Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Environ Sci Technol ; 58(1): 883-894, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38134887

ABSTRACT

Transition metal catalysts, such as copper oxide, are more attractive alternatives to noble metal catalysts for emission control due to their higher abundance, lower cost, and excellent catalytic activity. In this study, we report the preparation and application of a novel CuO/CeO2 catalyst using a hydroxyl-rich Ce(OH)x support for CO oxidation and NO reduction by CO. Compared to the catalyst prepared from a regular CeO2 support, the new CuO/CeO2 catalyst prepared from the OH-rich Ce(OH)x (CuO/CeO2-OH) showed significantly higher catalytic activity under different testing conditions. The effect of OH species in the CeO2 support on the catalytic performance and physicochemical properties of the CuO/CeO2 catalyst was characterized in detail. It is demonstrated that the abundant OH species enhanced the CuOx dispersion on CeO2, increased the CuOx-CeO2 interfaces and surface defects, promoted the oxygen activation and mobility, and boosted the NO adsorption and dissociation on CuO/CeO2-OH, thus contributing to its superior catalytic activity for both CO oxidation and NO reduction by CO. These results suggest that the OH-rich Ce(OH)x is a superior support for the preparation of highly efficient metal catalysts for different applications.


Subject(s)
Transition Elements , Oxidation-Reduction , Oxygen , Hydroxyl Radical , Catalysis
2.
Environ Sci Technol ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958431

ABSTRACT

Effective synthesis and application of single-atom catalysts on supports lacking enough defects remain a significant challenge in environmental catalysis. Herein, we present a universal defect-enrichment strategy to increase the surface defects of CeO2-based supports through H2 reduction pretreatment. The Pt catalysts supported by defective CeO2-based supports, including CeO2, CeZrOx, and CeO2/Al2O3 (CA), exhibit much higher Pt dispersion and CO oxidation activity upon reduction activation compared to their counterpart catalysts without defect enrichment. Specifically, Pt is present as embedded single atoms on the CA support with enriched surface defects (CA-HD) based on which the highly active catalyst showing embedded Pt clusters (PtC) with the bottom layer of Pt atoms substituting the Ce cations in the CeO2 surface lattice can be obtained through reduction activation. Embedded PtC can better facilitate CO adsorption and promote O2 activation at PtC-CeO2 interfaces, thereby contributing to the superior low-temperature CO oxidation activity of the Pt/CA-HD catalyst after activation.

3.
Chemistry ; 29(16): e202203432, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36567623

ABSTRACT

The size effect on nanoparticles, which affects the catalysis performance in a significant way, is crucial. The tuning of oxygen vacancies on metal-oxide support can help reduce the size of the particles in active clusters of Pt, thus improving catalysis performance of the supported catalyst. Herein, Ce-Sn solid solutions (CSO) with abundant oxygen vacancies have been synthesized. Activated by simple CO reduction after loading Pt species, the catalytic CO oxidation performance of Pt/CSO was significantly better than that of Pt/CeO2 . The reasons for the elevated activity were further explored regarding ionic Pt single sites being transformed into active Pt clusters after CO reduction. Due to more exposed oxygen vacancies, much smaller Pt clusters were created on CSO (ca. 1.2 nm) than on CeO2 (ca. 1.8 nm). Consequently, more exposed active Pt clusters significantly improved the ability to activate oxygen and directly translated to the higher catalytic oxidation performance of activated Pt/CSO catalysts in vehicle emission control applications.

4.
Environ Sci Technol ; 57(9): 3962-3970, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36808945

ABSTRACT

Chlorate (ClO3-) is a common water pollutant due to its gigantic scale of production, wide applications in agriculture and industry, and formation as a toxic byproduct in various water treatment processes. This work reports on the facile preparation, mechanistic elucidation, and kinetic evaluation of a bimetallic catalyst for highly active ClO3- reduction into Cl-. Under 1 atm H2 and 20 °C, PdII and RuIII were sequentially adsorbed and reduced on a powdered activated carbon support, affording Ru0-Pd0/C from scratch within only 20 min. The Pd0 particles significantly accelerated the reductive immobilization of RuIII as >55% dispersed Ru0 outside Pd0. At pH 7, Ru-Pd/C shows a substantially higher activity of ClO3- reduction (initial turnover frequency >13.9 min-1 on Ru0; rate constant at 4050 L h-1 gmetal-1) than reported catalysts (e.g., Rh/C, Ir/C, Mo-Pd/C) and the monometallic Ru/C. In particular, Ru-Pd/C accomplished the reduction of concentrated 100 mM ClO3- (turnover number > 11,970), whereas Ru/C was quickly deactivated. In the bimetallic synergy, Ru0 rapidly reduces ClO3- while Pd0 scavenges the Ru-passivating ClO2- and restores Ru0. This work demonstrates a simple and effective design for heterogeneous catalysts tailored for emerging water treatment needs.


Subject(s)
Chlorates , Palladium , Oxidation-Reduction , Hydrogen-Ion Concentration
5.
Environ Sci Technol ; 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36633933

ABSTRACT

Adding CrIII or AlIII salts into the water suspension of platinum group metal (PGM) catalysts accelerated oxyanion pollutant reduction by up to 600%. Our initial attempts of adding K2CrVIO4, K2CrVI2O7, or KCrIII(SO4)2 into Pd/C enhanced BrO3- reduction with 1 atm H2 by 6-fold. Instrument characterizations and kinetic explorations collectively confirmed the immobilization of reduced CrVI as CrIII(OH)3 on the catalyst surface. This process altered the ζ-potentials from negative to positive, thus substantially enhancing the Langmuir-Hinshelwood adsorption equilibrium constant for BrO3- onto Pd/C by 37-fold. Adding AlIII(OH)3 from alum at pH 7 achieved similar enhancements. The Cr-Pd/C and Al-Pd/C showed top-tier efficiency of catalytic performance (normalized with Pd dosage) among all the reported Pd catalysts on conventional and nanostructured support materials. The strategy of adding inert metal hydroxides works for diverse PGMs (palladium and rhodium), substrates (BrO3- and ClO3-), and support materials (carbon, alumina, and silica). This work shows a simple, inexpensive, and effective example of enhancing catalyst activity and saving PGMs for environmental applications.

6.
Environ Sci Technol ; 57(41): 15747-15758, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37788364

ABSTRACT

Aiming at the development of an efficient NH3 oxidation catalyst to eliminate the harmful NH3 slip from the stationary flue gas denitrification system and diesel exhaust aftertreatment system, a facile ZrO2 doping strategy was proposed to construct Pt1/CexZr1-xO2 catalysts with a tunable Pt-CeO2 interaction strength and Pt-O-Ce coordination environment. According to the results of systematic characterizations, Pt species supported on CexZr1-xO2 were mainly in the form of single atoms when x ≥ 0.7, and the strength of the Pt-CeO2 interaction and the coordination number of Pt-O-Ce bond (CNPt-O-Ce) on Pt1/CexZr1-xO2 showed a volcanic change as a function of the ZrO2 doping amount. It was proposed that the balance between the reasonable concentration of oxygen defects and limited surface Zr-Ox species well accounted for the strongest Pt-CeO2 interaction and the highest CNPt-O-Ce on Pt/Ce0.9Zr0.1O2. It was observed that the Pt/Ce0.9Zr0.1O2 catalyst exhibited much higher NH3 oxidation activity than other Pt/CexZr1-xO2 catalysts. The mechanism study revealed that the Pt1 species with the stronger Pt-CeO2 interaction and higher CNPt-O-Ce within Pt/Ce0.9Zr0.1O2 could better activate NH3 adsorbed on Lewis acid sites to react with O2 thus resulting in superior NH3 oxidation activity. This work provides a new approach for designing highly efficient Pt/CeO2 based catalysts for low-temperature NH3 oxidation.


Subject(s)
Ammonia , Platinum , Ammonia/chemistry , Oxidation-Reduction , Zirconium/chemistry , Oxygen , Catalysis
7.
Environ Sci Technol ; 57(43): 16685-16694, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37864569

ABSTRACT

Selective catalytic reduction of NOx by NH3 (NH3-SCR) for diesel emission control at low temperatures is still a great challenge due to the limit of the urea injection threshold and inferior SCR activity of state-of-the-art catalyst systems below 200 °C. Fabricating bifunctional catalysts with both low temperature NOx adsorption-storage capacity and medium-high temperature NOx reduction activity is an effective strategy to solve the issues mentioned above but is rarely investigated. Herein, the WO3/Ce0.68Zr0.32Ox (W/CZ) catalyst containing the κ-Ce2Zr2O8 pyrochlore structure was successfully developed by a simple H2 reduction method, not only showing superior NOx adsorption-storage ability below 180 °C but also exhibiting excellent NH3-SCR activity above 180 °C. The presence of the pyrochlore structure effectively increased the oxygen vacancies on the κ-Ce2Zr2O8-containing W/CZ catalyst with enhanced redox property, which significantly promoted the NOx adsorption-storage as active nitrate species below 180 °C. Upon NH3 introduction above 180 °C, the κ-Ce2Zr2O8-containing W/CZ catalyst showed greatly improved NOx reduction performance, suggesting that the pyrochlore structure played a vital role in improving the NOx adsorption-selective catalytic reduction (AdSCR) performance. This work provides a new perspective for designing bifunctional CeZrOx-based catalysts to efficiently control the NOx emissions from diesel engines during the cold-start process.


Subject(s)
Ammonia , Niobium , Adsorption , Ammonia/chemistry , Oxidation-Reduction , Catalysis
8.
Environ Sci Technol ; 57(33): 12501-12512, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37563957

ABSTRACT

Tuning the metal-support interaction and coordination environment of single-atom catalysts can help achieve satisfactory catalytic performance for targeted reactions. Herein, via the facile control of calcination temperatures for Pt catalysts on pre-stabilized Ce0.9Zr0.1O2 (CZO) support, Pt single atoms (Pt1) with different strengths of Pt-CeO2 interaction and coordination environment were successfully constructed. With the increase in calcination temperature from 350 to 750 °C, a stronger Pt-CeO2 interaction and higher Pt-O-Ce coordination number were achieved due to the reaction between PtOx and surface Ce3+ species as well as the migration of Pt1 into the surface lattice of CZO. The Pt/CZO catalyst calcined at 750 °C (Pt/CZO-750) exhibited a surprisingly higher C3H8 oxidation activity than that calcined at 550 °C (Pt/CZO-550). Through systematic characterizations and reaction mechanism study, it was revealed that the higher concentration of surface Ce3+ species/oxygen vacancies and the stronger Pt-CeO2 interaction on Pt/CZO-750 could better facilitate the activation of oxygen to oxidize C3H8 into reactive carbonate/carboxyl species and further promote the transformation of these intermediates into gaseous CO2. The Pt/CZO-750 catalyst can be a potential candidate for the catalytic removal of hydrocarbons from vehicle exhaust.


Subject(s)
Oxygen , Propane , Catalysis , Oxidation-Reduction
9.
Phys Chem Chem Phys ; 25(12): 8871-8881, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36916417

ABSTRACT

Superconducting quantum bits based on Al/AlOx/Al Josephson junction devices are among the most developed quantum bits at present. The microstructure of the device interface critically affects the electrical properties of Josephson junctions, which in turn severely affects the superconducting quantum bits. Further progress towards scalable superconducting qubits urgently needs to be guided by novel analysis mechanisms or methods to improve the performance of junctions. A direct experimental study of the atomic structure of the device is very challenging. Therefore, we simulated three-dimensional Al/α-Al2O3/Al Josephson junction devices via first-principles electronic structure and ballistic transport calculations to investigate the relationship between transport properties and the Al/Al2O3 stacking sequence. This work elucidates in detail the effects of the aluminum and alumina stacking sequence on the electron transport properties of the Al/Al2O3/Al system at the microscopic level by combining first-principles density functional theory and a non-equilibrium Green's function formalism. It is first revealed that the oxygen termination mode exhibits the least sensitivity to conductance changes in the Al/Al2O3 stacking sequence, offering useful theoretical guidance for increasing the yield of fixed-frequency multi-qubit quantum chips which require tight control on qubit frequency.

10.
Proc Natl Acad Sci U S A ; 117(3): 1742-1752, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31892541

ABSTRACT

Microglial activation plays a central role in poststroke inflammation and causes secondary neuronal damage; however, it also contributes in debris clearance and chronic recovery. Microglial pro- and antiinflammatory responses (or so-called M1-M2 phenotypes) coexist and antagonize each other throughout the disease progress. As a result of this balance, poststroke immune responses alter stroke outcomes. Our previous study found microglial expression of interferon regulatory factor 5 (IRF5) and IRF4 was related to pro- and antiinflammatory responses, respectively. In the present study, we genetically modified the IRF5 and IRF4 signaling to explore their roles in stroke. Both in vitro and in vivo assays were utilized; IRF5 or IRF4 small interfering RNA (siRNA), lentivirus, and conditional knockout (CKO) techniques were employed to modulate IRF5 or IRF4 expression in microglia. We used a transient middle cerebral artery occlusion model to induce stroke and examined both acute and chronic stroke outcomes. Poststroke inflammation was evaluated with flow cytometry, RT-PCR, MultiPlex, and immunofluorescence staining. An oscillating pattern of the IRF5-IRF4 regulatory axis function was revealed. Down-regulation of IRF5 signaling by siRNA or CKO resulted in increased IRF4 expression, enhanced M2 activation, quenched proinflammatory responses, and improved stroke outcomes, whereas down-regulation of IRF4 led to increased IRF5 expression, enhanced M1 activation, exacerbated proinflammatory responses, and worse functional recovery. Up-regulation of IRF4 or IRF5 by lentivirus induced similar results. We conclude that the IRF5-IRF4 regulatory axis is a key determinant in microglial activation. The IRF5-IRF4 regulatory axis is a potential therapeutic target for neuroinflammation and ischemic stroke.


Subject(s)
Brain Ischemia/metabolism , Inflammation/metabolism , Interferon Regulatory Factors/metabolism , Microglia/metabolism , Neurons/metabolism , Stroke/metabolism , Animals , Cytokines/metabolism , Disease Models, Animal , Infarction, Middle Cerebral Artery/metabolism , Interferon Regulatory Factors/genetics , Macrophage Activation , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , RNA, Small Interfering , Signal Transduction , Transcriptome
11.
Genomics ; 114(2): 110262, 2022 03.
Article in English | MEDLINE | ID: mdl-34971719

ABSTRACT

We intended to discuss the influence of histone deacetylase 3 (HDAC3) on spinal cord injury (SCI) by regulating microRNA-19b-1-5p (miR-19b-1-5p) and janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) pathway. In a rat model, the role of HDAC3 and miR-19b-1-5p in SCI was identified through detecting motor function, serum inflammation, pathological damage, cell apoptosis and GFAP expression. Also, by measuring GFAP expression and migration of spinal cord astrocytes, the effects of HDAC3 and miR-19b-1-5p in SCI were identified in vitro. Restoration of miR-19b-1-5p or depletion of HDAC3 alleviated motor function, inflammation, relieved pathological damage and reduced apoptosis, and reduced GFAP expression in the spinal cord tissue of SCI rats. Up-regulating miR-19b-1-5p or down-regulating HDAC3 decreased migration and GFAP expression of injured astrocytes. Our study presents that down-regulated HDAC3 can facilitate the recovery of SCI via inhibiting the activation of JAK2/STAT3 pathway by up-regulating miR-19b-1-5p.


Subject(s)
MicroRNAs , Spinal Cord Injuries , Animals , Apoptosis , Histone Deacetylases , Inflammation/pathology , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Janus Kinase 2/pharmacology , MicroRNAs/genetics , MicroRNAs/metabolism , Rats , STAT3 Transcription Factor/genetics , Signal Transduction , Spinal Cord/metabolism , Spinal Cord/pathology , Spinal Cord Injuries/pathology
12.
Int J Mol Sci ; 24(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36835373

ABSTRACT

The SPIRAL1 (SPR1) gene family encodes microtubule-associated proteins that are essential for the anisotropic growth of plant cells and abiotic stress resistance. Currently, little is known about the characteristics and roles of the gene family outside of Arabidopsis thaliana. This study intended to investigate the SPR1 gene family in legumes. In contrast to that of A. thaliana, the gene family has undergone shrinking in the model legume species Medicago truncatula and Glycine max. While the orthologues of SPR1 were lost, very few SPR1-Like (SP1L) genes were identified given the genome size of the two species. Specifically, the M. truncatula and G. max genomes only harbor two MtSP1L and eight GmSP1L genes, respectively. Multiple sequence alignment showed that all these members contain conserved N- and C-terminal regions. Phylogenetic analysis clustered the legume SP1L proteins into three clades. The SP1L genes showed similar exon-intron organizations and similar architectures in their conserved motifs. Many essential cis-elements are present in the promoter regions of the MtSP1L and GmSP1L genes associated with growth and development, plant hormones, light, and stress. The expression analysis revealed that clade 1 and clade 2 SP1L genes have relatively high expression in all tested tissues in Medicago and soybean, suggesting their function in plant growth and development. MtSP1L-2, as well as clade 1 and clade 2 GmSP1L genes, display a light-dependent expression pattern. The SP1L genes in clade 2 (MtSP1L-2, GmSP1L-3, and GmSP1L-4) were significantly induced by sodium chloride treatment, suggesting a potential role in the salt-stress response. Our research provides essential information for the functional studies of SP1L genes in legume species in the future.


Subject(s)
Glycine max , Medicago truncatula , Microtubule-Associated Proteins , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Genome, Plant , Medicago truncatula/classification , Medicago truncatula/genetics , Microtubule-Associated Proteins/genetics , Multigene Family , Phylogeny , Plant Proteins/genetics , Glycine max/classification , Glycine max/genetics , Vegetables/metabolism
13.
Molecules ; 28(3)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36770903

ABSTRACT

Globally, dental caries is one of the most common non-communicable diseases for patients of all ages; Streptococcus mutans (S. mutans) is its principal pathogen. Lactobacillus paracasei (L. paracasei) shows excellent anti-pathogens and immune-regulation functions in the host. The aim of this study is to evaluate the effects of L. paracasei ET-22 on the formation of S. mutans biofilms. The living bacteria, heat-killed bacteria, and secretions of L. paracasei ET-22 were prepared using the same number of bacteria. In vitro, they were added into artificial-saliva medium, and used to coculture with the S. mutans. Results showed that the living bacteria and secretions of L. paracasei ET-22 inhibited biofilm-growth, the synthesis of water-soluble polysaccharide and water-insoluble polysaccharide, and virulence-gene-expression levels related to the formation of S. mutans biofilms. Surprisingly, the heat-killed L. paracasei ET-22, which is a postbiotic, also showed a similar regulation function. Non-targeted metabonomics technology was used to identify multiple potential active-substances in the postbiotics of L. paracasei ET-22 that inhibit the formation of S. mutans biofilms, including phenyllactic acid, zidovudine monophosphate, and citrulline. In conclusion, live bacteria and its postbiotics of L. paracasei ET-22 all have inhibitory effects on the formation of S. mutans biofilm. The postbiotics of L. paracasei ET-22 may be a promising biological anticariogenic-agent.


Subject(s)
Dental Caries , Lacticaseibacillus paracasei , Humans , Streptococcus mutans , Dental Caries/prevention & control , Biofilms , Saliva/microbiology
14.
Entropy (Basel) ; 25(2)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36832550

ABSTRACT

Although the performance of qubits has been improved in recent years, the differences in the microscopic atomic structure of the Josephson junctions, the core devices prepared under different preparation conditions, are still underexplored. In this paper, the effects of the oxygen temperature and upper aluminum deposition rate on the topology of the barrier layer in the aluminum-based Josephson junctions have been presented by classical molecular dynamics simulations. We apply a Voronoi tessellation method to characterize the topology of the interface and central regions of the barrier layers. We find that when the oxygen temperature is 573 K and the upper aluminum deposition rate is 4 Å/ps, the barrier has the fewest atomic voids and the most closely arranged atoms. However, if only the atomic arrangement of the central region is considered, the optimal rate of the aluminum deposition is 8 Å/ps. This work provides microscopic guidance for the experimental preparation of Josephson junctions, which helps to improve the performance of qubits and accelerate the practical application of quantum computers.

15.
J Am Chem Soc ; 144(46): 21255-21266, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36322840

ABSTRACT

The local coordination structure of metal sites essentially determines the performance of supported metal catalysts. Using a surface defect enrichment strategy, we successfully fabricated Pt atomic single-layer (PtASL) structures with 100% metal dispersion and precisely controlled local coordination environment (embedded vs adsorbed) derived from Pt single-atoms (Pt1) on ceria-alumina supports. The local coordination environment of Pt1 not only governs its catalytic activity but also determines the Pt1 structure evolution upon reduction activation. For CO oxidation, the highest turnover frequency can be achieved on the embedded PtASL in the CeO2 lattice, which is 3.5 times of that on the adsorbed PtASL on the CeO2 surface and 10-70 times of that on Pt1. The favorable CO adsorption on embedded PtASL and improved activation/reactivity of lattice oxygen within CeO2 effectively facilitate the CO oxidation. This work provides new insights for the precise control of the local coordination structure of active metal sites for achieving 100% atomic utilization efficiency and optimal intrinsic catalytic activity for targeted reactions simultaneously.

16.
Small ; 18(16): e2107799, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35229465

ABSTRACT

The electrochemical carbon dioxide reduction reaction (CO2 RR) is a transformative technology to reduce the carbon footprint of modern society. Single-site catalysts have been demonstrated as promising catalysts for CO2 RR, but general synthetic methods for catalysts with high surface area and tunable single-site metal composition still need to be developed to unambiguously investigate the structure-activity relationship crossing various metal sites. Here, a generalized coordination-condensation strategy is reported to prepare single-atom metal sites on ordered mesoporous carbon (OMC) with high surface areas (average 800 m2  g-1 ). This method is applicable to a broad range of metal sites (Fe, Co, Ni, Cu, Pt, Pd, Ru, and Rh) with loadings up to 4 wt.%. In particular, the CO2 RR to carbon monoxide (CO) Faradaic efficiency (FE) with Ni single-site OMC catalyst reaches 95%. This high FE is maintained even under large current density (>140 mA cm-2 ) and in a long-term study (14 h), which suits the urgently needed large-scale applications. Theoretical calculations suggest that the enhanced activity on single-atom Ni sites results from balanced binding energies between key intermediates, COOH and CO, for CO2 RR, as mediated by the coordination sphere.

17.
Environ Sci Technol ; 56(13): 9751-9761, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35730354

ABSTRACT

The Co3O4 spinel is one of the most promising transition metal oxide (TMO) catalysts for volatile organic compound (VOC) treatment. Substituting effects have usually been utilized to improve the catalytic performance of the Co3O4 spinel. In this study, Cu- and Ni-substituted Co3O4 catalysts derived from mixed metal-organic frameworks (MMOFs) retained similar spinel structures but exhibited improved and reduced performance for o-xylene oxidation, respectively. Physicochemical characterization and DFT calculations revealed that Cu and Ni substitution into the Co3O4 spinel varied the valence (Co3+/Co2+) and geometry (CoOh/CoTd) distributions of Co cations through different partial electron transfer and substitution sites. The higher Co3+/Co2+ and CoOh/CoTd ratios of the CuCo2O4 catalyst contributed to the superior reducibility and oxygen mobility, which facilitated the oxidation of intermediates at lower temperatures in the catalytic oxidation of o-xylene. Meanwhile, the NiCo2O4 catalyst with lower Co3+/Co2+ and CoOh/CoTd ratios could not completely oxidize intermediates under the same conditions due to inferior redox properties. Therefore, the CuCo2O4 catalyst showed superior catalytic activity and stability to the NiCo2O4 catalyst for the catalytic oxidation of o-xylene. This work provides insights into the synthesis of substituted Co3O4 catalysts from MMOFs and mechanism of substituting effects, which might guide the design of efficient TMO catalysts for VOC treatment.

18.
Environ Sci Technol ; 56(13): 9672-9682, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35728271

ABSTRACT

Pt-based catalysts can be poisoned by the chlorine formed during the oxidation of multicomponent volatile organic compounds (VOCs) containing chlorinated VOCs. Improving the low-temperature chlorine resistance of catalysts is important for industrial applications, although it is yet challenging. We hereby demonstrate the essential catalytic roles of a bifunctional catalyst with an atomic-scale metal/oxide interface constructed by an intermetallic compound nanocrystal. Introducing trichloroethylene (TCE) exhibits a less negative effect on the catalytic activity of the bimetallic catalyst for o-xylene oxidation, and the partial deactivation caused by TCE addition is reversible, suggesting that the bimetallic, HCl-etched Pt3Sn(E)/CeO2 catalyst possesses much stronger chlorine resistance than the conventional Pt/CeO2 catalyst. On the site-isolated Pt-Sn catalyst, the presence of aromatic hydrocarbon significantly inhibits the adsorption strength of TCE, resulting in excellent catalytic stability in the oxidation of the VOC mixture. Furthermore, the large amount of surface-adsorbed oxygen species generated on the electronegative Pt is highly effective for low-temperature C-Cl bond dissociation. The adjacent promoter (Sn-O) possesses the functionality of acid sites to provide sufficient protons for HCl formation over the bifunctional catalyst, which is considered critical to maintaining the reactivity of Pt by removing Cl and decreasing the polychlorinated byproducts.

19.
Entropy (Basel) ; 24(6)2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35741513

ABSTRACT

Over the past two decades, superconducting quantum circuits have become one of the essential platforms for realizing quantum computers. The Hamiltonian of a superconducting quantum circuit system is the key to describing the dynamic evolution of the system. For this reason, various methods for analyzing the Hamiltonian of a superconducting quantum circuit system have been proposed, among which the LOM (Lumped Oscillator Model) and the EPR (Energy Participation Ratio) methods are the most popular ones. To analyze and improve the design methods of superconducting quantum chips, this paper compares the similarities and differences of the LOM and the EPR quantification methods. We verify the applicability of these two theoretical approaches to the design of 2D transmon quantum chips. By comparing the theoretically simulated results and the experimentally measured data at extremely low temperature, the errors between the theoretical calculation and observed measurement values of the two methods were summarized. Results show that the LOM method has more parameter outputs in data diversity and the qubit frequency calculation in LOM is more accurate. The reason is that in LOM more coupling between different systems are taken into consideration. These analyses would have reference significance for the design of superconducting quantum chips.

20.
Entropy (Basel) ; 24(7)2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35885175

ABSTRACT

Dielectric loss from different interfacial layers in the superconducting circuit and from external environment may cause superconducting qubit decoherence. Compared to modeling the entire device at once with a numerical solver, quantitatively formulating the dielectric loss can both describe all loss mechanisms and make the optimization more transparent. In this paper, we first analyze the expression formula of dielectric loss, and obtain a design scheme that can reduce the dielectric loss of qubits. That is, we replace the straight junction wires with the tapered junction wires. Based on this scheme, we perform a simulation to optimize the design of junction wires. Finally, a real experiment is conducted to verify our design. The results show that both the T1 time and T2 time of qubits are significantly improved.

SELECTION OF CITATIONS
SEARCH DETAIL