Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Cancer ; 23(1): 132, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926757

ABSTRACT

BACKGROUND: TFE3-rearranged renal cell carcinoma (TFE3-rRCC) is a rare but highly heterogeneous renal cell carcinoma (RCC) entity, of which the clinical treatment landscape is largely undefined. This study aims to evaluate and compare the efficacy of different systemic treatments and further explore the molecular correlates. METHODS: Thirty-eight patients with metastatic TFE3-rRCC were enrolled. Main outcomes included progression-free survival (PFS), overall survival, objective response rate (ORR) and disease control rate. RNA sequencing was performed on 32 tumors. RESULTS: Patients receiving first-line immune checkpoint inhibitor (ICI) based combination therapy achieved longer PFS than those treated without ICI (median PFS: 11.5 vs. 5.1 months, P = 0.098). After stratification of fusion partners, the superior efficacy of first-line ICI based combination therapy was predominantly observed in ASPSCR1-TFE3 rRCC (median PFS: not reached vs. 6.5 months, P = 0.01; ORR: 67.5% vs. 10.0%, P = 0.019), but almost not in non-ASPSCR1-TFE3 rRCC. Transcriptomic data revealed enrichment of ECM and collagen-related signaling in ASPSCR1-TFE3 rRCC, which might interfere with the potential efficacy of anti-angiogenic monotherapy. Whereas angiogenesis and immune activities were exclusively enriched in ASPSCR1-TFE3 rRCC and promised the better clinical outcomes with ICI plus tyrosine kinase inhibitor combination therapy. CONCLUSIONS: The current study represents the largest cohort comparing treatment outcomes and investigating molecular correlates of metastatic TFE3-rRCC based on fusion partner stratification. ICI based combination therapy could serve as an effective first-line treatment option for metastatic ASPSCR1-TFE3 rRCC patients. Regarding with other fusion subtypes, further investigations should be performed to explore the molecular mechanisms to propose pointed therapeutic strategy accordingly.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Carcinoma, Renal Cell , Immune Checkpoint Inhibitors , Kidney Neoplasms , Oncogene Proteins, Fusion , Humans , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/mortality , Female , Male , Middle Aged , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/mortality , Aged , Immune Checkpoint Inhibitors/therapeutic use , Oncogene Proteins, Fusion/genetics , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Gene Rearrangement , Biomarkers, Tumor/genetics , Treatment Outcome , Prognosis , Intracellular Signaling Peptides and Proteins/genetics
2.
Planta ; 259(5): 108, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38555562

ABSTRACT

MAIN CONCLUSION: From a value chain perspective, this paper examines the important factors from the selection of planting areas to storage, which restrict the development of medicinal plants. The purpose of this paper is to provide theoretical basis for the sustainable development of medicinal plants. Medicinal plants have significant economic and medicinal value. Due to the gradual depletion of wild medicinal plant resources, cultivators of medicinal plants must resort to artificial cultivation to cope. However, there are still many problems in the production process of medicinal plants, resulting in decreases in both yield and quality, thus hindering sustainable development. To date, research on the value chain of medicinal plants is still limited. Therefore, this paper analyzes the factors affecting the development of medicinal plants from the perspective of the value chain, including the selection of growing areas to the storage process of medicinal plants, and summarizes the challenges faced in the production process of medicinal plants. The purpose of this paper is to provide theoretical basis for the sustainable development of medicinal plants.


Subject(s)
Plants, Medicinal , Sustainable Development
3.
Strahlenther Onkol ; 199(6): 525-535, 2023 06.
Article in English | MEDLINE | ID: mdl-37093230

ABSTRACT

OBJECTIVE: Although single-fraction high-dose-rate brachytherapy (SFHDR) for localized prostate cancer has been tried in clinical trials, relevant medical evidence is currently lacking. It is necessary to systematically analyze the safety and efficacy of SFHDR. METHODS: Comprehensive and systematic searches for eligible studies were performed in PubMed, Embase, and the Cochrane Library databases. The primary endpoints included safety and efficacy, represented by toxic effects and biochemical recurrence-free survival (bRFS), respectively. The proportion rates were used as the effect measure for each study and were presented with corresponding 95% confidence intervals (CI) and related 95% prediction interval (PI). Restricted maximum-likelihood estimator (REML) and the Hartung-Knapp method were used in the meta-analysis. RESULTS: Twenty-five studies met the inclusion criteria for quantitative analysis, including 1440 patients. The median age of patients was 66.9 years old (62-73 years old) and the median follow-up was 47.5 months (12-75 months). The estimates of cumulative occurrence for severe gastrointestinal (GI) and genitourinary (GU) toxic effects were 0.1% (95% CI 0-0.2%) and 0.4% (95% CI 0-1.2%), and for grade 2 toxic effects were 1.6% (95% CI 0.1-4.7%) and 17.1% (95% CI 5.4-33.5%), respectively. The estimate of 3­year bRFS was 87.5% (95% CI 84.4-90.3%) and 71.0% (95% CI 63.0-78.3%) for 5­year bRFS. The pooled bRFS rates for low-risk patients were 99.0% (95% CI 85.2-100.0%) at 3 years and 80.9% (95% CI 75.4-85.9%) at 5 years, and the risk group was found to be statistically correlated with bRFS (3-year bRFS, P < 0.01; 5­year bRFS, P = 0.04). CONCLUSION: SFHDR is associated with favorable tolerability and suboptimal clinical benefit in patients with localized prostate cancer. Ongoing and planned high-quality prospective studies are necessary to verify its safety and efficacy.


Subject(s)
Brachytherapy , Prostatic Neoplasms , Male , Humans , Aged , Middle Aged , Brachytherapy/adverse effects , Brachytherapy/methods , Prospective Studies , Prostatic Neoplasms/radiotherapy , Urogenital System , Risk Factors
4.
Fish Shellfish Immunol ; 139: 108845, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37257571

ABSTRACT

The reproduction, development and growth of shrimp were hindered by cold stress, and even death was caused in severe cases. Moreover, huge economic losses to the shrimp aquaculture industry were caused every year by cold currents. The purpose of this study was to investigate the potential protective effects of water additives on the cold stress resistance of Pacific white shrimp (Litopenaeus vannamei) and their ability to improve the survival and stress response of the shrimp. Three potential cold-resistant additives adenosine triphosphate (A), soybean phospholipid (SP) and Clostridium butyricum (CB) on Pacific white shrimp under cold stress were added to the water with three concentrations for each additive. The mortality, activities of antioxidation enzymes and expression of anti-stress related genes in each group under cold stress were detected. The results showed that the cumulative mortality of low concentration for adenosine triphosphate (AL) and soybean phospholipid (SPL), medium concentration for soybean phospholipid (SPM) and high concentration for Clostridium butyricum (CBH) groups were significantly lower than that of the control (C) group when temperature maintained at 13 °C for 6 days. Total antioxidant capacity (T-AOC) content in shrimp plasma was significantly higher, while malondialdehyde (MDA) content was significantly lower than that in the C group. Gene expression analysis showed that 0.4 mg/L of adenosine triphosphate could regulate the immune defense ability and decrease apoptosis level of Pacific white shrimp under cold stress. Soybean phospholipid (2 mg/L) could enhance the immune ability of hepatopancreas, and Clostridium butyricum (10 mg/L) could significantly increase the expression of stress-related genes in shrimp intestine. Overall, these findings suggested that adenosine triphosphate and soybean phospholipid have the potential to be used as cold-resistant additives in Pacific white shrimp culture. This study provided valuable insights into addressing the problem of cold stress in shrimp culture.


Subject(s)
Cold-Shock Response , Penaeidae , Animals , Antioxidants/metabolism , Intestines , Adenosine Triphosphate , Phospholipids
5.
Environ Sci Technol ; 57(48): 19932-19941, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37975618

ABSTRACT

Climate change-induced extreme weather events (heat, cold, drought, and flooding) will severely affect crop production. Increasing the resilience of crops to fluctuating environmental conditions is critically important. Here, we report that nanomaterials (NMs) with reactive oxygen species (ROS)-generating properties can be used as seed priming agents to simultaneously enhance the tolerance of maize seeds and seedlings to diverse and even multiple stresses. Maize seeds primed with 40 mg/L silver nanoparticles (AgNPs) exhibited accelerated seed germination and an increased germination rate, greater seedling vigor, and better seedling growth under drought (10% and 20% PEG), saline (50 and 100 mM NaCl), and cold (15 °C) stress conditions, indicating enhanced resilience to diverse stresses. Importantly, maize resistance to simultaneous multiple stresses (drought and cold, drought and salt, and salt and cold) was markedly enhanced. Under drought conditions, seed priming significantly boosted root hair density and length (17.3-82.7%), which enabled greater tolerance to water deficiency. RNA-seq analysis reveals that AgNPs seed priming induced a transcriptomic shift in maize seeds. Plant hormone signal transduction and MAPK signaling pathways were activated upon seed priming. Importantly, low-cost and environmentally friendly ROS-generating Fe-based NMs (Fe2O3 and Fe3O4 NPs) were also demonstrated to enhance the resistance of seeds and seedlings to drought, salt, and cold stresses. These findings demonstrate that a simple seed priming strategy can be used to significantly enhance the climate resilience of crops through modulated ROS homeostasis and that this approach could be a powerful nanoenabled tool for addressing worsening food insecurity.


Subject(s)
Metal Nanoparticles , Zea mays , Reactive Oxygen Species/metabolism , Zea mays/metabolism , Metal Nanoparticles/toxicity , Silver , Seedlings/metabolism , Germination , Stress, Physiological , Sodium Chloride/pharmacology , Seeds/metabolism
6.
Cell ; 133(2): 235-49, 2008 Apr 18.
Article in English | MEDLINE | ID: mdl-18423196

ABSTRACT

Multiple lung pathogens such as chemical agents, H5N1 avian flu, or SARS cause high lethality due to acute respiratory distress syndrome. Here we report that Toll-like receptor 4 (TLR4) mutant mice display natural resistance to acid-induced acute lung injury (ALI). We show that TLR4-TRIF-TRAF6 signaling is a key disease pathway that controls the severity of ALI. The oxidized phospholipid (OxPL) OxPAPC was identified to induce lung injury and cytokine production by lung macrophages via TLR4-TRIF. We observed OxPL production in the lungs of humans and animals infected with SARS, Anthrax, or H5N1. Pulmonary challenge with an inactivated H5N1 avian influenza virus rapidly induces ALI and OxPL formation in mice. Loss of TLR4 or TRIF expression protects mice from H5N1-induced ALI. Moreover, deletion of ncf1, which controls ROS production, improves the severity of H5N1-mediated ALI. Our data identify oxidative stress and innate immunity as key lung injury pathways that control the severity of ALI.


Subject(s)
Oxidative Stress , Respiratory Distress Syndrome/metabolism , Toll-Like Receptor 4/metabolism , Adaptor Proteins, Vesicular Transport/metabolism , Animals , Humans , Influenza, Human/metabolism , Interleukin-6/metabolism , Lung , Mice , Mice, Inbred C57BL , NADPH Oxidases/metabolism , NF-kappa B/metabolism , Orthomyxoviridae Infections/metabolism , Phospholipids/metabolism , Severe Acute Respiratory Syndrome/metabolism , Signal Transduction
7.
Phys Chem Chem Phys ; 25(3): 1858-1862, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36541090

ABSTRACT

Solid-state carbon dots (CDots) have great potential applications in photonics and optoelectronic devices due to their excellent optical properties, such as broad absorption bands, and tunable photoluminescence wavelengths. However, owing to the aggregation-induced quenching and thermal quenching effect, it is a challenge to achieve strong luminescent solid-state CDots with excellent thermal stability. Herein, solid-state CDots were designed and fabricated using a triple confinement nanoporous glass. The triple confinement in nanoporous glass by a highly rigid network, stable covalent bonding, and 3D spatial restriction efficiently inhibited the Föster resonance energy transfer of the CDots in the solid-state and highly confined the CDots in the nanopores and nanochannels of the nanoporous glass. The as-designed triple confined solid-state CDots exhibit dual emission wavelengths at 448 nm and 638 nm, 51 times enhanced photoluminescence intensity, and exceptional thermal stability up to 400 °C. This work provides design principles and a universal strategy to construct dual emission fluorescence materials with high photoluminescence intensity, and high thermal stability for promising applications.

8.
Proc Natl Acad Sci U S A ; 117(33): 19888-19895, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32747552

ABSTRACT

More than 30% of genes in higher eukaryotes are regulated by RNA polymerase II (Pol II) promoter proximal pausing. Pausing is released by the positive transcription elongation factor complex (P-TEFb). However, the exact mechanism by which this occurs and whether phosphorylation of the carboxyl-terminal domain of Pol II is involved in the process remains unknown. We previously reported that JMJD5 could generate tailless nucleosomes at position +1 from transcription start sites (TSS), thus perhaps enable progression of Pol II. Here we find that knockout of JMJD5 leads to accumulation of nucleosomes at position +1. Absence of JMJD5 also results in loss of or lowered transcription of a large number of genes. Interestingly, we found that phosphorylation, by CDK9, of Ser2 within two neighboring heptad repeats in the carboxyl-terminal domain of Pol II, together with phosphorylation of Ser5 within the second repeat, HR-Ser2p (1, 2)-Ser5p (2) for short, allows Pol II to bind JMJD5 via engagement of the N-terminal domain of JMJD5. We suggest that these events bring JMJD5 near the nucleosome at position +1, thus allowing JMJD5 to clip histones on this nucleosome, a phenomenon that may contribute to release of Pol II pausing.


Subject(s)
Cyclin-Dependent Kinase 9/metabolism , Histone Demethylases/metabolism , RNA Polymerase II/metabolism , Transcription, Genetic , Cell Line, Tumor , Cyclin-Dependent Kinase 9/genetics , Histone Demethylases/chemistry , Histone Demethylases/genetics , Humans , Nucleosomes/genetics , Nucleosomes/metabolism , Phosphorylation , Positive Transcriptional Elongation Factor B/genetics , Positive Transcriptional Elongation Factor B/metabolism , Promoter Regions, Genetic , Protein Binding , Protein Domains , RNA Polymerase II/genetics
9.
Int Wound J ; 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37737032

ABSTRACT

Fast track surgery (FTS) is widely used in many procedures and has been shown to reduce complications and accelerate recovery. However, no studies have been conducted to assess their effectiveness in treating wounds after radical prostatectomy (RP). The objective of this study was to evaluate the impact of FTS on RP. We went through 4 major databases. A study was conducted by PubMed, the Cochrane Library, Embase, and the Web of Science to determine the effect of comparison of FTS versus conventional surgery in RP on postoperative wound complications as of 1 July 2023. Based on the review of literature, data extraction and literature quality assessment, we conducted meta-analyses with RevMan 5.3. In the course of the study, the researchers selected 6 of the 404 studies to be analysed according to exclusion criteria. Data analysis showed that the FTS method reduced the postoperative pain associated with VAS and also decreased the rate of postoperative complications in post-surgical patients. However, there was no significant difference between FTS and conventional surgery in terms of blood loss, operation time, and postoperative infection rate. Therefore, generally speaking, FTS has less impact on postoperative complications in patients with minimal invasive prostatic cancer, but it does reduce postoperative pain and total postoperative complications.

10.
Int J Mol Sci ; 23(19)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36232627

ABSTRACT

The SARS-CoV-2 Delta and Lambda variants had been named variants of concern (VOC) and variants of interest (VOI), respectively, by the World Health Organization (WHO). Both variants have two mutations in the spike receptor binding domain (RBD) region, with L452R and T478K mutations in the Delta variant, and L452Q and F490S mutations in the Lambda variant. We used surface plasmon resonance (SPR)-based technology to evaluate the effect of these mutations on human angiotensin-converting enzyme 2 (ACE2) and Bamlanivimab binding. The affinity for the RBD ligand, ACE2, of the Delta RBD is approximately twice as strong as that of the wild type RBD, an increase that accounts for the increased infectivity of the Delta variant. On the other hand, in spite of its amino acid changes, the Lambda RBD has similar affinity to ACE2 as the wild type RBD. The protective anti-wild type RBD antibody Bamlanivimab binds very poorly to the Delta RBD and not at all to the Lambda RBD. Nevertheless, serum antibodies from individuals immunized with the BNT162b2 vaccine were found to bind well to the Delta RBD, but less efficiently to the Lambda RBD in contrast. As a result, the blocking ability of ACE2 binding by serum antibodies was decreased more by the Lambda than the Delta RBD. Titers of sera from BNT162b2 mRNA vaccinated individuals dropped 3-fold within six months of vaccination regardless of whether the target RBD was wild type, Delta or Lambda. This may account partially for the fall off with time in the protective effect of vaccines against any variant.


Subject(s)
COVID-19 , SARS-CoV-2 , Amino Acids , Angiotensin-Converting Enzyme 2/genetics , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunity, Humoral , Ligands , Mutation , RNA, Messenger , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccines, Synthetic , mRNA Vaccines
11.
Mol Carcinog ; 59(7): 839-851, 2020 07.
Article in English | MEDLINE | ID: mdl-32329934

ABSTRACT

A majority of infant and pediatric leukemias are caused by the mixed-lineage leukemia gene (MLL) fused with a variety of candidates. Several underlying mechanisms have been proposed. One currently popular view is that truncated MLL1 fusion and its associated complex constitutively hijacks super elongation complex, including positive transcription elongation factor b, CDK9, and cyclin T1 complex and DOT1L, to enhance the expression of transcription factors that maintain or restore stemness of leukocytes, as well as prevent the differentiation of hematopoietic progenitor cells. An alternative emerging view proposes that MLL1-fusion promotes the recruitment of TATA binding protein and RNA polymerase II (Pol II) initiation complex, so as to increase the expression levels of target genes. The fundamental mechanism of both theories are gain of function for truncated MLL1 fusions, either through Pol II elongation or initiation. Our recent progress in transcription regulation of paused Pol II through JMJD5, JMJD6, and JMJD7, combined with the repressive role of H3K4me3 revealed by others, prompted us to introduce a contrarian hypothesis: the failure to shut down transcribing units by MLL-fusions triggers the transformation: loss of function of truncated MLL1 fusions coupled with the loss of conversion of H3K4me1 to H3K4me3, leading to the constitutive expression of transcription factors that are in charge of maintenance of hematopoietic progenitor cells, may trigger the transformation of normal cells into cancer cells. Following this track, a potential treatment to eliminate these fusion proteins, which may ultimately cure the disease, is proposed.


Subject(s)
Cell Transformation, Neoplastic/genetics , Leukemia/genetics , Myeloid-Lymphoid Leukemia Protein/genetics , Oncogene Proteins, Fusion/genetics , Animals , Histones/genetics , Humans , Leukemia/pathology
12.
Virol J ; 17(1): 104, 2020 07 13.
Article in English | MEDLINE | ID: mdl-32660490

ABSTRACT

BACKGROUND: Cervical cancer is the fourth most common cancer in women. Early detection and diagnosis play an important role in secondary prevention of cervical cancer. This study aims to provide more information to develop an effective strategy for the prevention and control of cervical cancer in northern China. METHODS: A retrospective single-centre descriptive cross-sectional study was conducted in Chinese PLA General Hospital located in Beijing, covering the period from January 2009 to June 2019. The patients who underwent a polymerase chain reaction (PCR)-based HPV genotyping test and cervical pathological diagnosis were included. Furthermore, we limited the interval between the two examination within 180 days for the purpose of making sure their correlation to analyse their relationship. Moreover, the relationship between different cervical lesions and age as well as single/multiple HPV infection was assessed. RESULTS: A total of 3134 patients were eligible in this study after HPV genotyping test and pathological diagnosis. Most of the patients (95%) were from northern China. Among the patients, 1745(55.68%) had high-grade squamous intraepithelial neoplasia (HSIL), 1354 (43.20%) had low-grade squamous intraepithelial neoplasia (LSIL) and 35 (1.12%) were Normal. The mean age was 42.06 ± 10.82(range, 17-79 years). The women aged 35-49 years accounted for the highest incidence rate. The top five most commonly identified HPV genotypes in each lesion class were as follows: HPV16, 58, 52, 31 and 51 in the class of HSIL; HPV16, 52, 58, 56 and 51 in the class of LSIL; HPV16, 31, 6,11, 52 and 58 in the class of normal. The frequencies of HPV single genotype infection and multiple genotypes infection were 55.26 and 34.18%, respectively. There was no difference in the attributable proportions of multiple genotypes infection amongst HSIL, LSIL and Normal. CONCLUSIONS: In Northern China, HPV16 was the most dominant genotype in the patients with pathological examination. The peak age of the onset of HSIL was between 35 and 49 years of age. Infection with multiple HPV genotypes did not increase the risk of HSIL. Type-specific HPV prevalence and attribution proportion to cervical precancerous lesions should be taken into consideration in the development of vaccines and strategy for screening in this population.


Subject(s)
Cervix Uteri/pathology , Mass Screening/statistics & numerical data , Papillomaviridae/genetics , Papillomavirus Infections/epidemiology , Precancerous Conditions , Adolescent , Adult , Aged , Beijing/epidemiology , Cervix Uteri/virology , Cross-Sectional Studies , DNA, Viral/genetics , Early Detection of Cancer/statistics & numerical data , Female , Genotype , Hospitals , Humans , Middle Aged , Papillomavirus Infections/diagnosis , Papillomavirus Infections/prevention & control , Prevalence , Retrospective Studies , Uterine Cervical Neoplasms/epidemiology , Young Adult , Uterine Cervical Dysplasia/virology
13.
J Clin Lab Anal ; 34(4): e23148, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31880002

ABSTRACT

OBJECTIVE: Adiponectin (APN) circulates as high-molecular weight (HMW), medium-molecular weight (MMW), and low-molecular weight (LMW) forms. Nonalcoholic fatty liver disease (NAFLD) is a common cause of chronic liver disease. Currently, the role of LMW, MMW, and HMW APN remains largely unclear in NAFLD. METHODS: We examined the variation of these forms and analyzed the related clinical characteristics in NAFLD. A total of 63 male NAFLD patients (mean age: 43.00 ± 6.10 years) and 70 healthy male subjects (mean age: 42.53 ± 7.98 years) were included in the study. Total APN and other clinical characteristics were measured. The changes in HMW, MMW, and LMW APN were determined in NAFLD patients and NAFLD patients on a high-fat diet, and the association between the groups was further analyzed. RESULTS: Decreased levels of total APN and three APN isoforms were found in NAFLD. Significantly decreased levels of HMW (P < .01) and MMW (P < .001) were observed in NAFLD of high-fat diet patients. In NAFLD patients, height (R = -.270, P = .032) and N-epsilon-(carboxymethyl) lysine (R = -.259, P = .040) significantly correlated with total APN. HMW APN was significantly associated with fasting plasma glucose (R = .350, P = .016), alanine aminotransferase (R = -.321, P = .029), and aspartate aminotransferase (R = -.295, P = .045). Additionally, MMW APN was significantly associated with total cholesterol (R = .357, P = .014) and high-density lipoprotein (R = .556, P < .0001). Low-density lipoprotein (R = -.283, P = .054) was also clearly associated with LMW APN in NAFLD patients. CONCLUSION: These results suggest that HMW and MMW APN may be involved in the pathogenesis and progression of NAFLD.


Subject(s)
Adiponectin/blood , Non-alcoholic Fatty Liver Disease/blood , Adiponectin/metabolism , Adult , Humans , Male , Molecular Weight , Protein Isoforms/blood , Protein Isoforms/metabolism
14.
Proc Natl Acad Sci U S A ; 114(37): E7717-E7726, 2017 09 12.
Article in English | MEDLINE | ID: mdl-28847961

ABSTRACT

Two of the unsolved, important questions about epigenetics are: do histone arginine demethylases exist, and is the removal of histone tails by proteolysis a major epigenetic modification process? Here, we report that two orphan Jumonji C domain (JmjC)-containing proteins, JMJD5 and JMJD7, have divalent cation-dependent protease activities that preferentially cleave the tails of histones 2, 3, or 4 containing methylated arginines. After the initial specific cleavage, JMJD5 and JMJD7, acting as aminopeptidases, progressively digest the C-terminal products. JMJD5-deficient fibroblasts exhibit dramatically increased levels of methylated arginines and histones. Furthermore, depletion of JMJD7 in breast cancer cells greatly decreases cell proliferation. The protease activities of JMJD5 and JMJD7 represent a mechanism for removal of histone tails bearing methylated arginine residues and define a potential mechanism of transcription regulation.


Subject(s)
Histone Demethylases/metabolism , Histones/metabolism , Jumonji Domain-Containing Histone Demethylases/metabolism , Animals , Arginine/metabolism , Cell Proliferation/physiology , Cells, Cultured , Epigenesis, Genetic , Fibroblasts/metabolism , Histones/genetics , Humans , Methylation , Mice, Knockout , Protein Processing, Post-Translational
15.
Biotechnol Bioeng ; 115(3): 684-693, 2018 03.
Article in English | MEDLINE | ID: mdl-29105732

ABSTRACT

1,3-propanediol production by Clostridium butyricum is a low productivity process due to the long time seed cultivation and thus hinders its industrial scale production. In the present study, repeated batch fermentation coupled with activated carbon adsorption strategy was first established which conduced not only to saving the time of seed cultivation and enhancing the productivity, but also to reducing the costs for the seed cultivation to achieve the purpose of 1,3-propanediol continuous production. The concentration of 1,3-propanediol from first to fourth cycle was 42.89, 45.78, 44.48, 42.39 (g/L), and the corresponding volumetric productivity was 2.14, 1.91, 1.85, 2.12 (g/L · h-1 ) respectively. More importantly, a relatively complete schematic diagram of the proposed metabolic pathways was firstly mapped out based on the intracellular metabolites analysis through GC-MS. At the same time, metabolic pathway and principal components analyses were carried out to give us deep insight into metabolic state. Many metabolites occurred to response to the stress in Cycle II. Even resting body formed and lipid accumulated owing to the worsening environment in the group without activated carbon in Cycle III. Thus, it demonstrated that activated carbon provided a favorable microenvironment for Clostridium butyricum in the repeated batch fermentation process to achieve the purpose of 1,3-propanediol continuous production.


Subject(s)
Carbon/metabolism , Clostridium butyricum/growth & development , Propylene Glycols/metabolism , Adsorption
16.
Sensors (Basel) ; 18(7)2018 Jul 10.
Article in English | MEDLINE | ID: mdl-29996557

ABSTRACT

Wireless Power Transfer (WPT) technology is considered as a promising approach to make Wireless Rechargeable Sensor Network (WRSN) work perpetually. In WRSN, a vehicle exists, termed a mobile charger, which can move close to sensor nodes and charge them wirelessly. Due to the mobile charger's limited traveling distance and speed, not every node that needs to be charged may be serviced in time. Thus, in such scenario, how to make a route plan for the mobile charger to determine which nodes should be charged first is a critical issue related to the network's Quality of Service (QoS). In this paper, we propose a mobile charger's scheduling algorithm to mitigate the data loss of network by considering the node's criticality in connectivity and energy. First, we introduce a novel metric named criticality index to measure node's connectivity contribution, which is computed as a summation of node's neighbor dissimilarity. Furthermore, to reflect the node's charging demand, an indicator called energy criticality is adopted to weight the criticality index, which is a normalized ratio of the node's consumed energy to its total energy. Then, we formulate an optimization problem with the objective of maximizing total weighted criticality indexes of nodes to construct a charging tour, subject to the mobile charger's traveling distance constraint. Due to the NP-hardness of the problem, a heuristic algorithm is proposed to solve it. The heuristic algorithm includes three steps, which is spanning tree growing, tour construction and tour improvement. Finally, we compare the proposed algorithm to the state-of-art scheduling algorithms. The obtained results demonstrate that the proposed algorithm is a promising one.

17.
FASEB J ; 28(12): 5349-60, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25223608

ABSTRACT

The short palate, lung and nasal epithelial clone 1 (SPLUNC1) protein is a member of the palate, lung, and nasal epithelium clone (PLUNC) family, also known as bactericidal/permeability-increasing (BPI) fold-containing protein, family A, member 1 (BPIFA1). SPLUNC1 is an abundant protein in human airways, but its function remains poorly understood. The lipid ligands of SPLUNC1 as well as other PLUNC family members are largely unknown, although some reports provide evidence that lipopolysaccharide (LPS) could be a lipid ligand. Unlike previous hypotheses, we found significant structural differences between SPLUNC1 and BPI. Recombinant SPLUNC1 produced in HEK 293 cells harbored several molecular species of sphingomyelin and phosphatidylcholine as its ligands. Significantly, in vitro lipid-binding studies failed to demonstrate interactions between SPLUNC1 and LPS, lipoteichoic acid, or polymyxin B. Instead, one of the major and most important pulmonary surfactant phospholipids, dipalmitoylphosphatidylcholine (DPPC), bound to SPLUNC1 with high affinity and specificity. We found that SPLUNC1 could be the first protein receptor for DPPC. These discoveries provide insight into the specific determinants governing the interaction between SPLUNC1 and lipids and also shed light on novel functions that SPLUNC1 and other PLUNC family members perform in host defense.


Subject(s)
Glycoproteins/chemistry , Immunity, Innate , Lipids/chemistry , Phosphoproteins/chemistry , Base Sequence , DNA Primers , Glycoproteins/metabolism , HEK293 Cells , Humans , Ligands , Phosphoproteins/metabolism , Protein Conformation
18.
Part Fibre Toxicol ; 12: 4, 2015 Mar 07.
Article in English | MEDLINE | ID: mdl-25890286

ABSTRACT

BACKGROUND: Nanoparticles have become a key technology in multiple industries. However, there are growing reports of the toxicity of nanomaterials to humans. In particular, nanomaterials have been linked to lung diseases. The molecular mechanisms of nanoparticle toxicity are largely unexplored. METHODS: Acute lung injury was induced in wild-type mice and angiotensin-coverting enzyme 2 (ACE2) knockout mice by the intratracheal instillation of cationic polyamidoamine dendrimer (PAMAM) nanoparticles. For rescue experiments, losartan (15 mg/kg in PBS) was injected intraperitoneally 30 min before nanoparticle administration. RESULTS: Some PAMAM nanoparticles, but not anionic PAMAM nanoparticles or carbon nanotubes, triggered acute lung failure in mice. Mechanistically, cationic nanoparticles can directly bind ACE2, decrease its activity and down-regulate its expression level in lung tissue, resulting in deregulation of the renin-angiotensin system. Gene inactivation of Ace2 can exacerbate lung injury. Importantly, the administration of losartan, which is an angiotensin II type I receptor antagonist, can ameliorate PAMAM nanoparticle-induced lung injury. CONCLUSIONS: Our data provide molecular insight into PAMAM nanoparticle-induced lung injury and suggest potential therapeutic and screening strategies to address the safety of nanomaterials.


Subject(s)
Acute Lung Injury/chemically induced , Dendrimers/toxicity , Nanoparticles/toxicity , Peptidyl-Dipeptidase A/metabolism , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Angiotensin-Converting Enzyme 2 , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Animals , Cations , Dendrimers/administration & dosage , Dendrimers/chemistry , Down-Regulation , Instillation, Drug , Losartan/pharmacology , Mice, Inbred C57BL , Mice, Knockout , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Peptidyl-Dipeptidase A/genetics , Protein Binding , Survival Analysis
19.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 11): 2840-7, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25372676

ABSTRACT

Although urea and guanidine hydrochloride are commonly used to denature proteins, the molecular underpinnings of this process have remained unclear for a century. To address this question, crystal structures of ß-catenin were determined at various urea concentrations. These structures contained at least 105 unique positions that were occupied by urea molecules, each of which interacted with the protein primarily via hydrogen bonds. Hydrogen-bond competition experiments showed that the denaturing effects of urea were neutralized when polyethylene glycol was added to the solution. These data suggest that urea primarily causes proteins to unfold by competing and disrupting hydrogen bonds in proteins. Moreover, circular-dichroism spectra and nuclear magnetic resonance (NMR) analysis revealed that a similar mechanism caused protein denaturation in the absence of urea at pH levels greater than 12. Taken together, the results led to the conclusion that the disruption of hydrogen bonds is a general mechanism of unfolding induced by urea, high pH and potentially other denaturing agents such as guanidine hydrochloride. Traditionally, the disruption of hydrophobic interactions instead of hydrogen bonds has been thought to be the most important cause of protein denaturation.


Subject(s)
Protein Unfolding , Urea/chemistry , beta Catenin/chemistry , Animals , Circular Dichroism , Crystallography, X-Ray , Hydrogen Bonding , Mice , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Protein Denaturation , Water/chemistry
20.
Sci Rep ; 14(1): 3748, 2024 02 14.
Article in English | MEDLINE | ID: mdl-38355650

ABSTRACT

This study investigates the correlation between previous coal mine safety policies and accidents in China. Data on coal mine accidents and government regulatory information from 2008 to 2021 are collected. The characteristics of coal mine accidents are analyzed, and safety policy indexes are identified. An ordinary least squares (OLS) regression model is established to quantitatively analyze the correlation between accidents and safety policy. The study finds that safety policies have some impact on accident occurrence in coal mines. Although there has been a decrease in accidents and deaths over time, higher mortality rates are observed during periods of increased production intensity and on weekends. Gas accidents are the most common, followed by roof and flood accidents. The study concludes that national safety policies with wider coverage and a stronger system are effective in preventing accidents, but caution should be exercised to avoid reduced vigilance with decreasing death rates.


Subject(s)
Coal Mining , Accidents, Occupational/prevention & control , Coal , Policy , China
SELECTION OF CITATIONS
SEARCH DETAIL