes, large sample sizes of tens to hundreds of thousands of individuals are required for adequately powered studies. Current analytical tools are obsolete when it comes to handling these large datasets. To facilitate the analysis of large-scale sequence-based studies, we developed SEQSpark which implements parallel processing based on Spark to increase the speed and efficiency of performing data quality control, annotation, and association analysis. To demonstrate the versatility and speed of SEQSpark, we analyzed whole-genome sequence data from the UK10K, testing for associations with waist-to-hip ratios. The analysis, which was completed in 1.5 hr, included loading data, annotation, principal component analysis, and single variant and rare variant aggregate association analysis of >9 million variants. For rare variant aggregate analysis, an exome-wide significant association (p < 2.5 × 10-6) was observed with CCDC62 (SKAT-O [p = 6.89 × 10-7], combined multivariate collapsing [p = 1.48 × 10-6], and burden of rare variants [p = 1.48 × 10-6]). SEQSpark was also used to analyze 50,000 simulated exomes and it required 1.75 hr for the analysis of a quantitative trait using several rare variant aggregate association methods. Additionally, the performance of SEQSpark was compared to Variant Association Tools and PLINK/SEQ. SEQSpark was always faster and in some situations computation was reduced to a hundredth of the time. SEQSpark will empower large sequence-based epidemiological studies to quickly elucidate genetic variation involved in the etiology of complex traits.


Subject(s)
Databases, Nucleic Acid , Exome/genetics , Genetic Variation , Genome-Wide Association Study/methods , Sequence Analysis, DNA/methods , Software , Humans , Principal Component Analysis , Waist-Hip Ratio
16.
J Chem Phys ; 152(22): 224706, 2020 Jun 14.
Article in English | MEDLINE | ID: mdl-32534552

ABSTRACT

Ordering of different chalcogens, S, Se, and Te, on Au(111) exhibit broad similarities but also some distinct features, which must reflect subtle differences in relative values of the long-range pair and many-body lateral interactions between adatoms. We develop lattice-gas (LG) models within a cluster expansion framework, which includes about 50 interaction parameters. These LG models are developed based on density functional theory (DFT) analysis of the energetics of key adlayer configurations in combination with the Monte Carlo (MC) simulation of the LG models to identify statistically relevant adlayer motifs, i.e., model development is based entirely on theoretical considerations. The MC simulation guides additional DFT analysis and iterative model refinement. Given their complexity, development of optimal models is also aided by strategies from supervised machine learning. The model for S successfully captures ordering motifs over a broader range of coverage than achieved by previous models, and models for Se and Te capture the features of ordering, which are distinct from those for S. More specifically, the modeling for all three chalcogens successfully explains the linear adatom rows (also subtle differences between them) observed at low coverages of ∼0.1 monolayer. The model for S also leads to a new possible explanation for the experimentally observed phase with a (5 × 5)-type low energy electron diffraction (LEED) pattern at 0.28 ML and to predictions for LEED patterns that would be observed with Se and Te at this coverage.

17.
Am J Hum Genet ; 99(1): 40-55, 2016 Jul 07.
Article in English | MEDLINE | ID: mdl-27346686

ABSTRACT

Platelet production, maintenance, and clearance are tightly controlled processes indicative of platelets' important roles in hemostasis and thrombosis. Platelets are common targets for primary and secondary prevention of several conditions. They are monitored clinically by complete blood counts, specifically with measurements of platelet count (PLT) and mean platelet volume (MPV). Identifying genetic effects on PLT and MPV can provide mechanistic insights into platelet biology and their role in disease. Therefore, we formed the Blood Cell Consortium (BCX) to perform a large-scale meta-analysis of Exomechip association results for PLT and MPV in 157,293 and 57,617 individuals, respectively. Using the low-frequency/rare coding variant-enriched Exomechip genotyping array, we sought to identify genetic variants associated with PLT and MPV. In addition to confirming 47 known PLT and 20 known MPV associations, we identified 32 PLT and 18 MPV associations not previously observed in the literature across the allele frequency spectrum, including rare large effect (FCER1A), low-frequency (IQGAP2, MAP1A, LY75), and common (ZMIZ2, SMG6, PEAR1, ARFGAP3/PACSIN2) variants. Several variants associated with PLT/MPV (PEAR1, MRVI1, PTGES3) were also associated with platelet reactivity. In concurrent BCX analyses, there was overlap of platelet-associated variants with red (MAP1A, TMPRSS6, ZMIZ2) and white (PEAR1, ZMIZ2, LY75) blood cell traits, suggesting common regulatory pathways with shared genetic architecture among these hematopoietic lineages. Our large-scale Exomechip analyses identified previously undocumented associations with platelet traits and further indicate that several complex quantitative hematological, lipid, and cardiovascular traits share genetic factors.


Subject(s)
Blood Platelets/metabolism , Exome/genetics , Genetic Variation/genetics , Female , Genome-Wide Association Study , Humans , Male , Mean Platelet Volume , Platelet Count
18.
Phys Chem Chem Phys ; 21(48): 26483-26491, 2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31776538

ABSTRACT

Experimental data from low-temperature Scanning Tunneling Microscopy (LTSTM) studies on coinage metal surfaces with very low coverages of S is providing new insights into metal-S interactions. A previous LTSTM study for Cu(100), and a new analysis reported here for Ag(100), both indicate no metal-sulfur complex formation, but an Au4S5 complex was observed previously on Au(100). In marked contrast, various complexes have been proposed and/or observed on Ag(111) and Cu(111), but not on Au(111). Also, exposure to trace amounts of S appears to enhance mass transport far more dramatically on (111) than on (100) surfaces for Cu and Ag, a feature tied to the propensity for complex formation. Motivated by these observations, we present a comprehensive assessment at the level of DFT to assess the existence and stability of complexes on (100) surfaces, and compare results with previous analyses for (111) surfaces. Consistent with experiment, our DFT analysis finds no stable complexes on Ag(100) and Cu(100), but several exist for Au(100). In addition, we systematically relate stability for adsorbed and gas-phase species within the framework of Hess's law. We thereby provide key insight into the various energetic contributions to stability which in turn elucidates the difference in behavior between (100) and (111) surfaces.

19.
Phys Chem Chem Phys ; 21(20): 10540-10551, 2019 May 28.
Article in English | MEDLINE | ID: mdl-31073566

ABSTRACT

In this paper, we report that S atoms on Ag(100) and Ag(110) exhibit a distinctive range of appearances in scanning tunneling microscopy (STM) images, depending on the sample bias voltage, VS. Progressing from negative to positive VS, the atomic shape can be described as a round protrusion surrounded by a dark halo (sombrero) in which the central protrusion shrinks, leaving only a round depression. This progression resembles that reported previously for S atoms on Cu(100). We test whether DFT can reproduce these shapes and the transition between them, using a modified version of the Lang-Tersoff-Hamann method to simulate STM images. The sombrero shape is easily reproduced, but the sombrero-depression transition appears only for relatively low tunneling current and correspondingly realistic tip-sample separation, dT, of 0.5-0.8 nm. Achieving these conditions in the calculations requires sufficiently large separation (vacuum) between slabs, together with high energy cutoff, to ensure appropriate exponential decay of electron density into vacuum. From DFT, we also predict that an analogous transition is not expected for S atoms on Ag(111) surfaces. The results are explained in terms of the through-surface conductance, which defines the background level in STM, and through-adsorbate conductance, which defines the apparent height at the point directly above the adsorbate. With increasing VS, for Ag(100) and Ag(110), we show that through-surface conductance increases much more rapidly than through-adsorbate conductance, so the apparent adsorbate height drops below background. In contrast, for Ag(111) the two contributions increase at more comparable rates, so the adsorbate level always remains above background and no transition is seen.

20.
Nucleic Acids Res ; 45(9): e75, 2017 May 19.
Article in English | MEDLINE | ID: mdl-28115622

ABSTRACT

Whole genome sequencing (WGS) is a promising strategy to unravel variants or genes responsible for human diseases and traits. However, there is a lack of robust platforms for a comprehensive downstream analysis. In the present study, we first proposed three novel algorithms, sequence gap-filled gene feature annotation, bit-block encoded genotypes and sectional fast access to text lines to address three fundamental problems. The three algorithms then formed the infrastructure of a robust parallel computing framework, KGGSeq, for integrating downstream analysis functions for whole genome sequencing data. KGGSeq has been equipped with a comprehensive set of analysis functions for quality control, filtration, annotation, pathogenic prediction and statistical tests. In the tests with whole genome sequencing data from 1000 Genomes Project, KGGSeq annotated several thousand more reliable non-synonymous variants than other widely used tools (e.g. ANNOVAR and SNPEff). It took only around half an hour on a small server with 10 CPUs to access genotypes of ∼60 million variants of 2504 subjects, while a popular alternative tool required around one day. KGGSeq's bit-block genotype format used 1.5% or less space to flexibly represent phased or unphased genotypes with multiple alleles and achieved a speed of over 1000 times faster to calculate genotypic correlation.


Subject(s)
Algorithms , Genome, Human , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL