Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.126
Filter
Add more filters

Publication year range
1.
Immunity ; 51(1): 64-76.e7, 2019 07 16.
Article in English | MEDLINE | ID: mdl-31231033

ABSTRACT

Type 1 CD8α+ conventional dendritic cells (cDC1s) are required for CD8+ T cell priming but, paradoxically, promote splenic Listeria monocytogenes infection. Using mice with impaired cDC2 function, we ruled out a role for cDC2s in this process and instead discovered an interleukin-10 (IL-10)-dependent cellular crosstalk in the marginal zone (MZ) that promoted bacterial infection. Mice lacking the guanine nucleotide exchange factor DOCK8 or CD19 lost IL-10-producing MZ B cells and were resistant to Listeria. IL-10 increased intracellular Listeria in cDC1s indirectly by reducing inducible nitric oxide synthase expression early after infection and increasing intracellular Listeria in MZ metallophilic macrophages (MMMs). These MMMs trans-infected cDC1s, which, in turn, transported Listeria into the white pulp to prime CD8+ T cells. However, this also facilitated bacterial expansion. Therefore, IL-10-mediated crosstalk between B cells, macrophages, and cDC1s in the MZ promotes both Listeria infection and CD8+ T cell activation.


Subject(s)
B-Lymphocytes/immunology , Dendritic Cells/immunology , Interleukin-10/metabolism , Listeria monocytogenes/physiology , Listeriosis/immunology , Macrophages/immunology , Spleen/immunology , Animals , Antigens, CD19/metabolism , CD8 Antigens/metabolism , Cell Line, Tumor , Gene Expression Regulation , Guanine Nucleotide Exchange Factors/genetics , Interleukin-10/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide Synthase/genetics , Nitric Oxide Synthase/metabolism , Paracrine Communication , Spleen/microbiology
2.
Proc Natl Acad Sci U S A ; 121(33): e2406492121, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39361877

ABSTRACT

Toll-like receptors (TLRs) on macrophages sense microbial components and trigger the production of numerous cytokines and chemokines that mediate the inflammatory response to infection. Although many of the components required for the activation of the TLR pathway have been identified, the mechanisms that appropriately regulate the magnitude and duration of the response and ultimately restore homeostasis are less well understood. Furthermore, a growing body of work indicates that TLR signaling reciprocally interacts with other fundamental cellular processes, including lipid metabolism but only a few specific molecular links between immune signaling and the macrophage lipidome have been studied in detail. Oxysterol-binding protein (Osbp) is the founding member of a family of lipid-binding proteins with diverse functions in lipid sensing, lipid transport, and cell signaling but its role in TLR responses is not well defined. Here, we demonstrate that altering the state of Osbp with its natural ligand, 25-hydroxycholesterol (25HC), or pharmacologically, sustains and thereby amplifies Tlr4-induced cytokine production in vitro and in vivo. CRISPR-induced knockdown of Osbp abrogates the ability of these ligands to sustain TLR responses. Lipidomic analysis suggested that the effect of Osbp on TLR signaling may be mediated by alterations in triglyceride production and treating cells with a Dgat1 inhibitor, which blocks triglyceride production and completely abrogates the effect of Osbp on TLR signaling. Thus, Osbp is a sterol sensor that transduces perturbations of the lipidome to modulate the resolution of macrophage inflammatory responses.


Subject(s)
Cytokines , Hydroxycholesterols , Macrophages , Receptors, Steroid , Signal Transduction , Animals , Macrophages/metabolism , Macrophages/immunology , Mice , Cytokines/metabolism , Receptors, Steroid/metabolism , Receptors, Steroid/genetics , Hydroxycholesterols/metabolism , Toll-Like Receptors/metabolism , Toll-Like Receptor 4/metabolism , Mice, Inbred C57BL , Lipid Metabolism , RAW 264.7 Cells
3.
Proc Natl Acad Sci U S A ; 121(27): e2406884121, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38935562

ABSTRACT

Degeneracy and symmetry have a profound relation in quantum systems. Here, we report gate-tunable subband degeneracy in PbTe nanowires with a nearly symmetric cross-sectional shape. The degeneracy is revealed in electron transport by the absence of a quantized plateau. Utilizing a dual gate design, we can apply an electric field to lift the degeneracy, reflected as emergence of the plateau. This degeneracy and its tunable lifting were challenging to observe in previous nanowire experiments, possibly due to disorder. Numerical simulations can qualitatively capture our observation, shedding light on device parameters for future applications.

4.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38600663

ABSTRACT

Protein sequence design can provide valuable insights into biopharmaceuticals and disease treatments. Currently, most protein sequence design methods based on deep learning focus on network architecture optimization, while ignoring protein-specific physicochemical features. Inspired by the successful application of structure templates and pre-trained models in the protein structure prediction, we explored whether the representation of structural sequence profile can be used for protein sequence design. In this work, we propose SPDesign, a method for protein sequence design based on structural sequence profile using ultrafast shape recognition. Given an input backbone structure, SPDesign utilizes ultrafast shape recognition vectors to accelerate the search for similar protein structures in our in-house PAcluster80 structure database and then extracts the sequence profile through structure alignment. Combined with structural pre-trained knowledge and geometric features, they are further fed into an enhanced graph neural network for sequence prediction. The results show that SPDesign significantly outperforms the state-of-the-art methods, such as ProteinMPNN, Pifold and LM-Design, leading to 21.89%, 15.54% and 11.4% accuracy gains in sequence recovery rate on CATH 4.2 benchmark, respectively. Encouraging results also have been achieved on orphan and de novo (designed) benchmarks with few homologous sequences. Furthermore, analysis conducted by the PDBench tool suggests that SPDesign performs well in subdivided structures. More interestingly, we found that SPDesign can well reconstruct the sequences of some proteins that have similar structures but different sequences. Finally, the structural modeling verification experiment indicates that the sequences designed by SPDesign can fold into the native structures more accurately.


Subject(s)
Neural Networks, Computer , Proteins , Sequence Alignment , Amino Acid Sequence , Proteins/chemistry , Sequence Analysis, Protein/methods
5.
Nucleic Acids Res ; 52(6): 3106-3120, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38364856

ABSTRACT

Chromatin accessibility plays a critical role in the regulation of cell fate decisions. Although gene expression changes have been extensively profiled at the single-cell level during early embryogenesis, the dynamics of chromatin accessibility at cis-regulatory elements remain poorly studied. Here, we used a plate-based single-cell ATAC-seq method to profile the chromatin accessibility dynamics of over 10 000 nuclei from zebrafish embryos. We investigated several important time points immediately after zygotic genome activation (ZGA), covering key developmental stages up to dome. The results revealed key chromatin signatures in the first cell fate specifications when cells start to differentiate into enveloping layer (EVL) and yolk syncytial layer (YSL) cells. Finally, we uncovered many potential cell-type specific enhancers and transcription factor motifs that are important for the cell fate specifications.


Subject(s)
Chromatin , Embryonic Development , Zebrafish , Animals , Chromatin/genetics , Chromatin/metabolism , Egg Yolk/metabolism , Embryo, Nonmammalian/embryology , Embryo, Nonmammalian/metabolism , Embryonic Development/genetics , Zebrafish/embryology , Zebrafish/genetics , Single-Cell Analysis , Protein Interaction Domains and Motifs/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
6.
Brief Bioinform ; 24(4)2023 07 20.
Article in English | MEDLINE | ID: mdl-37317619

ABSTRACT

The scoring models used for protein structure modeling and ranking are mainly divided into unified field and protein-specific scoring functions. Although protein structure prediction has made tremendous progress since CASP14, the modeling accuracy still cannot meet the requirements to a certain extent. Especially, accurate modeling of multi-domain and orphan proteins remains a challenge. Therefore, an accurate and efficient protein scoring model should be developed urgently to guide the protein structure folding or ranking through deep learning. In this work, we propose a protein structure global scoring model based on equivariant graph neural network (EGNN), named GraphGPSM, to guide protein structure modeling and ranking. We construct an EGNN architecture, and a message passing mechanism is designed to update and transmit information between nodes and edges of the graph. Finally, the global score of the protein model is output through a multilayer perceptron. Residue-level ultrafast shape recognition is used to describe the relationship between residues and the overall structure topology, and distance and direction encoded by Gaussian radial basis functions are designed to represent the overall topology of the protein backbone. These two features are combined with Rosetta energy terms, backbone dihedral angles and inter-residue distance and orientations to represent the protein model and embedded into the nodes and edges of the graph neural network. The experimental results on the CASP13, CASP14 and CAMEO test sets show that the scores of our developed GraphGPSM have a strong correlation with the TM-score of the models, which are significantly better than those of the unified field score function REF2015 and the state-of-the-art local lDDT-based scoring models ModFOLD8, ProQ3D and DeepAccNet, etc. The modeling experimental results on 484 test proteins demonstrate that GraphGPSM can greatly improve the modeling accuracy. GraphGPSM is further used to model 35 orphan proteins and 57 multi-domain proteins. The results show that the average TM-score of the models predicted by GraphGPSM is 13.2 and 7.1% higher than that of the models predicted by AlphaFold2. GraphGPSM also participates in CASP15 and achieves competitive performance in global accuracy estimation.


Subject(s)
Algorithms , Proteins , Protein Conformation , Databases, Protein , Proteins/chemistry , Neural Networks, Computer
7.
Brief Bioinform ; 25(1)2023 11 22.
Article in English | MEDLINE | ID: mdl-38018909

ABSTRACT

Model quality evaluation is a crucial part of protein structural biology. How to distinguish high-quality models from low-quality models, and to assess which high-quality models have relatively incorrect regions for improvement, are remain a challenge. More importantly, the quality assessment of multimer models is a hot topic for structure prediction. In this study, we propose GraphCPLMQA, a novel approach for evaluating residue-level model quality that combines graph coupled networks and embeddings from protein language models. The GraphCPLMQA consists of a graph encoding module and a transform-based convolutional decoding module. In encoding module, the underlying relational representations of sequence and high-dimensional geometry structure are extracted by protein language models with Evolutionary Scale Modeling. In decoding module, the mapping connection between structure and quality is inferred by the representations and low-dimensional features. Specifically, the triangular location and residue level contact order features are designed to enhance the association between the local structure and the overall topology. Experimental results demonstrate that GraphCPLMQA using single-sequence embedding achieves the best performance compared with the CASP15 residue-level interface evaluation methods among 9108 models in the local residue interface test set of CASP15 multimers. In CAMEO blind test (20 May 2022 to 13 August 2022), GraphCPLMQA ranked first compared with other servers (https://www.cameo3d.org/quality-estimation). GraphCPLMQA also outperforms state-of-the-art methods on 19, 035 models in CASP13 and CASP14 monomer test set.


Subject(s)
Computational Biology , Neural Networks, Computer , Computational Biology/methods , Proteins/chemistry , Language
8.
Brief Bioinform ; 25(1)2023 11 22.
Article in English | MEDLINE | ID: mdl-38243692

ABSTRACT

Combination therapy has exhibited substantial potential compared to monotherapy. However, due to the explosive growth in the number of cancer drugs, the screening of synergistic drug combinations has become both expensive and time-consuming. Synergistic drug combinations refer to the concurrent use of two or more drugs to enhance treatment efficacy. Currently, numerous computational methods have been developed to predict the synergistic effects of anticancer drugs. However, there has been insufficient exploration of how to mine drug and cell line data at different granularity levels for predicting synergistic anticancer drug combinations. Therefore, this study proposes a granularity-level information fusion strategy based on the hypergraph transformer, named HypertranSynergy, to predict synergistic effects of anticancer drugs. HypertranSynergy introduces synergistic connections between cancer cell lines and drug combinations using hypergraph. Then, the Coarse-grained Information Extraction (CIE) module merges the hypergraph with a transformer for node embeddings. In the CIE module, Contranorm is a normalization layer that mitigates over-smoothing, while Gaussian noise addresses local information gaps. Additionally, the Fine-grained Information Extraction (FIE) module assesses fine-grained information's impact on predictions by employing similarity-aware matrices from drug/cell line features. Both CIE and FIE modules are integrated into HypertranSynergy. In addition, HypertranSynergy achieved the AUC of 0.93${\pm }$0.01 and the AUPR of 0.69${\pm }$0.02 in 5-fold cross-validation of classification task, and the RMSE of 13.77${\pm }$0.07 and the PCC of 0.81${\pm }$0.02 in 5-fold cross-validation of regression task. These results are better than most of the state-of-the-art models.


Subject(s)
Antineoplastic Agents , Antineoplastic Agents/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cell Line , Combined Modality Therapy , Drug Combinations
9.
Nat Mater ; 23(1): 131-138, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37884671

ABSTRACT

Consecutive mechanical loading cycles cause irreversible fatigue damage and residual strain in gels, affecting their service life and application scope. Hysteresis-free hydrogels within a limited deformation range have been created by various strategies. However, large deformation and high elasticity are inherently contradictory attributes. Here we present a nanoconfined polymerization strategy for producing tough and near-zero-hysteresis gels under a large range of deformations. Gels are prepared through in situ polymerization within nanochannels of covalent organic frameworks or molecular sieves. The nanochannel confinement and strong hydrogen bonding interactions with polymer segments are crucial for achieving rapid self-reinforcement. The rigid nanostructures relieve the stress concentration at the crack tips and prevent crack propagation, enhancing the ultimate fracture strain (17,580 ± 308%), toughness (87.7 ± 2.3 MJ m-3) and crack propagation strain (5,800%) of the gels. This approach provides a general strategy for synthesizing gels that overcome the traditional trade-offs of large deformation and high elasticity.

10.
FASEB J ; 38(3): e23458, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38315453

ABSTRACT

Diabetic kidney disease (DKD), a major microvascular complication of diabetes, is characterized by its complex pathogenesis, high risk of chronic renal failure, and lack of effective diagnosis and treatment methods. GSK3ß (glycogen synthase kinase 3ß), a highly conserved threonine/serine kinase, was found to activate glycogen synthase. As a key molecule of the glucose metabolism pathway, GSK3ß participates in a variety of cellular activities and plays a pivotal role in multiple diseases. However, these effects are not only mediated by affecting glucose metabolism. This review elaborates on the role of GSK3ß in DKD and its damage mechanism in different intrinsic renal cells. GSK3ß is also a biomarker indicating the progression of DKD. Finally, the protective effects of GSK3ß inhibitors on DKD are also discussed.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Glycogen Synthase Kinase 3 beta , Humans , Diabetic Nephropathies/drug therapy , Glucose/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Kidney/metabolism
11.
Exp Cell Res ; 439(1): 114094, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38750718

ABSTRACT

Pirarubicin (THP) is a new generation of cell cycle non-specific anthracycline-based anticancer drug. In the clinic, THP and THP combination therapies have been shown to be effective in hepatocellular carcinoma (HCC) patients with transcatheter arterial chemoembolization (TACE) without serious side effects. However, drug resistance limits its therapeutic efficacy. Berberine (BBR), an isoquinoline alkaloid, has been shown to possess antitumour properties against various malignancies. However, the synergistic effect of BBR and THP in the treatment of HCC is unknown. In the present study, we demonstrated for the first time that BBR sensitized HCC cells to THP, including enhancing THP-induced growth inhibition and apoptosis of HCC cells. Moreover, we found that BBR sensitized THP by reducing the expression of autophagy-related 4B (ATG4B). Mechanistically, the inhibition of HIF1α-mediated ATG4B transcription by BBR ultimately led to attenuation of THP-induced cytoprotective autophagy, accompanied by enhanced growth inhibition and apoptosis in THP-treated HCC cells. Tumor-bearing experiments in nude mice showed that the combination treatment with BBR and THP significantly suppressed the growth of HCC xenografts. These results reveal that BBR is able to strengthen the killing effect of THP on HCC cells by repressing the ATG4B-autophagy pathway, which may provide novel insights into the improvement of chemotherapeutic efficacy of THP, and may be conducive to the further clinical application of THP in HCC treatment.


Subject(s)
Apoptosis , Autophagy-Related Proteins , Autophagy , Berberine , Carcinoma, Hepatocellular , Doxorubicin , Liver Neoplasms , Mice, Nude , Berberine/pharmacology , Berberine/analogs & derivatives , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Autophagy/drug effects , Animals , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Autophagy-Related Proteins/metabolism , Autophagy-Related Proteins/genetics , Mice , Apoptosis/drug effects , Doxorubicin/pharmacology , Doxorubicin/analogs & derivatives , Xenograft Model Antitumor Assays , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Synergism , Mice, Inbred BALB C , Antineoplastic Agents/pharmacology , Signal Transduction/drug effects , Cysteine Endopeptidases
12.
Mol Ther ; 32(8): 2728-2740, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38879754

ABSTRACT

Despite the remarkable success of chimeric antigen receptor (CAR) T therapy in hematological malignancies, its efficacy in solid tumors remains limited. Cytokine-engineered CAR T cells offer a promising avenue, yet their clinical translation is hindered by the risks associated with constitutive cytokine expression. In this proof-of-concept study, we leverage the endogenous interferon (IFN)-γ promoter for transgenic interleukin (IL)-15 expression. We demonstrate that IFN-γ expression is tightly regulated by T cell receptor signaling. By introducing an internal ribosome entry site IL15 into the 3' UTR of the IFN-γ gene via homology directed repair-mediated knock-in, we confirm that IL-15 expression can co-express with IFN-γ in an antigen stimulation-dependent manner. Importantly, the insertion of transgenes does not compromise endogenous IFN-γ expression. In vitro and in vivo data demonstrate that IL-15 driven by the IFN-γ promoter dramatically improves CAR T cells' antitumor activity, suggesting the effectiveness of IL-15 expression. Last, as a part of our efforts toward clinical translation, we have developed an innovative two-gene knock-in approach. This approach enables the simultaneous integration of CAR and IL-15 genes into TRAC and IFN-γ gene loci using a single AAV vector. CAR T cells engineered to express IL-15 using this approach demonstrate enhanced antitumor efficacy. Overall, our study underscores the feasibility of utilizing endogenous promoters for transgenic cytokines expression in CAR T cells.


Subject(s)
Immunotherapy, Adoptive , Interferon-gamma , Interleukin-15 , Promoter Regions, Genetic , Receptors, Chimeric Antigen , Interferon-gamma/metabolism , Humans , Animals , Mice , Immunotherapy, Adoptive/methods , Interleukin-15/genetics , Interleukin-15/metabolism , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/immunology , Genetic Vectors/genetics , Cell Line, Tumor , Transgenes , Cytokines/metabolism , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Xenograft Model Antitumor Assays , Gene Expression
13.
Proc Natl Acad Sci U S A ; 119(10): e2110756119, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35235447

ABSTRACT

SignificanceAerosol-cloud interaction affects the cooling of Earth's climate, mostly by activation of aerosols as cloud condensation nuclei that can increase the amount of sunlight reflected back to space. But the controlling physical processes remain uncertain in current climate models. We present a lidar-based technique as a unique remote-sensing tool without thermodynamic assumptions for simultaneously profiling diurnal aerosol and water cloud properties with high resolution. Direct lateral observations of cloud properties show that the vertical structure of low-level water clouds can be far from being perfectly adiabatic. Furthermore, our analysis reveals that, instead of an increase of liquid water path (LWP) as proposed by most general circulation models, elevated aerosol loading can cause a net decrease in LWP.

14.
Genomics ; 116(1): 110764, 2024 01.
Article in English | MEDLINE | ID: mdl-38113974

ABSTRACT

Sorafenib is currently the first-line treatment for patients with advanced liver cancer, but its therapeutic efficacy declines significantly after a few months of treatment. Therefore, it is of great importance to investigate the regulatory mechanisms of sorafenib sensitivity in liver cancer cells. In this study, we provided initial evidence demonstrating that circPHKB, a novel circRNA markedly overexpressed in sorafenib-treated liver cancer cells, attenuated the sensitivity of liver cancer cells to sorafenib. Mechanically, circPHKB sequestered miR-1234-3p, resulting in the up-regulation of cytochrome P450 family 2 subfamily W member 1 (CYP2W1), thereby reducing the killing effect of sorafenib on liver cancer cells. Moreover, knockdown of circPHKB sensitized liver cancer cells to sorafenib in vivo. The findings reveal a novel circPHKB/miR-1234-3p/CYP2W1 pathway that decreases the sensitivity of liver cancer cells to sorafenib, suggesting that circPHKB and the axis may serve as promising targets to improve the therapeutic efficacy of sorafenib against liver cancer.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Humans , Sorafenib/pharmacology , Sorafenib/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , MicroRNAs/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Up-Regulation , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Cell Proliferation , Drug Resistance, Neoplasm , Cytochrome P450 Family 2/genetics
15.
Nano Lett ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619280

ABSTRACT

Developing highly active yet stable catalysts for the hydrogen oxidation reaction (HOR) in alkaline media remains a significant challenge. Herein, we designed a novel catalyst of atomic PtPd-layer shelled ultrasmall PdCu hollow nanoparticles (HPdCu NPs) on partially unzipped carbon nanotubes (PtPd@HPdCu/W-CNTs), which can achieve a high mass activity, 5 times that of the benchmark Pt/C, and show exceptional stability with negligible decay after 20,000 cycles of accelerated degradation test. The atomically thin PtPd shell serves as the primary active site for the HOR and a protective layer that prevents Cu leaching. Additionally, the HPdCu substrate not only tunes the adsorption properties of the PtPd layer but also prevents corrosive Pt from reaching the interface between NPs and the carbon support, thereby mitigating carbon corrosion. This work introduces a new strategy that leverages the distinct advantages of multiple components to address the challenges associated with slow kinetics and poor durability toward the HOR.

16.
Nano Lett ; 24(4): 1197-1204, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38227967

ABSTRACT

Electrocatalytic reduction of nitrate to ammonia (NO3RR) is gaining attention for low carbon emissions and environmental protection. However, low ammonia production rate and poor selectivity have remained major challenges in this multi-proton coupling process. Herein, we report a facile strategy toward a novel Fe-based hybrid structure composed of Fe single atoms and Fe3C atomic clusters that demonstrates outstanding performance for synergistic electrocatalytic NO3RR. By operando synchrotron Fourier transform infrared spectroscopy and theoretical computation, we clarify that Fe single atoms serve as the active site for NO3RR, while Fe3C clusters facilitate H2O dissociation to provide protons (*H) for continued hydrogenation reactions. As a result, the Fe-based electrocatalyst exhibits ammonia Faradaic efficiency of nearly 100%, with a corresponding production rate of 24768 µg h-1 cm-2 at -0.4 V vs RHE, exceeding most reported metal-based catalysts. This research provides valuable guidance toward multi-step reactions.

17.
Nano Lett ; 24(38): 12000-12009, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39259957

ABSTRACT

Graphene aerogels hold huge promise for the development of high-performance pressure sensors for future human-machine interfaces due to their ordered microstructure and conductive network. However, their application is hindered by the limited strain sensing range caused by the intrinsic stiffness of the porous microstructure. Herein, an anisotropic cross-linked chitosan and reduced graphene oxide (CCS-rGO) aerogel metamaterial is realized by reconfiguring the microstructure from a honeycomb to a buckling structure at the dedicated cross-section plane. The reconfigured CCS-rGO aerogel shows directional hyperelasticity with extraordinary durability (no obvious structural damage after 20 000 cycles at a directional compressive strain of ≤0.7). The CCS-rGO aerogel pressure sensor exhibits an ultrahigh sensitivity of 121.45 kPa-1, an unprecedented sensing range, and robust mechanical and electrical performance. The aerogel sensors are demonstrated to monitor human motions, control robotic hands, and even integrate into a flexible keyboard to play music, which opens a wide application potential in future human-machine interfaces.

18.
Plant Mol Biol ; 114(1): 14, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38324190

ABSTRACT

Excessive cadmium in rice grain in agricultural production is an important issue to be addressed in some southern regions of China. In this study, we constructed transgenic rice overexpressing OsVIT1 and OsVIT2 driven by 35S promoter in the cultivar ZH11. Compared with ZH11, OsVIT1 expression in leaves was significantly increased by 3-6.6 times and OsVIT2 expression in leaves was significantly increased by 2-2.5 times. Hydroponic experiments showed that overexpression of OsVIT1 and OsVIT2 increased the tolerance to Fe deficiency, significantly reduced Cd content in shoot and xylem sap, and had no effect on Cd tolerance in rice. Two years of field trials showed that the Fe content in the grain of OsVIT1 and OsVIT2 overexpressed materials was significantly reduced by 20-40% and the straw Fe content was significantly increased by 10-45%, and the grain Fe content distribution ratio was significantly decreased and the straw Fe distribution ratio was significantly increased compared with the wild type. The OsVIT1 and OsVIT2 overexpressed materials significantly reduced the Cd content of grain by 40-80% and the Cd content of straws by 37-77%, and the bioconcentration factor of Cd was significantly reduced in both grains and straw of OsVIT1 and OsVIT2 overexpressed materials. Overexpression of OsVIT1 and OsVIT2 did not affect the concentration of other metal ions in rice straw and grain. qRT-PCR analysis showed that the expression of the low affinity cation transporter OsLCT1 was significantly downregulated in the OsVIT1 and OsVIT2 overexpressed materials. In conclusion, overexpression of OsVIT1 and OsVIT2 reduced Cd accumulation in straw and grains, providing a strategy for Cd reduction in rice.


Subject(s)
Cadmium , Oryza , Plant Leaves , Agriculture , China , Edible Grain , Membrane Transport Proteins
19.
J Am Chem Soc ; 146(36): 25028-25034, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39213504

ABSTRACT

Controlling the packing of olefinic molecules in crystals is essential for triggering solid-state [2 + 2] photocycloaddition reactions and the synthesis of photocontrolled smart materials. Herein, we report the stepwise photodimerization-triggered photopolymerization of two triene coordination polymers (CPs), {[Zn(2-BBA)2(tpeb)]·0.5CH3CN}n (1, 2-HBBA = 2-bromobenzoic acid, tpeb = 1,3,5-tri-4-pyridyl-1,2-ethenylbenzene) and {[Zn(3-BBA)2(tpeb)]·CH3CN)}n (2, 3-HBBA = 3-bromobenzoic acid). Upon irradiation with 420 nm light, each pair of closely packed and parallel olefinic bonds in 1 undergoes a [2 + 2] cycloaddition reaction, which connects two adjacent Z-shaped chains into a ladder-like coordination chain [Zn(2-BBA)2(bpbdpvpcb)0.5]n (1a, bpbdpvpcb = 1,3-bis(4-pyridyl)-2,4-bis(3,5-di(2-(4-pyridyl)vinyl)phenyl]cyclobutene) through single-crystal to single-crystal (SCSC) transformation. After photodimerization from 1 to 1a has occurred, the olefinic bonds that were initially distant are brought in close enough proximity to meet the requirements for a subsequent [2 + 2] cycloaddition reaction. Upon further light irradiation, the neighboring bpbdpvpcb ligands in 1a experience a SCSC photopolymerization based on [2 + 2] photocycloaddition and transform into poly-3b,4,5,5a,8b,9,10a-octahydro-4,5,9,10-tetrapyridyl-2,7-di(2-(4-pyridyl)vinyl)dicyclobuta[e,l]-pyren (poly-otpdpvdcbp). 2 showed similar structural changes under UV light illumination. Under light exposure, single crystals of 1 and 2 with different morphologies exhibit bending, cracking, and jumping photomechanical motions. The composite film (1-PVA) engineered by dispersing crystalline particles of 1 in poly(vinyl alcohol) (PVA) displays interesting light-wavelength-dependent photomechanical motions and can perform photodriven swimming on a liquid surface. This work provides a useful and promising approach to enable photodimerization of those photoinactive olefin pairs embedded in CPs and opens a new route to synthesize organic polymers by using olefinic CP platforms.

20.
J Am Chem Soc ; 2024 Oct 25.
Article in English | MEDLINE | ID: mdl-39454086

ABSTRACT

Dhilirane-type meroterpenoids (DMs) featuring a 6/6/6/5/5 ring system represent a rare group of fungal meroterpenoids. To date, merely 11 DMs have been isolated or derived, leaving their chemical diversity predominantly unexplored. Herein, we leverage an understanding of biosynthesis to develop a workflow for discovery of DMs by genome mining, metabolite analysis, and tailoring enzyme catalysis. Twenty-three new DMs, including seven unprecedented scaffolds, were consequently identified. An α-ketoglutarate (α-KG)-dependent oxygenase DhiD was found to catalyze the stereodivergent ring contraction of dhilirolide D to form the dhilirane skeleton; while the cytochrome P450 DhiH reshaped the structural diversity by establishing diverse C-C bonds and oxidation. Crystallographic and mutagenesis experiments provide a molecular basis for the DhiD reaction and its stereodivergent products. Notably, DhiD exhibits substrate-controlled catalytic versatility in the chemical expansion of DMs through ring contraction, hydroxylation, dehydrogenation, epoxidation, isomerization, epimerization, and α-ketol cleavage. Bioassay results demonstrated that the obtained meroterpenoids exhibited anti-inflammatory and insecticidal activities. Our work provides insight into nature's arsenal for DM biosynthesis and the functional versatility of α-KG-dependent oxygenase and P450, which can be applied for target discovery and diversification of DM-type natural products.

SELECTION OF CITATIONS
SEARCH DETAIL