Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 506
Filter
Add more filters

Publication year range
1.
Hum Mol Genet ; 33(13): 1120-1130, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38520738

ABSTRACT

Spinal muscular atrophy (SMA), which results from the deletion or/and mutation in the SMN1 gene, is an autosomal recessive neuromuscular disorder that leads to weakness and muscle atrophy. SMN2 is a paralogous gene of SMN1. SMN2 copy number affects the severity of SMA, but its role in patients treated with disease modifying therapies is unclear. The most appropriate individualized treatment for SMA has not yet been determined. Here, we reported a case of SMA type I with normal breathing and swallowing function. We genetically confirmed that this patient had a compound heterozygous variant: one deleted SMN1 allele and a novel splice mutation c.628-3T>G in the retained allele, with one SMN2 copy. Patient-derived sequencing of 4 SMN1 cDNA clones showed that this intronic single transversion mutation results in an alternative exon (e)5 3' splice site, which leads to an additional 2 nucleotides (AG) at the 5' end of e5, thereby explaining why the patient with only one copy of SMN2 had a mild clinical phenotype. Additionally, a minigene assay of wild type and mutant SMN1 in HEK293T cells also demonstrated that this transversion mutation induced e5 skipping. Considering treatment cost and goals of avoiding pain caused by injections and starting treatment as early as possible, risdiplam was prescribed for this patient. However, the patient showed remarkable clinical improvements after treatment with risdiplam for 7 months despite carrying only one copy of SMN2. This study is the first report on the treatment of risdiplam in a patient with one SMN2 copy in a real-world setting. These findings expand the mutation spectrum of SMA and provide accurate genetic counseling information, as well as clarify the molecular mechanism of careful genotype-phenotype correlation of the patient.


Subject(s)
Mutation , RNA Splicing , Spinal Muscular Atrophies of Childhood , Survival of Motor Neuron 2 Protein , Female , Humans , Alleles , Azo Compounds , Exons/genetics , HEK293 Cells , Pyrimidines/therapeutic use , RNA Splicing/genetics , Spinal Muscular Atrophies of Childhood/genetics , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 2 Protein/genetics , Infant, Newborn , Infant
2.
Anesthesiology ; 141(1): 100-115, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38537025

ABSTRACT

BACKGROUND: Although it has been established that elevated blood pressure and its variability worsen outcomes in spontaneous intracerebral hemorrhage, antihypertensives use during the acute phase still lacks robust evidence. A blood pressure-lowering regimen using remifentanil and dexmedetomidine might be a reasonable therapeutic option given their analgesic and antisympathetic effects. The objective of this superiority trial was to validate the efficacy and safety of this blood pressure-lowering strategy that uses remifentanil and dexmedetomidine in patients with acute intracerebral hemorrhage. METHODS: In this multicenter, prospective, single-blinded, superiority randomized controlled trial, patients with intracerebral hemorrhage and systolic blood pressure (SBP) 150 mmHg or greater were randomly allocated to the intervention group (a preset protocol with a standard guideline management using remifentanil and dexmedetomidine) or the control group (standard guideline-based management) to receive blood pressure-lowering treatment. The primary outcome was the SBP control rate (less than 140 mmHg) at 1 h posttreatment initiation. Secondary outcomes included blood pressure variability, neurologic function, and clinical outcomes. RESULTS: A total of 338 patients were allocated to the intervention (n = 167) or control group (n = 171). The SBP control rate at 1 h posttreatment initiation in the intervention group was higher than that in controls (101 of 161, 62.7% vs. 66 of 166, 39.8%; difference, 23.2%; 95% CI, 12.4 to 34.1%; P < 0.001). Analysis of secondary outcomes indicated that patients in the intervention group could effectively reduce agitation while achieving lighter sedation, but no improvement in clinical outcomes was observed. Regarding safety, the incidence of bradycardia and respiratory depression was higher in the intervention group. CONCLUSIONS: Among intracerebral hemorrhage patients with a SBP 150 mmHg or greater, a preset protocol using a remifentanil and dexmedetomidine-based standard guideline management significantly increased the SBP control rate at 1 h posttreatment compared with the standard guideline-based management.


Subject(s)
Antihypertensive Agents , Blood Pressure , Cerebral Hemorrhage , Dexmedetomidine , Remifentanil , Humans , Dexmedetomidine/therapeutic use , Dexmedetomidine/administration & dosage , Remifentanil/administration & dosage , Remifentanil/therapeutic use , Male , Female , Prospective Studies , Cerebral Hemorrhage/drug therapy , Aged , Middle Aged , Single-Blind Method , Blood Pressure/drug effects , Antihypertensive Agents/therapeutic use , Antihypertensive Agents/administration & dosage , Treatment Outcome , Hypnotics and Sedatives/therapeutic use
3.
Phys Chem Chem Phys ; 26(3): 1929-1935, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38115787

ABSTRACT

High-purity 1T'-WS2 film has been experimentally synthesized [Nature Materials, 20, 1113-1120 (2021)] and theoretically predicted to be a two-dimensional (2D) superconducting material with Dirac cones [arXiv:2301.11425]. In the present work, we further study the superconducting properties of monolayer 1T'-WS2 by applying biaxial tensile strain. It is shown that the superconducting critical temperature Tc firstly increases and then decreases with respect to tensile strains, with the highest superconducting critical temperature Tc of 7.25 K under the biaxial tensile strain of 3%. In particular, we find that Dirac cones also exist in several tensile strained cases. Our studies show that monolayer 1T'-WS2 may provide a good platform for understanding the superconductivity of 2D Dirac materials.

4.
Biotechnol Lett ; 46(1): 55-68, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38064040

ABSTRACT

OBJECTIVES: Enhance the androstadienedione (Androst-1,4-diene-3,17-dione, ADD) production of rough morphotype Mycolicibacterium neoaurum R by repeated-batch fermentation of immobilized cells. RESULTS: M. neoaurum R was a rough colony morphotype variant, obtained from the routine plating of smooth M. neoaurum strain CICC 21097. M. neoaurum R showed rougher cell surface and aggregated in broth. The ADD production of M. neoaurum R was notably lower than that of M. neoaurum CICC 21097 during the free cell fermentation, but the yield gap could be erased after proper cell immobilization. Subsequently, repeated-batch fermentation of immobilized M. neoaurum R was performed to shorten the production cycle and enhance the bio-production efficiency of ADD. Through the optimization of the immobilization carriers and the co-solvents for phytosterols, the ADD productivity of M. neoaurum R immobilized by semi-expanded perlite reached 0.075 g/L/h during the repeated-batch fermentation for 40 days. CONCLUSIONS: The ADD production of the rough-type M. neoaurum R was notably enhanced by the immobilization onto semi-expanded perlite. Moreover, the ADD batch yields of M. neoaurum R immobilized by semi-expanded perlite were maintained at high levels during the repeated-batch fermentation.


Subject(s)
Mycobacteriaceae , Phytosterols , Silicon Dioxide , Phytosterols/metabolism , Mycobacteriaceae/metabolism , Aluminum Oxide/metabolism
5.
Parasitol Res ; 123(3): 168, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38517567

ABSTRACT

Cattle ticks (Rhipicephalus microplus) are important economic ectoparasites causing direct and indirect damage to cattle and leading to severe economic losses in cattle husbandry. It is common knowledge that R. microplus is a species complex including five clades; however, the relationships within the R. microplus complex remain unresolved. In the present study, we assembled the complete mitochondrial genome of clade C by next-generation sequencing and proved its correctness based on long PCR amplification. It was 15,004 bp in length and consisted of 13 protein genes, 22 transfer genes, and two ribosomal genes located in the two strains. There were two copies of the repeat region (pseudo-nad1 and tRNA-Glu). Data revealed that cox1, cox2, and cox3 genes were conserved within R. microplus with small genetic differences. Ka/Ks ratios suggested that 12 protein genes (excluding nad6) may be neutral selection. The genetic and phylogenetic analyses indicated that clade C was greatly close to clade B. Findings in the current study provided more data for the identification and differentiation of the R. microplus complex and made up for the lack of information about R. microplus clade C.


Subject(s)
Cattle Diseases , Genome, Mitochondrial , Rhipicephalus , Tick Infestations , Animals , Cattle , Rhipicephalus/genetics , Phylogeny , Tick Infestations/veterinary , Tick Infestations/parasitology , Cattle Diseases/parasitology
6.
Ecotoxicol Environ Saf ; 278: 116431, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38718730

ABSTRACT

The issue of mercury (Hg) toxicity has recently been identified as a significant environmental concern, with the potential to impede plant growth in forested and agricultural areas. Conversely, recent reports have indicated that Fe, may play a role in alleviating HM toxicity in plants. Therefore, this study's objective is to examine the potential of iron nanoparticles (Fe NPs) and various sources of Fe, particularly iron sulfate (Fe SO4 or Fe S) and iron-ethylene diamine tetra acetic acid (Fe - EDTA or Fe C), either individually or in combination, to mitigate the toxic effects of Hg on Pleioblastus pygmaeus. Involved mechanisms in the reduction of Hg toxicity in one-year bamboo species by Fe NPs, and by various Fe sources were introduced by a controlled greenhouse experiment. While 80 mg/L Hg significantly reduced plant growth and biomass (shoot dry weight (36%), root dry weight (31%), and shoot length (31%) and plant tolerance (34%) in comparison with control treatments, 60 mg/L Fe NPs and conventional sources of Fe increased proline accumulation (32%), antioxidant metabolism (21%), polyamines (114%), photosynthetic pigments (59%), as well as root dry weight (25%), and shoot dry weight (22%), and shoot length (22%). Fe NPs, Fe S, and Fe C in plant systems substantially enhanced tolerance to Hg toxicity (23%). This improvement was attributed to increased leaf-relative water content (39%), enhanced nutrient availability (50%), improved antioxidant capacity (34%), and reduced Hg translocation (6%) and accumulation (31%) in plant organs. Applying Fe NPs alone or in conjunction with a mixture of Fe C and Fe S can most efficiently improve bamboo plants' tolerance to Hg toxicity. The highest efficiency in increasing biochemical and physiological indexes under Hg, was related to the treatments of Fe NPs as well as Fe NPs + FeS + FeC. Thus, Fe NPs and other Fe sources might be effective options to remove toxicity from plants and soil. The future perspective may help establish mechanisms to regulate environmental toxicity and human health progressions.


Subject(s)
Iron , Mercury , Metal Nanoparticles , Soil Pollutants , Soil , Mercury/toxicity , Soil Pollutants/toxicity , Metal Nanoparticles/toxicity , Soil/chemistry , Edetic Acid/chemistry , Poaceae/drug effects , Poaceae/growth & development , Environmental Restoration and Remediation/methods , Nutrients , Antioxidants/metabolism
7.
J Environ Manage ; 352: 120057, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38198839

ABSTRACT

The combination of chlorine-mediated electrochemical advanced oxidation (Cl-EAO) and ultraviolet (UV) radiation (UV-E/Cl) can efficiently remove ammonia from wastewater. However, the synergistic mechanisms between Cl-EAO and UV need to be explored in more detail. Thus, in this study, the ammonia oxidation performance of Cl-EAO and UV-E/Cl systems were compared, while the synergistic mechanisms were identified by the performance of UV/chlorine oxidation (UV-ClO) system and the results of electron paramagnetic resonance (EPR) analysis, free radical inhibition assays, and determination of steady-state concentration of free radicals. It was found that, compared with the Cl-EAO system, UV increased the ammonia removal rate by 42.85% and reduced the active chlorine concentration (56.64%) and nitrate yield (53.61%). In the Cl-EAO, and UV-E/Cl systems, Cl• were detected, and the free radical inhibition assays and determination of steady-state concentration of free radicals suggested that UV increased the concentration of Cl• by 51.47%, resulting in Cl• becoming the major contributor to ammonia oxidation in the UV-E/Cl system. Besides, UV also increase the concentrations of HO• and Cl2•-, which further promoted the organic matter removal in the real domestic wastewater. This study also discussed the ammonia oxidation performance of the UV-E/Cl system in real domestic wastewater, even with the presence of significant levels of organic and inorganic anions in the wastewater, UV increased the ammonia oxidation by 21.95%. The results of this study thus clarify the mechanisms and potential applications of UV-E/Cl technology.


Subject(s)
Water Pollutants, Chemical , Water Purification , Chlorine , Ammonia , Wastewater , Ultraviolet Rays , Chlorides , Oxidation-Reduction , Free Radicals , Water Purification/methods
8.
J Environ Manage ; 360: 121129, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749128

ABSTRACT

Aboveground vegetation restoration shapes the soil microbial community structure and affects microbial resource acquisition. However, the changes in soil microbial resource limitation in subsoil during vegetation restoration are still unclear. In this study, the microbial community structure and resource limitation in an alpine meadow soil profile that had undergone natural restoration for short-term (4-year) and long-term (10-year) restoration in response to vegetation restoration were explored through high-throughput sequencing analysis and extracellular enzyme stoichiometry (EES). There was no significant difference in microbial composition and α diversity between short- and long-term restoration soils. Soil microorganisms in this alpine meadow were mainly limited by phosphorus. Carbon limitation of soil microorganisms was significantly decreased in each layer (0-15, 15-30, 30-45, 45-60, and 60-80 cm corresponding to L1, L2, L3, L4, and L5, respectively) of long-term restoration soils when compared to that of the short-term restoration soil layers, while phosphorus limitation of microorganisms in subsoil (60-80 cm) was significantly increased by 17.38%. Soil nutrients, pH, moisture content, and microbial composition are the main drivers of microbial resource limitation in restoration, and their effects on microbial resource limitation were different in short- and long-term restoration. Meanwhile, key microbial taxa have a significant impact on microbial resource limitation, especially in short-term restoration soils. This study suggested that vegetation restoration significantly affected soil microbial resource limitation, and could alleviate microbial resource limitations by adding nutrients, thus accelerating the process of vegetation restoration in alpine ecosystems.


Subject(s)
Grassland , Soil Microbiology , Soil , Soil/chemistry , Phosphorus/analysis , Microbiota , Carbon/metabolism
9.
Glob Chang Biol ; 29(24): 7102-7116, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37837281

ABSTRACT

Global warming has significantly affected terrestrial ecosystems. Biomass and C:N:P stoichiometry of plants and soil is crucial for enhancing plant productivity, improving human nutrition, and regulating biogeochemical cycles. However, the effect of warming on the biomass and C:N:P stoichiometry of different components (plant, leaf, stem, root, litter, soil, and microbial biomass) in various terrestrial ecosystems remains uncertain. We conducted a comprehensive meta-analysis to investigate the global patterns of biomass and C:N:P stoichiometry responses to warming, as well as interaction relationships based on 1399 paired observations from 105 warming studies. Results indicated that warming had a significant impact on various aspects of plant growth, including an increase in plant biomass (+16.55%), plant C:N ratio (+4.15%), leaf biomass (+16.78%), stem biomass (+23.65%), root biomass (+22.00%), litter C:N ratio (+9.54%) and soil C:N ratio (+5.64%). However, it also decreased stem C:P ratio (-23.34%), root C:P ratio (-12.88%), soil N:P ratio (-14.43%) and soil C:P ratio (-16.33%). The magnitude of warming was the primary drivers of changes of biomass and C:N:P stoichiometry. By establishing the general response curves of changes in biomass and C:N:P ratios with increasing temperature, we demonstrated that warming effect on plant, root, and litter biomass shifted from negative to positive, whereas that on leaf and stem biomass changed from positive to negative as temperature increased. Additionally, the effect of warming on root C:N ratio, root biomass, and microbial biomass N:P ratios shifted from positive to negative, whereas the effects on plant N:P, leaf N:P, leaf C:P, root N:P ratios, and microbial biomass C:N ratio changed from negative to positive with increasing temperature. Our research can help assess plant productivity and optimize ecosystem stoichiometry precisely in the context of global warming.


Subject(s)
Ecosystem , Global Warming , Humans , Biomass , Nitrogen/analysis , Plants , Soil , Carbon
10.
J Fluoresc ; 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37615893

ABSTRACT

Carbon monoxide (CO) is one of the signaling molecules that are ubiquitous in humans, which involves in the regulation of human physiology and pathology. In this work, the probe PEC was designed and synthesized based on BODIPY fluorophore that can selectively detect CO through reducing the nitro group to amino group, resulting in a "turn-on" fluorescence response with a simultaneous increase in the concentration of CO. The response is selective over a variety of relevant reactive free radicals, ions, and amino acid species. PEC has the advantages of good stability, good water solubility, and obvious changes in fluorescence signals. In addition, PEC can be used to detect and track endogenous CO in living cells.

11.
Phys Chem Chem Phys ; 25(4): 2875-2881, 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36625788

ABSTRACT

Monolayer biphenylene is a new two-dimensional (2D) carbon allotrope, which has been experimentally synthesized and theoretically predicted to show superconductivity. In this work, we investigate functionalized biphenylene with the adsorption of Li. The superconducting critical temperature (Tc) can be pushed from 0.59 K up to 3.91 K after Li adsorption. Our calculations confirm that the adsorption pushes the peak showing a high electronic density of states closer to the Fermi level, which usually leads to a larger Tc. Furthermore, the application of biaxial tensile strain can soften phonons and further enhance the Tc up to 15.86 K in Li-deposited biphenylene. Interestingly, a pair of type-II Dirac cones below the Fermi level has been observed, expanding the range of Dirac materials. It suggests that monolayer biphenylene deposited with Li may be a material with potential applications and improves the understanding of Dirac-type superconductors.

12.
Environ Res ; 219: 115004, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36481369

ABSTRACT

Aiming for treating decentralized domestic wastewater in rural China, this study evaluates the effects of ceramsite size and structure, and water recirculation parameters, upon the performance of recirculating biofilter (RBF). RBF shows stable capability of chemical oxygen demand (COD) remediation and ammonia nitrification. In addition, the microbial flora and structures of the various layers in the system are analyzed via high-throughput sequencing in order to study the microbial diversity. The results indicate that while the ceramic particle size has no significant influence on the COD remediation capacity, the ceramics with smaller particle sizes exhibit better ammonia nitrogen (NH4+-N) removal ability, with a first-order linear relationship between the influent ammonia nitrogen load and the effluent NH4+-N concentration in RBF (R2 > 0.64). An increased hydraulic load and intermittent operation are shown to deteriorate the water quality with respect to NH4+-N, while an increased recirculation ratio increases the removal rate of NH4+-N from the effluent. Further, the water distribution time has a stronger effect upon the NH4+-N concentration in the effluent than does the recirculation ratio. Moreover, the microbial structure of the multi-layer recirculating trickle biofilter varies significantly during the process. The results indicate that a high recirculation ratio, long water distribution time, and multi-layer structure will be beneficial for improving the pollutant treatment capacity of RBF.


Subject(s)
Ammonia , Sewage , Bioreactors , Wastewater , Nitrogen/analysis , Waste Disposal, Fluid/methods
13.
Environ Res ; 238(Pt 1): 117142, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37739155

ABSTRACT

In wastewater treatment plants (WWTPs), aeration is vital for microbial oxygen needs. To achieve carbon neutrality, optimizing aeration for energy and emissions reduction is imperative. Machine learning (ML) is used in wastewater treatment to reveal complex rules in large data sets has become a trend. In this vein, the present paper proposes an aeration optimization approach based on the extreme gradient boosting-bidirectional long short-term memory (XGB-Bi-LSTM) model via the online monitoring of oxygen transfer efficiency (OTE) and oxygen uptake rate (OUR), thus allowing WWTPs to conserve energy and reduce indirect carbon emissions. The approach uses gain algorithm of XGB to calculate the importance of features and identify important parameters, and then uses Bi-LSTM to predict the target with important parameters as features. Operational data from a WWTP in Suzhou, China, is employed to train and test the approach, the performance of which is compared with ML models suitable for regression prediction tasks (XGB, random forest, light gradient boosting machine, gradient boosting and LSTM). Experimental results show the approach requires only a small number of input parameters to achieve good performance and outperforms other machine-learning models. When OTE and dissolved oxygen (DO) are used as features to predict the alpha factor (αF; since diffusers were used, multiply by the pollution factor F), the R-squared (R2) is 0.9977, the root mean square error (RMSE) is 0.0043, the mean absolute percentage error (MAPE) is 0.0069 and the median absolute error (MedAE) is 0.0032. When the predicted αF and the OUR are used as features to predict the air flow rate of an aeration unit, the R2 is 0.9901, the RMSE is 3.6150, the MAPE is 0.0209 and the MedAE is 1.5472. Using our optimized aeration approach, the energy consumption can be reduced by 23%.


Subject(s)
Oxygen , Water Purification , Oxygen/analysis , Wastewater , Water Purification/methods , Algorithms , Carbon
14.
BMC Anesthesiol ; 23(1): 248, 2023 07 22.
Article in English | MEDLINE | ID: mdl-37481510

ABSTRACT

BACKGROUND: Various approaches using epidural analgesia have been employed for relieving labor pain and promoting spontaneous delivery. We aimed to evaluate the effect of nalbuphine and ropivacaine versus fentanyl and ropivacaine on the duration of delivery in parturients. METHODS: Clinical data of 160 full-term primiparous women who received either nalbuphine or fentanyl in combination with ropivacaine infusion for epidural labor analgesia in our hospital from December 2020 to May 2022 were retrospectively analyzed. The participants were divided into two groups based on anesthesia methods: nalbuphine group (NR group, n = 78) received 0.2 mg/mL nalbuphine combined with 0.1% ropivacaine hydrochloride for patient-controlled epidural analgesia (PCEA) and fentanyl group (FR group, n = 82) received 2 ug/mL fentanyl citrate and 0.1% ropivacaine hydrochloride for PCEA. Both groups received an epidural blockade for labor analgesia at lumbar 2-3 interspace. The duration of the first, second, and third stages of labor, the onset of analgesia, and time before delivery (T0), 15 min of analgesia (T1), 30 min of analgesia (T2), full opening of the uterine opening (T3),exerts force during childbirth(T4), heart rate (HR), blood pressure (BP), blood saturation (SpO2), visual analogue pain scale (VAS) score, Ramsay sedation score, and modified Bromage score, and 5 min were recorded at 2 h postpartum (T5). The neonatal Apgar score, neonatal behavioral neurological assessment (NBNA) score, maternal nausea, vomiting, and itchy skin were recorded. RESULTS: Compared with the FR group, the first stage of labor duration (p < 0.05) and total duration of labor (p < 0.05) were shortened and the onset of analgesia (p < 0.05) was increased in the NR group. NR group had lower incidence of urinary retention than FR group (p < 0.05). The maternal and neonatal investigational parameters and scores had no significant difference between the two groups. CONCLUSIONS: Nalbuphine combined with ropivacaine in epidural block labor has a faster onset of analgesia and has a lower incidence of urinary retention than fentanyl combined with ropivacaine, and nalbuphine shortens the duration of the first and total stages of labor. Both nalbuphine and fentanyl can reduce pain during labor, have little effect on maternal hemodynamics, and have no significant effect on neonatal Apgar or NBNA scores.


Subject(s)
Analgesia, Epidural , Nalbuphine , Urinary Retention , Pregnancy , Infant, Newborn , Female , Humans , Ropivacaine , Retrospective Studies , Pain , Fentanyl
15.
Anim Biotechnol ; 34(3): 471-481, 2023 Jun.
Article in English | MEDLINE | ID: mdl-34607533

ABSTRACT

The development of the rumen is a critical physiological challenge in newborn ruminants. However, the molecular mechanism underlying different stages of rumen development in sheep remains poorly understood. Here, RNA sequencing and bioinformatics analysis were performed to compare the transcription profiles of rumen development at 7, 28 and 56 days of birth (D7, D28 and D56). We identified 1246, 2257 and 627 differentially expressed genes (DEGs) between D7 and D28, between D7 and D56, between D28 and D56, respectively. Also, 70 DGEs were co-expressed at these three time points. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated most DEGs mainly related to transporter activity, channel activity and metabolism pathways. Noteworthy, the expression levels of most genes (CA4, CA9, CA12 and CA14) in nitrogen metabolic pathways were negatively correlated with the papilla length and width, but the papilla length and width were positively correlated with the expression of genes (PLA2G3, SLC26A9, SLC34A3) in ion transport pathway, suggesting that these genes may be involved in nitrogen metabolic and ion transport pathway and thus affect rumen development. These results provide new insight into the changes in RNA expression at different time points of rumen development in Hu sheep.


Subject(s)
Rumen , Transcriptome , Animals , Sheep/genetics , Transcriptome/genetics , Gene Expression Profiling/veterinary , Gene Expression Profiling/methods , Sequence Analysis, RNA , Genome
16.
Parasitol Res ; 122(8): 1907-1913, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37329345

ABSTRACT

Ticks are blood-sucking ectoparasites with significant medical and veterinary importance, capable of transmitting bacteria, protozoa, fungi, and viruses that cause a variety of human and animal diseases worldwide. In the present study, we sequenced the complete mitochondrial (mt) genomes of five hard tick species and analyzed features of their gene contents and genome organizations. The complete mt genomes of Haemaphysalis verticalis, H. flava, H. longicornis, Rhipicephalus sanguineus and Hyalomma asiaticum were 14855 bp, 14689 bp, 14693 bp, 14715 bp and 14722 bp in size, respectively. Their gene contents and arrangements are the same as those of most species of metastriate Ixodida, but distinct from species of genus Ixodes. Phylogenetic analyses using concatenated amino acid sequences of 13 protein-coding genes with two different computational algorithms (Bayesian inference and maximum likelihood) revealed the monophylies of the genera Rhipicephalus, Ixodes and Amblyomma, however, rejected the monophyly of the genus Haemaphysalis. To our knowledge, this is the first report of the complete mt genome of H. verticalis. These datasets provide useful mtDNA markers for further studies of the identification and classification of hard ticks.


Subject(s)
Genome, Mitochondrial , Ixodes , Ixodidae , Rhipicephalus sanguineus , Animals , Humans , Ixodidae/genetics , Phylogeny , Bayes Theorem , Rhipicephalus sanguineus/genetics , Ixodes/genetics
17.
Parasitol Res ; 122(6): 1403-1414, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37072585

ABSTRACT

Culex mosquitoes (Diptera: Culicidae) can transmit a variety of arthropod-borne viruses (arboviruses), causing human and animal diseases. Cx. vishnui, Cx. pseudovishnui, and Cx. tritaeniorhynchus are three representative species in Culex vishnui subgroup, which are widely distributed in southeast Asia, and they have been proved as the main vectors transmitting Japanese encephalitis virus (JEV) that could cause human infectious mosquito-borne disease across Asia. However, the epidemiology, biology, and even molecular information of those mosquitos remain poorly understood, and only the mitochondrial genome (mitogenome) of Cx. tritaeniorhynchus has been reported in these species. In the present study, we sequenced and annotated the complete mitogenome sequence of Cx. vishnui which was 15,587 bp in length, comprising 37 genes. Comparisons of nucleotide and amino acid sequences between Cx. vishnui and Cx. tritaeniorhynchus revealed that most genes within Culex vishnui subgroup were conserved, except atp8, nad1, atp6, and nad6, with differences of 0.4 (rrnS) - 15.1% (tRNAs) and 0 (nad4L) - 9.4% (atp8), respectively, interestingly suggesting the genes nad4L and rrnS were the most conserved but atp8 gene was the least. The results based on nucleotide diversity also supported a relatively uniform distribution of the intraspecific differences in Cx. vishnui and Cx. tritaeniorhynchus with only one highly pronounced peak of divergence centered at the control region. Phylogenetic analyses using concatenated amino acid sequences of 13 protein-coding genes supported the previous taxonomic classification of the family Culicidae and the monophyly of tribes Aedini, Culicini, Mansoniini, and Sabethini. The present study revealed detailed information on the subgroup Culex vishnui, reanalyzed the relationships within the family Culicidae, provided better markers to identify and distinguish Culex species, and offered more markers for studying the molecular epidemiology, population genetics, and molecular phylogenetics of Cx. vishnui.


Subject(s)
Culex , Culicidae , Encephalitis Virus, Japanese , Encephalitis, Japanese , Genome, Mitochondrial , Animals , Humans , Culex/genetics , Culicidae/genetics , Encephalitis Virus, Japanese/genetics , Genome, Mitochondrial/genetics , Phylogeny , Mosquito Vectors/genetics , Nucleotides , Encephalitis, Japanese/genetics
18.
BMC Surg ; 23(1): 349, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37974183

ABSTRACT

BACKGROUND: Laparoscopic pancreaticoduodenectomy(LPD) has become the goal of lots of minimally invasive surgical centers in recent years. Postoperative pancreatic fistula(POPF) is still the barrier to attaining the above goal. Thus, improving anastomosis techniques to reduce the rate of POPF has been a hotspot of surgery. Blumgart pancreaticojejunostomy is considered one of the best anastomosis procedures, with low rates of POPF. However, the original Blumgart pancreaticojejunostomy method is not easy for laparoscopic operation. In consequence, we modified a Blumgart pancreaticojejunostomy technique with a simple and practicable procedure and applied to LPD. METHODS: We collected and retrospectively analyzed the perioperative clinical data of patients who underwent modified Blumgart anastomosis from February 2017 to September 2022. The above patients included 53 cases in open pancreaticojejunostomy(OPD) and 58 cases in LPD. After propensity score matching, 44 cases were included for comparison in each group. RESULTS: After propensity score matching, the average time for pancreaticojejunostomy was about 30 min in the LPD group. The Clinically relevant POPF(CR-POPF) rate was 9.1%. The length of postoperative hospitalization was 13.1 days. Compared with the OPD group, The CR-POPF rate in the LPD group are not significant differences. But the postoperative length of hospital stay was significantly shorter in the LPD group. Besides, there were no other severely postoperative complications between two groups. CONCLUSION: The modified Blumgart anastomosis technique applied to LPD in our Center not only has simple and convenient properties but also low rate of CR-POPF. And this method may be a good choice for surgeons to begin to carry out LPD.


Subject(s)
Laparoscopy , Pancreaticoduodenectomy , Humans , Pancreaticoduodenectomy/methods , Retrospective Studies , Anastomosis, Surgical/methods , Pancreaticojejunostomy/methods , Pancreatic Fistula/etiology , Laparoscopy/methods , Postoperative Complications/epidemiology , Postoperative Complications/prevention & control , Postoperative Complications/etiology
19.
Int J Mol Sci ; 24(3)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36768266

ABSTRACT

Sodium nitroprusside (SNP), as a single minuscule signaling molecule, has been employed to alleviate plant stress in recent years. This approach has a beneficial effect on the biological and physiological processes of plants. As a result, an in vitro tissue culture experiment was carried out to investigate the effect of high and low levels of SNP on the amelioration of manganese (Mn) and chromium (Cr) toxicity in a one-year-old bamboo plant, namely Pleioblastus pygmaea L. Five different concentrations of SNP were utilized as a nitric oxide (NO) donor (0, 50, 80, 150, 250, and 400 µM) in four replications of 150 µM Mn and 150 µM Cr. The results revealed that while 150 µM Mn and 150 µM Cr induced an over-generation of reactive oxygen species (ROS) compounds, enhancing plant membrane injury, electrolyte leakage (EL), and oxidation in bamboo species, the varying levels of SNP significantly increased antioxidant and non-antioxidant activities, proline (Pro), glutathione (GSH), and glycine betaine (GB) content, photosynthesis, and plant growth parameters, while also reducing heavy metal accumulation and translocation in the shoot and stem. This resulted in an increase in the plant's tolerance to Mn and Cr toxicity. Hence, it is inferred that NO-induced mechanisms boosted plant resistance to toxicity by increasing antioxidant capacity, inhibiting heavy metal accumulation in the aerial part of the plant, restricting heavy metal translocation from root to leaves, and enhancing the relative water content of leaves.


Subject(s)
Antioxidants , Manganese , Nitroprusside/pharmacology , Manganese/toxicity , Chromium/toxicity , Water , Glutathione , Nitric Oxide Donors
20.
Syst Parasitol ; 100(5): 571-578, 2023 10.
Article in English | MEDLINE | ID: mdl-37382800

ABSTRACT

The domestic pig louse Haematopinus suis (Linnaeus, 1758) (Phthiraptera: Anoplura) is a common ectoparasite of domestic pigs, which can act as a vector of various infectious disease agents. Despite its significance, the molecular genetics, biology and systematics of H. suis from China have not been studied in detail. In the present study, the entire mitochondrial (mt) genome of H. suis isolate from China was sequenced and compared with that of H. suis isolate from Australia. We identified 37 mt genes located on nine circular mt minichromosomes, 2.9 kb-4.2 kb in size, each containing 2-8 genes and one large non-coding region (NCR) (1,957 bp-2,226 bp). The number of minichromosomes, gene content, and gene order in H. suis isolates from China and Australia are identical. Total sequence identity across coding regions was 96.3% between H. suis isolates from China and Australia. For the 13 protein-coding genes, sequence differences ranged from 2.8%-6.5% consistent nucleotides with amino acids. Our result is H. suis isolates from China and Australia being the same H. suis species. The present study determined the entire mt genome of H. suis from China, providing additional genetic markers for studying the molecular genetics, biology and systematics of domestic pig louse.


Subject(s)
Anoplura , Genome, Mitochondrial , Swine , Animals , Sus scrofa , Genome, Mitochondrial/genetics , Species Specificity , Anoplura/genetics , Insecta/genetics , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL