Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
1.
Chem Soc Rev ; 53(8): 4230-4301, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38477330

ABSTRACT

Sodium-ion batteries (SIBs) are experiencing a large-scale renaissance to supplement or replace expensive lithium-ion batteries (LIBs) and low energy density lead-acid batteries in electrical energy storage systems and other applications. In this case, layered oxide materials have become one of the most popular cathode candidates for SIBs because of their low cost and comparatively facile synthesis method. However, the intrinsic shortcomings of layered oxide cathodes, which severely limit their commercialization process, urgently need to be addressed. In this review, inherent challenges associated with layered oxide cathodes for SIBs, such as their irreversible multiphase transition, poor air stability, and low energy density, are systematically summarized and discussed, together with strategies to overcome these dilemmas through bulk phase modulation, surface/interface modification, functional structure manipulation, and cationic and anionic redox optimization. Emphasis is placed on investigating variations in the chemical composition and structural configuration of layered oxide cathodes and how they affect the electrochemical behavior of the cathodes to illustrate how these issues can be addressed. The summary of failure mechanisms and corresponding modification strategies of layered oxide cathodes presented herein provides a valuable reference for scientific and practical issues related to the development of SIBs.

2.
Small ; : e2311770, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38794870

ABSTRACT

Developing low-cost and highly efficient bifunctional catalysts for both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) is a challenging problem in electrochemical overall water splitting. Here, iron, tungsten dual-doped nickel sulfide catalyst (Fe/W-Ni3S2) is synthesized on the nickel foam, and it exhibits excellent OER and HER performance. As a result, the water electrolyze based on Fe/W-Ni3S2 bifunctional catalyst illustrates 10 mA cm-2 at 1.69 V (without iR-compensation) and highly durable overall water splitting over 100 h tested under 500 mA cm-2. Experimental results and DFT calculations indicate that the synergistic interaction between Fe doping and Ni vacancy induced by W leaching during the in situ oxidation process can maximize exposed OER active sites on the reconstructed NiOOH species for accelerating OER kinetics, while the Fe/W dual-doping optimizes the electronic structure of Fe/W-Ni3S2 and the binding strength of intermediates for boosting HER. This study unlocks the different promoting mechanisms of incorporating Fe and W for boosting the OER and HER activity of Ni3S2 for water splitting, which provides significant guidance for designing high-performance bifunctional catalysts for overall water splitting.

3.
Nano Lett ; 23(13): 6050-6058, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37367972

ABSTRACT

Aqueous zinc (Zn) batteries have been regarded as an alternative to lithium-ion batteries due to their high abundance, low cost, and higher intrinsic safety. However, the low Zn plating/stripping reversibility, Zn dendrite growth, and continuous water consumption have hindered the practical application of aqueous Zn anodes. Herein, a hydrous organic Zn-ion electrolyte based on a dual organic solvent, namely hydrated Zn(BF4)2 zinc salt dissolved in dimethyl carbonate (DMC) and vinyl carbonate (EC) solvents [denoted as Zn(BF4)2/DMC/EC], can address these problems, which not only inhibits the side reactions but also promotes uniform Zn plating/stripping through the formation of a stable solid state interface layer and Zn2+-EC/2DMC pairs. This electrolyte enables the Zn electrode to stably undergo >700 cycles at a rate of 1 mA cm-2 with a Coulombic efficiency of 99.71%. Moreover, the full cell paired with V2O5 also demonstrates excellent cycling stability without capacity decay at 1 A g-1 after 1600 cycles.

4.
Angew Chem Int Ed Engl ; : e202405209, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38712643

ABSTRACT

Regulating the electric double layer (EDL) structure of the zinc metal anode by using electrolyte additives is an efficient way to suppress interface side reactions and facilitate uniform zinc deposition. Nevertheless, there are no reports investigating the proactive design of EDL-regulating additives before the start of experiments. Herein, a functional group assembly strategy is proposed to design electrolyte additives for modulating the EDL, thereby realizing a long-lasting zinc metal anode. Specifically, by screening ten common functional groups, N, N-dimethyl-1H-imidazole-1-sulfonamide (IS) is designed by assembling an imidazole group, characterized by its high adsorption capability on the zinc anode, and a sulfone group, which exhibits strong binding with Zn2+ ions. Benefiting from the adsorption functionalization of the imidazole group, the IS molecules occupy the position of H2O in the inner Helmholtz layer of the EDL, forming a molecular protective layer to inhibit H2O-induced side reactions. Meanwhile, the sulfone group in IS, acting as a binding site to Zn2+, promotes the de-solvation of Zn2+ ions, facilitating compact zinc deposition. Consequently, the utilization of IS significantly extending the cycling stability of Zn||Zn and Zn||NaV3O8 ⋅ 1.5H2O full cell. This study offers an innovative approach to the design of EDL regulators for high-performance zinc metal batteries.

5.
Nano Lett ; 22(21): 8574-8583, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36279311

ABSTRACT

A highly stable interface for aqueous rechargeable Zn batteries is of importance to inhibit the growth of Zn dendrites and suppress the side reactions. In this work, we have developed a stable honeycomb-like ZnO passivation protective layer on the Zn surface, which is in situ generated with the assistance of a nonionic surfactant additive (polyethylene glycol tert-octylphenyl ether, denoted as PEGTE). The ZnO passivation layer can facilitate the uniform distribution of the electric field, guiding the uniform deposition of Zn2+ and inhibit the generation of dendrites. As a result, the symmetric cell using the electrolyte with PEGTE shows an excellent performance at high areal capacity, reflected by stable cycling for over 2400 h at 5 mAh/cm2 and 1300 h at 10 mAh/cm2. The full cell paired with V2O5 demonstrates a long lifespan for more than 600 cycles at a low negative/positive capacity ratio.

6.
Nano Lett ; 22(3): 1302-1310, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35089723

ABSTRACT

For practical sodium-ion batteries, both high electrochemical performance and cost efficiency of the electrode materials are considered as two key parameters. Prussian blue analogues (PBAs) are broadly recognized as promising cathode materials due to their low cost, high theoretical capacity, and cycling stability, although they suffer from low-crystallinity-induced performance deterioration. Herein, a facile "ice-assisted" strategy is presented to prepare highly crystallized PBAs without any additives. By suppressing structure defects, the cathode exhibits a high capacity of 123 mAh g-1 with initial Coulombic efficiency of 87.2%, a long cycling lifespan of 3000 cycles, and significantly enhanced high/low temperature performance and calendar life. Remarkably, the low structure distortion and high sodium diffusion coefficient have been identified via in situ synchrotron powder diffraction and first-principles calculations, while its thermal stability has been analyzed by in situ heated X-ray powder diffraction. We believe the results could pave the way to the low-cost and large-scale application of PBAs in all-climate sodium-ion batteries.

7.
Small ; 18(43): e2106635, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35218294

ABSTRACT

As one of the most competitive candidates for large-scale energy storage, zinc-air batteries (ZABs) have attracted great attention due to their high theoretical specific energy density, low toxicity, high abundance, and high safety. It is highly desirable but still remains a huge challenge, however, to achieve cheap and efficient electrocatalysts to promote their commercialization. Recently, Fe-based single-atom and dual-atom catalysts (SACs and DACs, respectively) have emerged as powerful candidates for ZABs derived from their maximum utilization of atoms, excellent catalytic performance, and low price. In this review, some fundamental concepts in the field of ZABs are presented and the recent progress on the reported Fe-based SACs and DACs is summarized, mainly focusing on the relationship between structure and performance at the atomic level, with the aim of providing helpful guidelines for future rational designs of efficient electrocatalysts with atomically dispersed active sites. Finally, the great advantages and future challenges in this field of ZABs are also discussed.

8.
Small ; 18(8): e2104296, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34873861

ABSTRACT

The investigation of carbonaceous-based anode materials will promote the fast application of low-cost potassium-ion batteries (PIBs). Here a nitrogen and oxygen co-doped yolk-shell carbon sphere (NO-YS-CS) is constructed as anode material for K-ion storage. The novel architecture, featuring with developed porous structure and high surface specific area, is beneficial to achieving excellent electrochemical kinetics behavior and great electrode stability from buffering the large volume expansion. Furthermore, the N/O heteroatoms co-doping can not only boost the adsorption and intercalation ability of K-ion but also increase the electron transfer capability. It is also demonstrated by experimental results and DFT calculations that K-ion insertion/extraction proceeds through both intercalation and surface capacitive adsorption mechanisms. As expected, the NO-YS-CS electrodes show high initial charge capacity of 473.7 mAh g-1 at 20 mA g-1 , ultralong cycling life over 2500 cycles with the retention of 85.8% at 500 mA g-1 , and superior rate performance (183.3 mAh g-1 at 1.0 A g-1 ). The K-ion full cell, with a high energy density of 271.4 Wh kg-1 and an excellent cyclic stability over 500 cycles, is successfully fabricated with K2 Fe[Fe(CN)6 ] cathode. This work will provide new insight on the synthesis and mechanism understanding of high-performance hard carbon anode for PIBs.

9.
Nano Lett ; 21(24): 10453-10461, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34846156

ABSTRACT

Lithium/sodium metal batteries have attracted enormous attention as promising candidates for high-energy storage devices. However, their practical applications are impeded by the growth of dendrites upon Li/Na plating. Here, we report that holey 2D N-doped TiNb2O7 (N-TNO) nanosheets with high electroactive surface area and large amounts of lithiophilic/sodiophilic sites can effectively regulate Li/Na deposition as an interfacial layer, leading to an excellent cycling stability. The N-TNO interfacial layer enables the Li||Li symmetric cell to sustain stable electrodeposition over 1000 h as well as the Na||Na cell to stably cycle for 2400 h at 1 mA cm-2 and 3 mA h cm-2 with a depth of discharge as high as 50%. The full cells of the Li/Na anodes based on the N-TNO layer paired with the LiFePO4 and NaTi2(PO4)3 cathodes, respectively, show a very stable cycling over 1000 cycles at a negative-to-positive electrode capacity (N/P) ratio up to 3.

10.
Nano Lett ; 21(19): 7970-7978, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34605652

ABSTRACT

The performance of single-atom catalysts strongly depends on their particular coordination environments in the near-surface region. Herein, we discover that engineering extra Pt single atoms in the subsurface (Ptsubsurf) can significantly enhance the catalytic efficiency of surface Pt single atoms toward the oxygen reduction reaction (ORR). We experimentally and theoretically investigated the effects of the Ptsubsurf single atoms implanted in different positions of the subsurface of Co particles. The local environments and catalytic properties of surface Pt1 are highly tunable via Ptsubsurf doping. Specifically, the obtained Pt1@Co/NC catalyst displays a remarkable performance for ORR, achieving mass activity of 4.2 mA µgPt-1 (28 times higher than that of commercial Pt/C) at 0.9 V versus reversible hydrogen electrode (RHE) in 0.1 M HClO4 solution with high stability over 30000 cycles.

11.
Nano Lett ; 21(1): 619-627, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33300798

ABSTRACT

Sodium (Na) metal is considered as a promising anode candidate for large-scale energy storage systems because of its high theoretical capacity and low electrochemical redox potential. However, Na anode suffers from a few challenges, such as the dendrite growth and severe parasitic reactions with electrolytes, which greatly hinder its practical applications. In this work, we demonstrate that an organosulfur compound additive (tetramethylthiuram disulfide) provides a facile and promising approach to overcome the above challenges in carbonate-based electrolytes. This unique organosulfur additive can in situ form a stable interfacial protection layer rich in organic sulfide salts on the sodium metal surface during cycling, leading to a stable stripping/plating cycling. Additionally, a cycling Coulombic efficiency of 94.25% is achieved, and the full battery using Prussian Blue as a cathode delivers a reversible capacity of 86.2 mAh g-1 with a capacity retention of 80% after 600 cycles at 4 C.

12.
Angew Chem Int Ed Engl ; 61(16): e202200384, 2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35119192

ABSTRACT

It is vital to dynamically regulate S activity to achieve efficient and stable room-temperature sodium-sulfur (RT/Na-S) batteries. Herein, we report using cobalt sulfide as an electron reservoir to enhance the activity of sulfur cathodes, and simultaneously combining with cobalt single atoms as double-end binding sites for a stable S conversion process. The rationally constructed CoS2 electron reservoir enables the straight reduction of S to short-chain sodium polysulfides (Na2 S4 ) via a streamlined redox path through electron transfer. Meanwhile, cobalt single atoms synergistically work with the electron reservoir to reinforce the streamlined redox path, which immobilize in situ formed long-chain products and catalyze their conversion, thus realizing high S utilization and sustainable cycling stability. The as-developed sulfur cathodes exhibit a superior rate performance of 443 mAh g-1 at 5 A g-1 with a high cycling capacity retention of 80 % after 5000 cycles at 5 A g-1 .

13.
Small ; 17(12): e2007578, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33656277

ABSTRACT

Sodium metal is regarded as one of the most prospective next-generation anodes material owing to its high theoretical capacity, low redox potential, low cost, and natural abundance. Its most notable problem is the dendrite growth during Na plating/striping, which causes not only the safety concern but also the generation of inactive Na. Here, it is demonstrated that 2D carbon nanosheets embedded by bismuth nanoparticles (NPs) (denoted as Bi⊂CNs) serve as a robust nucleation buffer layer to endow the sodium metal anodes (SMAs) with high Coulombic efficiencies (CEs) and dendrite-free deposition during long-term cycling. The embedded Bi nanoparticles significantly reduce the nucleation barrier through the "sodiophilic" Na-Bi alloy. Meanwhile, the carbon frameworks effectively circumvent the gradual failure of those Na-Bi nucleation sites. As a result, the metallic Na on the Bi⊂CNs nucleation layer is repeatedly plated/stripped for nearly 7700 h (1287 cycles) at 3 mA h cm-2 with an average CE of 99.92%. Moreover, the Na||Na symmetric cells with the Bi⊂CNs buffer layer are stably plated/stripped for 4000 h at 1 mA cm-2 and 1 mA h cm-2 . It is found that the cycling stability is closely related to the Na utilization of SMAs and current rate.

14.
Small ; 17(48): e2006504, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33908696

ABSTRACT

Alkali-metal/sulfur batteries hold great promise for offering relatively high energy density compared to conventional lithium-ion batteries. By providing viable sulfur composites that can be effectively used, carbonaceous hosts as a key component play critical roles in overcoming the preliminary challenges associated with the insulating sulfur and its relatively soluble polysulfides. Herein, a comprehensive overview and recent progress on carbonaceous hosts for advanced next-generation alkali-metal/sulfur batteries are presented. In order to encapsulate the highly active sulfur mass and fully limit polysulfide dissolution, strategies for tailoring the design and synthesis of carbonaceous hosts are summarized in this work. The sticking points that remain for sulfur cathodes in current alkali-metal/sulfur systems and the future remedies that can be provided by carbonaceous hosts are also indicated, which can lead to long cycling lifetimes and highly reversible capacities under repeated sulfur reduction reactions in alkali-metal/sulfur during cycling.

15.
Small ; 17(26): e2100732, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34080772

ABSTRACT

The rational synthesis of single-layer noble metal directly anchored on support materials is an elusive target to accomplish for a long time. This paper reports well-defined single-layer Pt (Pt-SL) clusters anchored on ultrathin TiO2 nanosheets-as a new frontier in electrocatalysis. The structural evolution of Pt-SL/TiO2 via self-assembly of single Pt atoms (Pt-SA) is systematically recorded. Significantly, the Pt atoms of Pt-SL/TiO2 possess a unique electronic configuration with PtPt covalent bonds surrounded by abundant unpaired electrons. This Pt-SL/TiO2 catalyst presents enhanced electrochemical performance toward diverse electrocatalytic reactions (such as the hydrogen evolution reaction and the oxygen reduction reaction) compared with Pt-SA, multilayer Pt nanoclusters, and Pt nanoparticles, suggesting an efficient new type of catalyst that can be achieved by constructing single-layer atomic clusters on supports.

16.
Nano Lett ; 20(6): 4464-4471, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32374170

ABSTRACT

Sodium metal anode (SMA) is one of the most favored choices for the next-generation rechargeable battery technologies owing to its low cost and natural abundance. However, the poor reversibility resulted from dendrite growth and formation of unstable solid electrolyte interphase has significantly hindered the practical application of SMAs. Herein, we report that a nucleation buffer layer comprising elaborately designed core-shell C@Sb nanoparticles (NPs) enables the homogeneous electrochemical deposition of sodium metal for long-term cycling. These C@Sb NPs can increase active sites for initial sodium nucleation through Sb-Na alloy cores and keep these cores stable through carbon shells. The assembled cells with this nucleation layer can deliver continuously repeated sodium plating/stripping cycles for nearly 6000 h at a high areal capacity of 4 mA h cm-2 with an average Coulombic efficiency 99.7%. This ingenious structure design of alloy-based nucleation agent opens up a promising avenue to stabilize sodium metal with targeted properties.

17.
Small ; 16(29): e1907464, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32548956

ABSTRACT

Room-temperature sodium-sulfur (RT/Na-S) batteries are considered among the most promising next-generation energy storage and conversion systems because of the earth-abundant reserves of sodium and sulfur. These batteries also possess the advantages of high theoretical gravimetric capacity, high energy density, and low cost. Herein, highly uniform Fe3+ /polyacrylamide nanospheres (FPNs) are fabricated on a large-scale by a facile, low-cost approach. Subsequently, mesoporous nitrogen-doped carbon nanospheres (PNC-Ns), obtained by carbonizing FPNs, are applied as a sulfur matrix to improve the utilization of sulfur, enhance the overall conductivity of the cathode, and inhibit the shuttling of sodium polysulfides (SPSs). In addition, graphene and FPNs are simultaneously coated onto the side of the separator to form a FPNs-graphene-functionalized separator (FPNs-G/separator); here, the mesoporous FPNs effectively anchor and block the SPSs, while the large specific area graphene sheets eliminate the intrinsic mechanical brittleness of the FPNs and improve the overall conductivity of RT/Na-S batteries. When S/PNC-Ns as a cathode and FPNs-G/separator are assembled into an RT/Na-S battery, it delivers a high discharge capacity (639 mAh g-1 at 0.1 C after 400 cycles), stable cycle life (396 mAh g-1 at 0.5 C after 800 cycles), and good rate performance (228 mAh g-1 at 2 C).

18.
Angew Chem Int Ed Engl ; 59(29): 12076-12083, 2020 Jul 13.
Article in English | MEDLINE | ID: mdl-32249496

ABSTRACT

Titanium-based polyanions have been intensively investigated for sodium-ion batteries owing to their superior structural stability and thermal safety. However, their low working potential hindered further applications. Now, a cation and anion dual doping strategy is used to boost the redox potential of Ti-based cathodes of Na3 Ti0.5 V0.5 (PO3 )3 N as a new cathode material for sodium ion batteries. Both the Ti3+ /Ti4+ and V3+ /V4+ redox couples are reversibly accessed, leading to two distinctive voltage platforms at ca. 3.3 V and ca. 3.8 V, respectively. The remarkably improved cycling stability (86.3 %, 3000 cycles) can be ascribed to the near-zero volume strain in this unusual cubic symmetry, which has been demonstrated by in situ synchrotron-based X-ray diffraction. First-principles calculations reveal its well-interconnected 3D Na diffusion pathways with low energy barriers, and the two-sodium-extracted intermediate NaTi0.5 V0.5 (PO3 )3 N is also a stable phase according to formation energy calculations.

19.
Angew Chem Int Ed Engl ; 59(16): 6596-6600, 2020 Apr 16.
Article in English | MEDLINE | ID: mdl-31989734

ABSTRACT

Sodium metal is an ideal anode material for metal rechargeable batteries, owing to its high theoretical capacity (1166 mAh g-1 ), low cost, and earth-abundance. However, the dendritic growth upon Na plating, stemming from unstable solid electrolyte interphase (SEI) film, is a major and most notable problem. Here, a sodium benzenedithiolate (PhS2 Na2 )-rich protection layer is synthesized in situ on sodium by a facile method that effectively prevents dendrite growth in the carbonate electrolyte, leading to stabilized sodium metal electrodeposition for 400 cycles (800 h) of repeated plating/stripping at a current density of 1 mA cm-2 . The organic salt, PhS2 Na2 , is found to be a critical component in the protection layer. This finding opens up a new and promising avenue, based on organic sodium slats, to stabilize sodium metals with a protection layer.

20.
Angew Chem Int Ed Engl ; 59(49): 22171-22178, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32697410

ABSTRACT

Herein, we report a comprehensive strategy to synthesize a full range of single-atom metals on carbon matrix, including V, Mn, Fe, Co, Ni, Cu, Ge, Mo, Ru, Rh, Pd, Ag, In, Sn, W, Ir, Pt, Pb, and Bi. The extensive applications of various SACs are manifested via their ability to electro-catalyze typical hydrogen evolution reactions (HER) and conversion reactions in novel room-temperature sodium sulfur batteries (RT-Na-S). The enhanced performances for these electrochemical reactions arisen from the ability of different single active atoms on local structures to tune their electronic configuration. Significantly, the electrocatalytic behaviors of diverse SACs, assisted by density functional theory calculations, are systematically revealed by in situ synchrotron X-ray diffraction and in situ transmission electronic microscopy, providing a strategic library for the general synthesis and extensive applications of SACs in energy conversion and storage.

SELECTION OF CITATIONS
SEARCH DETAIL