Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Arch Virol ; 168(5): 155, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37145192

ABSTRACT

Two new RNA viruses were identified in Ageratum conyzoides in China using high-throughput sequencing, and their genome sequences were determined using PCR and rapid amplification of cDNA ends. The new viruses, which have positive-sense, single-stranded RNA genomes, were provisionally named "ageratum virus 1" (AgV1) and "ageratum virus 2" (AgV2). AgV1 has a genome of 3,526 nucleotides with three open reading frames (ORFs) and shares 49.9% nucleotide sequence identity with the complete genome of Ethiopian tobacco bushy top virus (genus Umbravirus, family Tombusviridae). The genome of AgV2 consists of 5,523 nucleotides and contains five ORFs that are commonly observed in members of the genus Enamovirus of the family Solemoviridae. Proteins encoded by AgV2 exhibited the highest amino acid sequence similarity (31.7-75.0% identity) to the corresponding proteins of pepper enamovirus R1 (an unclassified enamovirus) and citrus vein enation virus (genus Enamovirus). Based on their genome organization, sequence, and phylogenetic relationships, AgV1 is proposed to be a new umbra-like virus of the family Tombusviridae, and AgV2 is proposed to be a new member of the genus Enamovirus of the family Solemoviridae.


Subject(s)
Ageratum , Luteoviridae , Tombusviridae , Genome, Viral , Phylogeny , Tombusviridae/genetics , Luteoviridae/genetics , Genomics , Nucleotides , China , Open Reading Frames , Plant Diseases , RNA, Viral/genetics
2.
Plant Dis ; 2023 May 10.
Article in English | MEDLINE | ID: mdl-37165550

ABSTRACT

Calystegia hederacea (Convolvulaceae) is one of the most problematic perennial weeds widely distributed around or in crop fields. Our previous studies showed that C. hederacea is natural reservoir of sweet potato chlorotic stunt virus isolate CH (SPCSV-CH) and sweet potato latent virus (SPLV) (Liu et al. 2020; Zhao et al. 2022). To shed further light on the role of C. hederacea in the epidemiology of sweet potato viruses, in May 2021, a total of seven C. hederacea plants (five asymptomatic, one curling and one mild vein-clearing) were collected from two different sweet potato fields in Xinxiang city of Henan Province in China. Total RNA was prepared from a pool of the seven leaf samples using the EZNA Plant RNA Kit (Omega Bio-Tek, Norcross, GA). A library was constructed from the ribosomal-depleted RNA using the NEBNext Ultra Directional RNA Library Prep Kit for Illumina (NEB, MA, USA) and sequenced using the Illumina HiSeq platform (Novogene, Tianjin, China). A total of 139,057,020 paired-end clean reads of 150 bp were obtained after removing adaptor sequences and low-quality reads and used for de novo assembly using the Trinity (v2.2.0) software. Blast searches of the assembled contigs longer than 200 bp against NCBI nucleotide and protein sequence databases revealed the presence of 37 contigs (237 to 4885 bp) and 19 contigs (261 to 758 bp) with high nucleotide (nt) identity with SPLV and SPCSV-CH, respectively. The occurrence of SPLV and SPCSV-CH on C. hederacea was previously reported, and thus the contig sequences related to SPLV and SPCSV-CH were not subjected to further verification in this study. In addition, one contig (2,827 bp) with the highest nt sequence identity of 94.94% with sweet potato leaf curl Hubei virus (SPLCHbV, genus Begomovirus, family Geminiviridae, accession no. MK931304) was assembled from 16,592 reads, with average coverage depth of 740.5X. These results suggested the presence of SPLCHbV in C. hederacea. To further confirm the RNA sequencing result, each of the seven samples was tested by PCR using partially overlapping (italicized nucleotides) forward and reverse primers (SweeIn-F1, 5`-GGAGGAAGCTAAGTACGAGAATCAGTTAGAG-3`; SweeIn-R1, 5`-GCTTCCTCCTTGTGATTGTAAGTAACATGG-3`) that were designed based on the SPLCHbV-related contig for amplification of circular DNA viral genome (approximately 2.7 kb). Two symptomatic and three symptomless C. hederacea samples were SPLCHbV positive, indicating that virus-like symptoms of the two C. hederacea samples were probably not induced by SPLCHbV. Two of the five amplified products were completely sequenced and deposited to GenBank (accession nos. OQ551733 and OQ551734). Sequences analysis showed that the complete genome sequences of two SPLCHbV C. headrace isolates (2,763 nt and 2,761 nt) had 96.53% nt identity with each other and 95.92 to 97.70% nt identity with that of SPLCHbV isolate Shandong7-2017 (MK931304). In August 2021, fourteen C. hederacea plants (three symptomatic, 11 asymptomatic) collected from natural fields from Zhumadian and Pingdingshan cities in Henan Province, were tested by PCR using SweeIn-F1/R1 primers for SPLCHbV, showing that eight samples were SPLCHbV positive. SPLCHbV belongs to the sweepoviruses, a group of phylogenetically distinct begomoviruses infecting sweet potato, and was reported to infect sweet potato from many provinces of China (Wang et al., 2021). To the best of our knowledge, this is the first report of SPLCHbV infection in C. hederacea, which expands the natural host range of SPLCHbV.

3.
Int J Neurosci ; 133(9): 935-946, 2023 Dec.
Article in English | MEDLINE | ID: mdl-34923894

ABSTRACT

OBJECTIVE: This study aimed to explore effective connectivity (EC) of the core networks in cognition impairment associated with temporal lobe epilepsy (CI-TLE) by applying resting state and Granger causality analysis (REST-GCA). The specific brain regions that played a critical role in classification were assessed using multivariate pattern analysis (MVPA). METHODS: Thirty-two patients with CI-TLE and 29 healthy controls who were matched based on age and gender underwent functional magnetic resonance imaging (fMRI). RESULTS: REST-GCA revealed that patients with CI-TLE displayed decreased GC values in the following brain areas: from the posterior cingulate cortex (PCC) to the left fusiform gyrus (lFFG) and the right parahippocampal gyrus (rPPG); from the right dorsal prefrontal cortex (rDPFC) to the left superior parietal lobule (lSPL); from the left amygdala (lAG) to the PCC. Inhibitory EC was observed from the rDPFC to the PCC compared to HCs. The GC values increased from the right dorsal prefrontal cingulate cortex (rdACC) to the PCC and from the right dorsal forebrain insula (rDAI) to the right middle temporal gyrus (rMTG) in the CI-TLE patients. MVPA showed that the classification yielded an accuracy of 81.91% (78.12%, specificity =85.71%). CONCLUSION: Our observations indicated that the abnormal EC between the frontal and parietal regions might be associated with the pathophysiological mechanism of CI-TLE. These results also indicated that EC might be play a role as a potential discriminative pattern to detect CI-TLE in patients.


Subject(s)
Cognitive Dysfunction , Epilepsy, Temporal Lobe , Humans , Epilepsy, Temporal Lobe/complications , Epilepsy, Temporal Lobe/diagnostic imaging , Brain/diagnostic imaging , Cognition/physiology , Prefrontal Cortex , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Magnetic Resonance Imaging/methods , Brain Mapping/methods
4.
Plant Dis ; 2022 Mar 12.
Article in English | MEDLINE | ID: mdl-35285258

ABSTRACT

Sweet potato is a global root crop, with a worldwide production of 91.5 million tons in 2019 (FAOSTAT, 2019). However, virus diseases cause significant yield losses and quality decline in sweet potato. Up to now, over 30 different viruses have been identified in sweet potato (Clark et al. 2012). Expanding knowledge of the host range of sweet potato viruses will provide a benefit for the understanding of virus occurrence and designing appropriate virus control measures. In August 2019, ten Calystegia hederacea and two Convolvulus arvensis (Convolvulaceae) weed plants with or without symptoms of leaf yellowing symptoms were collected from various virus disease-affected sweet potato fields in four cities (Jiaozuo, Xinxiang, Zhengzhou and Kaifeng) of Henan Province for virus detection. The leaves of these plants were harvested and pooled for total RNA extraction using a Plant Total RNA Purification Kit (GMbiolab, Taichung, Taiwan). A library for high-throughput sequencing (HTS) was constructed and sequenced using the Illumina HiSeq 2000 platform by BGI Tech (Shenzhen, China). Clean reads (n = 100,570,346), each 150 bp in length, were de novo assembled using CLC Genomics Workbench 9.5 (Qiagen, USA). The assembled contigs were analyzed against the viral reference genome database in GenBank using the BLASTN and BLASTX searches. Three contigs related to sweet potato chlorotic stunt virus (SPCSV, genus Crinivirus, family Closteroviridae) were identified (Liu et al. 2021). In addition, a total of 20 contigs, ranging from 1,019 to 9,859 bp in length with an average depth of coverage of 1439.26, showed 74.80-87.59% nucleotide (nt) sequence identities with corresponding sequences of sweet potato latent virus (SPLV, genus Potyvirus, family Potyviridae). The sequence of the 9,859-bp contig covering nearly complete genome sequence for SPLV, was deposited in GenBank (accession no.OL625609). These results demonstrated the presence of genetically diverse isolates of SPLV in the pooled samples. To further confirm the HTS result, each of the 12 samples were tested by RT-PCR using SPLV primers (SPLV-F1: 5'-AATGCCAAGGCTACAAGGAGT-3' and SPLV-R1: 5'-CAAGTAGTGTGTGTATGTTCC-3') that targets a partial conserved region of the coat protein gene in SPLV and SPCSV primers designed based on three contigs (ctg1-F1/R1, ctg2-F1/R1, and ctg3-F1/R1) (Liu et al. 2021), respectively. As a result, four symptomless C. hederacea samples tested positive for SPLV, yielding the expected approximately 500 bp PCR fragment, and one leaf yellowing C. hederacea sample tested positive for SPCSV (Liu et al. 2021). The sequences obtained from two of the four amplicons of SPLV (MZ089700 and OM056706) showed 90.2 and 89.8% nt (100 and 99.4% amino acid) identities with the corresponding sequences of the SPLV isolate Shaanxi1 from sweet potato (HQ844148). In 2021, a further 45 C. hederacea plants collected from Shangqiu (n = 6), Xinxiang (n =30) and Pingdingshan (n = 9) cities in Henan Province, were screened by RT-PCR with SPLV-F1/R1 primers, giving an incidence of 33.33%. SPLV is an important potyvirus infecting sweet potato. SPLV is asymptomatic in most sweet potato cultivars in single infection but is able to mediate synergistic viral disease in co-infection with SPCSV (Untiveros et al. 2007). To the best of our knowledge, this is the first report of SPLV in C. hederacea. The finding reported here indicated that C. hederacea may act as a reservoir of SPLV and possible infection source for the sweet potato crop.

5.
Arch Virol ; 166(11): 3225-3228, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34519925

ABSTRACT

A novel varicosa-like virus was identified in a tall morning glory (Ipomoea purpurea) plant by high-throughput sequencing and tentatively named "morning glory varicosavirus" (MGVV). The complete genome of MGVV contains two segments of negative-sense single-stranded RNA of 6409 (RNA1) and 5288 (RNA2) nucleotides. RNA1 encodes a 224.3-kDa large protein (224K), and RNA2 encodes four putative proteins of 48.6 kDa (49K), 46.4 kDa (46K), 35.7 kDa (36K), and 36.8 kDa (37K), respectively. The 224K and 49K proteins show amino acid sequence similarity to the large protein (39.4%) and the 49K protein (22.6%), respectively, of red clover-associated varicosavirus, and the 36K protein shares 19.6% amino acid sequence similarity with protein 3 of lettuce big-vein associated virus. The 46K and 37K proteins share no significant sequence similarity to known functional viral sequences. Phylogenetic analysis based on the large protein of MGVV and other rhabdoviruses showed that MGVV clustered with the varicosaviruses. These analyses indicate that MGVV is a novel member of the genus Varicosavirus in the family Rhabdoviridae.


Subject(s)
Genome, Viral , Ipomoea/virology , Phylogeny , Rhabdoviridae/genetics , Plant Diseases/virology , Viral Proteins/genetics , Whole Genome Sequencing
6.
Arch Virol ; 166(7): 2037-2040, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33900471

ABSTRACT

Sweet potato chlorotic stunt virus (SPCSV; genus Crinivirus, family Closteroviridae) is one of the most destructive viruses infecting sweet potatoes. In this study, we determined the complete genome sequence of an SPCSV-like isolate (CH) from Calystegia hederacea Wall. (Convolvulaceae), a weed species related to sweet potato, by combining next-generation sequencing and rapid amplification of cDNA ends. Comparisons of genome sequences and organization confirmed the classification of CH as SPCSV. However, the sequences and phylogenetic data revealed substantial genetic divergence between CH and all known SPCSV isolates. The amino acid sequence identity between the putative proteins in SPCSV-CH and the corresponding proteins in other known SPCSV isolates in each case was less than 85.0%. Phylogenetic analysis indicated that SPCSV-CH is separate from the groups of the known SPCSV isolates. Additionally, SPCSV-CH RNA1 lacks a p22 gene. A 10.1-kDa putative protein (p10) encoded by a sequence in the 5'-terminal region of RNA2 in SPCSV-CH is much larger than the corresponding protein in all known SPCSV isolates.


Subject(s)
Calystegia/virology , Crinivirus/genetics , Genome, Viral/genetics , Ipomoea batatas/virology , Plant Diseases/virology , Amino Acid Sequence , China , DNA, Complementary/genetics , High-Throughput Nucleotide Sequencing/methods , Phylogeny , RNA, Viral/genetics , Viral Proteins/genetics , Whole Genome Sequencing/methods
7.
Neural Plast ; 2021: 1763533, 2021.
Article in English | MEDLINE | ID: mdl-34987572

ABSTRACT

Repetitive transcranial magnetic stimulation (rTMS) is a popular noninvasive technique for modulating motor cortical plasticity and has therapeutic potential for the treatment of Parkinson's disease (PD). However, the therapeutic benefits and related mechanisms of rTMS in PD are still uncertain. Accordingly, preclinical animal research is helpful for enabling translational research to explore an effective therapeutic strategy and for better understanding the underlying mechanisms. Therefore, the current study was designed to identify the therapeutic effects of rTMS on hemiparkinsonian rats. A hemiparkinsonian rat model, induced by unilateral injection of 6-hydroxydopamine (6-OHDA), was applied to evaluate the therapeutic potential of rTMS in motor functions and neuroprotective effect of dopaminergic neurons. Following early and long-term rTMS intervention with an intermittent theta burst stimulation (iTBS) paradigm (starting 24 h post-6-OHDA lesion, 1 session/day, 7 days/week, for a total of 4 weeks) in awake hemiparkinsonian rats, the effects of rTMS on the performance in detailed functional behavioral tests, including video-based gait analysis, the bar test for akinesia, apomorphine-induced rotational analysis, and tests of the degeneration level of dopaminergic neurons, were identified. We found that four weeks of rTMS intervention significantly reduced the aggravation of PD-related symptoms post-6-OHDA lesion. Immunohistochemically, the results showed that tyrosine hydroxylase- (TH-) positive neurons in the substantia nigra pars compacta (SNpc) and fibers in the striatum were significantly preserved in the rTMS treatment group. These findings suggest that early and long-term rTMS with the iTBS paradigm exerts neuroprotective effects and mitigates motor impairments in a hemiparkinsonian rat model. These results further highlight the potential therapeutic effects of rTMS and confirm that long-term rTMS treatment might have clinical relevance and usefulness as an additional treatment approach in individuals with PD.


Subject(s)
Gait/physiology , Motor Cortex/physiopathology , Motor Skills/physiology , Neuroprotection/physiology , Parkinson Disease, Secondary/therapy , Transcranial Magnetic Stimulation/methods , Animals , Corpus Striatum/metabolism , Corpus Striatum/physiopathology , Disease Models, Animal , Dopaminergic Neurons/metabolism , Male , Motor Cortex/metabolism , Oxidopamine , Parkinson Disease, Secondary/chemically induced , Parkinson Disease, Secondary/metabolism , Parkinson Disease, Secondary/physiopathology , Rats , Rats, Wistar , Tyrosine 3-Monooxygenase/metabolism
8.
Neural Plast ; 2019: 4252943, 2019.
Article in English | MEDLINE | ID: mdl-31949429

ABSTRACT

Transcranial direct current stimulation (tDCS) is a noninvasive technique for modulating neural plasticity and is considered to have therapeutic potential in neurological disorders. For the purpose of translational neuroscience research, a suitable animal model can be ideal for providing a stable condition for identifying mechanisms that can help to explore therapeutic strategies. Here, we developed a tDCS protocol for modulating motor excitability in anesthetized rats. To examine the responses of tDCS-elicited plasticity, the motor evoked potential (MEP) and MEP input-output (IO) curve elicited by epidural motor cortical electrical stimulus were evaluated at baseline and after 30 min of anodal tDCS or cathodal tDCS. Furthermore, a paired-pulse cortical electrical stimulus was applied to assess changes in the inhibitory network by measuring long-interval intracortical inhibition (LICI) before and after tDCS. In the results, analogous to those observed in humans, the present study demonstrates long-term potentiation- (LTP-) and long-term depression- (LTD-) like plasticity can be induced by tDCS protocol in anesthetized rats. We found that the MEPs were significantly enhanced immediately after anodal tDCS at 0.1 mA and 0.8 mA and remained enhanced for 30 min. Similarly, MEPs were suppressed immediately after cathodal tDCS at 0.8 mA and lasted for 30 min. No effect was noted on the MEP magnitude under sham tDCS stimulation. Furthermore, the IO curve slope was elevated following anodal tDCS and presented a trend toward diminished slope after cathodal tDCS. No significant differences in the LICI ratio of pre- to post-tDCS were observed. These results indicated that developed tDCS schemes can produce consistent, rapid, and controllable electrophysiological changes in corticomotor excitability in rats. This newly developed tDCS animal model could be useful to further explore mechanical insights and may serve as a translational platform bridging human and animal studies, establishing new therapeutic strategies for neurological disorders.


Subject(s)
Evoked Potentials, Motor/physiology , Motor Cortex/physiology , Neuronal Plasticity/physiology , Transcranial Direct Current Stimulation/methods , Animals , Electrodes, Implanted , Male , Rats , Rats, Sprague-Dawley , Transcranial Direct Current Stimulation/instrumentation
9.
Biomacromolecules ; 19(1): 85-93, 2018 01 08.
Article in English | MEDLINE | ID: mdl-29191005

ABSTRACT

Bacterial infections and biofilm formation on the surface of implants are important issues that greatly affect biomedical applications and even cause device failure. Construction of high drug loading systems on the surface and control of drug release on-demand is an efficient way to lower the development of resistant bacteria and biofilm formation. In the present study, (montmorillonite/hyaluronic acid-gentamicin)10 ((MMT/HA-GS)10) organic/inorganic hybrid multilayer films were alternately self-assembled on substrates. The loading dosage of GS was as high as 0.85 mg/cm2, which could be due the high specific surface area of MMT. The obtained multilayer film with high roughness gradually degraded in hyaluronidase (HAS) solutions or a bacterial infection microenvironment, which caused the responsive release of GS. The release of GS showed dual enzyme and bacterial infection responsiveness, which also indicated good drug retention and on-demand self-defense release properties of the multilayer films. Moreover, the GS release responsiveness to E. coli showed higher sensitivity than that to S. aureus. There was only ∼5 wt % GS release from the film in PBS after 48 h of immersion, and the amount quickly increased to 30 wt % in 105 CFU/mL of E. coli. Importantly, the high drug dosage, smart drug release, and film peeling from the surface contributed to the efficient antibacterial properties and long-term biofilm inhibition functions. Both in vitro and in vivo antibacterial tests indicated efficient sterilization function and good mammalian cell and tissue compatibility.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Drug Delivery Systems , Enzymes/metabolism , Animals , Bentonite/administration & dosage , Bentonite/chemistry , Escherichia coli/drug effects , Gentamicins/administration & dosage , Gentamicins/chemistry , Hyaluronic Acid/administration & dosage , Hyaluronic Acid/chemistry , Microbial Sensitivity Tests , Microscopy, Electron, Scanning , Rabbits , Staphylococcus aureus/drug effects
10.
Arch Phys Med Rehabil ; 99(5): 1011-1022.e1, 2018 05.
Article in English | MEDLINE | ID: mdl-29357280

ABSTRACT

OBJECTIVE: To investigate the effectiveness of neuromuscular electrical stimulation (NMES) with or without other interventions in improving lower limb activity after chronic stroke. DATA SOURCES: Electronic databases, including PubMed, EMBase, Cochrane Library, PEDro (Physiotherapy Evidence Database), and PsycINFO, were searched from the inception to January 2017. STUDY SELECTION: We selected the randomized controlled trials (RCTs) involving chronic stroke survivors with lower limb dysfunction and comparing NMES or combined with other interventions with a control group of no electrical stimulation treatment. DATA EXTRACTION: The primary outcome was defined as lower limb motor function, and the secondary outcomes included gait speed, Berg Balance Scale, timed Up and Go, 6-minute walk test, Modified Ashworth Scale, and range of motion. DATA SYNTHESIS: Twenty-one RCTs involving 1481 participants were identified from 5759 retrieved articles. Pooled analysis showed that NMES had a moderate but statistically significant benefit on lower limb motor function (standard mean difference 0.42, 95% confidence interval 0.26-0.58), especially when NMES was combined with other interventions or treatment time within either 6 or 12 weeks. NMES also had significant benefits on gait speed, balance, spasticity, and range of motion but had no significant difference in walking endurance after NMES. CONCLUSIONS: NMES combined with or without other interventions has beneficial effects in lower limb motor function in chronic stroke survivors. These data suggest that NMES should be a promising therapy to apply in chronic stroke rehabilitation to improve the capability of lower extremity in performing activities.


Subject(s)
Electric Stimulation Therapy/methods , Hemiplegia/rehabilitation , Stroke Rehabilitation/methods , Stroke/complications , Chronic Disease , Hemiplegia/etiology , Hemiplegia/physiopathology , Humans , Lower Extremity/physiopathology , Physical Therapy Modalities , Range of Motion, Articular , Recovery of Function , Stroke/physiopathology , Treatment Outcome , Walk Test , Walking/physiology , Walking Speed
11.
Entropy (Basel) ; 20(5)2018 May 17.
Article in English | MEDLINE | ID: mdl-33265466

ABSTRACT

Introduction: The variability and complexity of handgrip forces in various modulations were investigated to identify post-stroke changes in force modulation, and extend our understanding of stroke-induced deficits. Methods: Eleven post-stroke subjects and ten age-matched controls performed voluntary grip force control tasks (power-grip tasks) at three contraction levels, and stationary dynamometer holding tasks (stationary holding tasks). Variability and complexity were described with root mean square jerk (RMS-jerk) and fuzzy approximate entropy (fApEn), respectively. Force magnitude, Fugl-Meyer upper extremity assessment and Wolf motor function test were also evaluated. Results: Comparing the affected side with the controls, fApEn was significantly decreased and RMS-jerk increased across the three levels in power-grip tasks, and fApEn was significantly decreased in stationary holding tasks. There were significant strong correlations between RMS-jerk and clinical scales in power-grip tasks. Discussion: Abnormal neuromuscular control, altered mechanical properties, and atrophic motoneurons could be the main causes of the differences in complexity and variability in post-stroke subjects.

14.
Med Sci Monit ; 23: 6072-6081, 2017 Dec 23.
Article in English | MEDLINE | ID: mdl-29274273

ABSTRACT

BACKGROUND The role of nicotinic acetylcholine receptor alpha7 subunit (a7nAchR) in the treatment of acute cerebral ischemia by VNS has not been thoroughly clarified to date. Therefore, this study aimed to investigate the specific role of a7nAchR and explore whether this process is involved in the mechanisms of VNS-induced neuroprotection in rats undergoing permanent middle cerebral artery occlusion (PMCAO) surgery. MATERIAL AND METHODS Rats received a7nAChR antagonist (A) or antagonist placebo injection for control (AC), followed by PMCAO and VNS treatment, whereas the a7nAChR agonist (P) was utilized singly without VNS treatment but only with PMCAO pretreatment. The rats were randomly divided into 6 groups: sham PMCAO, PMCAO, PMCAO+VNS, PMCAO+VNS+A, PMCAO+VNS+AC, and PMCAO+P. Neurological function and cerebral infarct volume were measured to evaluate the level of brain injury at 24 h after PMCAO or PMCAO-sham. Moreover, the related proteins levels of a7nAChR, p-JAK2, and p-STAT3 in the ischemic penumbra were assessed by Western blot analysis. RESULTS Rats pretreated with VNS had significantly improved neurological function and reduced cerebral infarct volume after PMCAO injury (p<0.05). In addition, VNS enhanced the levels of a7nAchR, p-JAK2, and p-STAT3 in the ischemic penumbra (p<0.05). However, inhibition of a7nAchR not only attenuated the beneficial neuroprotective effects induced by VNS, but also decreased levels of p-JAK2 and p-STAT3. Strikingly, pharmacological activation of a7nAchR can partially substitute for VNS-induced beneficial neurological protection. CONCLUSIONS These results suggest that a7nAchR is a pivotal mediator of VNS-induced neuroprotective effects on PMCAO injury, which may be related to suppressed inflammation via activation of the a7nAchR/JAK2 anti-inflammatory pathway.


Subject(s)
Brain Ischemia/therapy , Janus Kinase 2/metabolism , Vagus Nerve Stimulation/methods , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Animals , Brain Injuries/drug therapy , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Disease Models, Animal , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/surgery , Inflammation/drug therapy , Male , Neuroprotective Agents/therapeutic use , Rats , Rats, Sprague-Dawley , STAT3 Transcription Factor/metabolism , Vagus Nerve/metabolism , alpha7 Nicotinic Acetylcholine Receptor/agonists , alpha7 Nicotinic Acetylcholine Receptor/antagonists & inhibitors
15.
Bioconjug Chem ; 27(5): 1305-13, 2016 05 18.
Article in English | MEDLINE | ID: mdl-27105066

ABSTRACT

Bacteria adhesion on the surface of biomaterials and following biofilm formation are important problems in biomedical applications. The charged antibiotics with small molar mass can hardly deposit alternately with polymers into multilayered films to load the drug. Herein, the (poly(acrylic acid)-gentamicin/poly(ethylenimine))n ((PAA-GS/PEI)n) multilayer film was designed and constructed via a layer-by-layer self-assembly method. Low molar mass GS cations were first combined with polyanion PAA and self-assembled with PEI to form multilayer films showing exponential growth behavior. The GS dosage could be adjusted by changing the layer number of films. Furthermore, the thermal cross-linking method was used to control the release rate of GS in PBS buffer. Owing to the diffusion of GS, a zone of inhibition of about 7.0 mm showed the efficient disinfection activity of the multilayer film. It could also be seen from the biofilm inhibition assay that the multilayer film effectively inhibited bacterial adhesion and biofilm formation. As the drug loading dosage was 160 µg/cm(2), the multilayer films showed very low cytotoxicity against human lens epithelial cells. The present work provides an easy way to load GS into multilayer films which can be applied to surface modification of implants and biomedical devices.


Subject(s)
Acrylic Resins/chemistry , Bacterial Adhesion/drug effects , Biofilms/drug effects , Drug Liberation , Gentamicins/chemistry , Gentamicins/pharmacology , Polyethyleneimine/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Biofilms/growth & development , Humans , Kinetics
16.
Neurochem Res ; 40(9): 1839-48, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26240057

ABSTRACT

A rat model of vascular dementia was used to compare the effects of involuntary exercise induced by functional electrical stimulation (FES), forced exercise and voluntary exercise on the recovery of cognitive function recovery and its underlying mechanisms. In an involuntary exercise (I-EX) group, FES was used to induce involuntary gait-like running on ladder at 12 m/min. A forced exercise group (F-EX) and a voluntary exercise group (V-EX) exercised by wheel running. The Barnes maze was used for behavioral assessment. Brain-derived neurotrophic factor (BDNF), phosphorylated extracellular signal-regulated kinase 1 and 2 (ERK1/2) and cAMP response element binding protein (CREB) positive cells in hippocampal CA1, CA2/3 and dentate gyrus (DG) regions were evaluated using immunohistochemical methods. Western blotting was used to assess the levels of BDNF, phosphorylated protein kinase B (Akt), tropomyosin receptor kinase B (TrkB), mitogen-activated protein kinase 1 and 2 (MEK1/2), ERK1/2 and CREB in BDNF-pCREB signaling in the hippocampus and prefrontal cortex. Involuntary, forced and voluntary exercises were all found to reverse the cognitive deficits of vascular dementia with about equal effectiveness. The number of BDNF, pCREB and pERK1/2 immunopositive cells was significantly increased in the hippocampal CA1, CA2/3 and DG regions in all three exercise groups. In addition, involuntary exercise activated BDNF and the phosphorylation of Akt, TrkB, MEK1/2, ERK1/2 and CREB in the hippocampus and prefrontal cortex equally as well as voluntary or forced exercise. These results suggest that involuntary exercise induced by FES may be as beneficial for alleviating cognitive deficits after cerebral ischemia.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , CREB-Binding Protein/metabolism , Cognition Disorders/physiopathology , Dementia, Vascular/physiopathology , Physical Conditioning, Animal , Animals , Dementia, Vascular/metabolism , Learning , MAP Kinase Signaling System , Male , Memory , Rats , Rats, Wistar , Signal Transduction
17.
J Neuroeng Rehabil ; 11: 84, 2014 May 11.
Article in English | MEDLINE | ID: mdl-24886085

ABSTRACT

BACKGROUND: The aim of this study is to investigate quantitative outcome measurements of hand motor performance for subjects after mild to moderate stroke using grip control tasks and characterize abnormal flexion synergy of upper extremities after stroke. METHODS: A customized dynamometer with force sensors was used to measure grip force and calculate rotation torque during the sub-maximal grip control tasks. The paretic and nonpartic sides of eleven subjects after stroke and the dominant sides of ten healthy persons were tested. Their maximal voluntary grip force was measured and used to set sub-maximal grip control tasks at three different target force levels. Force control ability was characterized by the maximal grip force, mean force percentage, coefficient of variation (CV), target deviation ratio (TDR), and rotation torque ratio (RTR). The motor impairments of subjects after stroke were also evaluated using the Fugl-Meyer assessment for upper extremity (FMA-UE) and Wolf Motor Function Test (WMFT). RESULTS: Maximal grip force of the paretic side was significantly reduced as compared to the nonparetic side and the healthy group, while the difference of maximal grip force between the nonparetic side and the healthy group was not significant. TDR and RTR increased for all three groups with increasing target force level. There were significant differences of CV, TDR and RTR between the paretic side and the healthy group at all the force levels. CV, TDR and RTR showed significant negative correlations with FMA-UE and WMFT at 50% of maximum grip force. CONCLUSIONS: This study designed a customized dynamometer together with an innovative measurement, RTR, to investigate the hand motor performance of subjects after mild to moderate stroke during force control tasks. And stroke-induced abnormal flexion synergy of wrist and finger muscles could be characterized by RTR. This study also identified a set of kinetic parameters which can be applied to quantitatively assess the hand motor function of subjects after mild to moderate stroke.


Subject(s)
Hand Strength/physiology , Motor Skills/physiology , Muscle Strength/physiology , Neurologic Examination/methods , Stroke Rehabilitation , Biomechanical Phenomena , Female , Hand , Humans , Male , Middle Aged , Stroke/complications
18.
Sheng Li Xue Bao ; 66(3): 358-64, 2014 Jun 25.
Article in Zh | MEDLINE | ID: mdl-24964854

ABSTRACT

The ventral nucleus of the lateral lemniscus (VNLL) is an important nucleus in the central auditory pathway which connects the lower brainstem and the midbrain inferior colliculus (IC). Previous studies have demonstrated that neurons in the VNLL could respond to sound signal parameters. Frequency tuning curves (FTCs) of VNLL neurons are generally wider than FTCs of IC neurons, suggesting that the VNLL does not enhance abilities of frequency discrimination and coding. Two types of rate-intensity functions (RIFs) are found in the VNLL: monotonic and non-monotonic RIFs. Intensity-tuning of VNLL neurons are affected by the temporal firing patterns during processing and encoding intensity. There are multiple temporal firing patterns in VNLL neurons. Onset pattern has a precise timing characteristic which is well suited to encode temporal features of stimuli, and also very important to animal behavior including bat's echolocation. The VNLL accepts inputs from lower nuclei, uploads glycine inhibitory outputs to IC, and modulates response characteristics generating and acoustic signal processing of IC neurons. Recent research suggests that fast inhibitory projection from the VNLL may delay the first spike latency of IC neurons, and the delayed inhibitory projection from the VNLL may mediate the temporal firing patterns of IC neurons. But how inhibitory inputs from the VNLL integrate in IC, and how inhibitory inputs from the VNLL enhance the ability of detecting sound signal of IC neurons are not very clear and need more direct evidence at the level of neurons. These questions will help further understand the role of upload during IC processes acoustic signal, which are our research target in the future. This article reviews the current literature regarding the roles of the VNLL in sound signal processing and the auditory ascending transmission, including advances in the relevant research in our laboratory.


Subject(s)
Auditory Pathways , Neurons/physiology , Pons/cytology , Acoustic Stimulation , Animals , Chiroptera , Echolocation
19.
Front Neurol ; 15: 1301208, 2024.
Article in English | MEDLINE | ID: mdl-38385040

ABSTRACT

Migraine is a common neurological disorder that affects more than one billion people worldwide. Recent genome-wide association studies have identified 123 genetic loci associated with migraine risk. However, the biological mechanisms underlying migraine and its relationships with other complex diseases remain unclear. We performed a phenome-wide association study (PheWAS) using UK Biobank data to investigate associations between migraine and 416 phenotypes. Mendelian randomization was employed using the IVW method. For loci associated with multiple diseases, pleiotropy was tested using MR-Egger. Single-cell RNA sequencing data was analyzed to profile the expression of 73 migraine susceptibility genes across brain cell types. qPCR was used to validate the expression of selected genes in microglia. PheWAS identified 15 disorders significantly associated with migraine, with one association detecting potential pleiotropy. Single-cell analysis revealed elevated expression of seven susceptibility genes (including ZEB2, RUNX1, SLC24A3, ANKDD1B, etc.) in brain glial cells. And qPCR confirmed the upregulation of these genes in LPS-treated microglia. This multimodal analysis provides novel insights into the link between migraine and other diseases. The single-cell profiling suggests the involvement of specific brain cells and molecular pathways. Validation of gene expression in microglia supports their potential role in migraine pathology. Overall, this study uncovers pleiotropic relationships and the biological underpinnings of migraine susceptibility.

20.
J Adv Res ; 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38527587

ABSTRACT

INTRODUCTION: With age and ATP decrease in the body, the transcription factors hypophosphorylation weakens the transcription of Slc40a1 and hinders the expression of the iron discharger ferroportin. This may lead to iron accumulation in the brain and the catalysis of free radicals that damage cerebral neurons and eventually lead to Alzheimer's disease (AD). OBJECTIVES: To prevent AD caused by brain iron excretion disorders and reveal the mechanism of J bs-5YP peptide restoring ferroportin. METHODS: We prepared J bs-YP peptide and administered it to the senile mice with dementia. Then, the intelligence of the mice was tested using a Morris Water Maze. The ATP content in the body was detected using the ATP hydrophysis and Phosphate precipitation method. The activation of Slc40a1 transcription was assayed with ATAC seq and the ferroportin, as well as the phosphorylation levels of Ets1 in brain were detected by Western Blot. RESULTS: The phosphorylation level of Ets1in brain was enhanced, and subsequently, the transcription of Slc40a1 was activated and ferroportin was increased in the brain, the levels of iron and free radicals were reduced, with the neurons protection, and the dementia was ultimately alleviated in the senile mice. CONCLUSION: J bs-5YP can recover the expression of ferroportin to excrete excessive iron in the brain of senile mice with dementia by enhancing the transcription of Slc40a1 via phosphorylating Ets1, revealing the potential of J bs-5YP as a drug to alleviate senile dementia.

SELECTION OF CITATIONS
SEARCH DETAIL