Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 431
Filter
Add more filters

Publication year range
1.
Bioessays ; 46(3): e2300173, 2024 03.
Article in English | MEDLINE | ID: mdl-38161246

ABSTRACT

Endosteal stem cells are a subclass of bone marrow skeletal stem cell populations that are particularly important for rapid bone formation occurring in growth and regeneration. These stem cells are strategically located near the bone surface in a specialized microenvironment of the endosteal niche. These stem cells are abundant in young stages but eventually depleted and replaced by other stem cell types residing in a non-endosteal perisinusoidal niche. Single-cell molecular profiling and in vivo cell lineage analyses play key roles in discovering endosteal stem cells. Importantly, endosteal stem cells can transform into bone tumor-making cells when deleterious mutations occur in tumor suppressor genes. The emerging hypothesis is that osteoblast-chondrocyte transitional identities confer a special subset of endosteal stromal cells with stem cell-like properties, which may make them susceptible for tumorigenic transformation. Endosteal stem cells are likely to represent an important therapeutic target of bone diseases caused by aberrant bone formation.


Subject(s)
Bone Diseases , Bone Marrow , Humans , Bone Marrow/metabolism , Osteogenesis , Osteoblasts/metabolism , Bone Diseases/metabolism , Bone Diseases/pathology , Stem Cells , Bone Marrow Cells/metabolism
2.
J Proteome Res ; 23(4): 1370-1378, 2024 04 05.
Article in English | MEDLINE | ID: mdl-38472149

ABSTRACT

Messenger ribonucleoprotein particles (mRNPs) are vital for tissue-specific gene expression via mediating posttranscriptional regulations. However, proteomic profiling of proteins in mRNPs, i.e., mRNA-associated proteins (mRAPs), has been challenging at the tissue level. Herein, we report the development of formaldehyde cross-linking-based mRNA-associated protein profiling (FAXRAP), a chemical strategy that enables the identification of mRAPs in both cultured cells and intact mouse organs. Applying FAXRAP, tissue-specific mRAPs were systematically profiled in the mouse liver, kidney, heart, and brain. Furthermore, brain mRAPs in Parkinson's disease (PD) mouse model were investigated, which revealed a global decrease of mRNP assembly in the brain of mice with PD. We envision that FAXRAP will facilitate uncovering the posttranscriptional regulation networks in various biological systems.


Subject(s)
Proteomics , Ribonucleoproteins , Mice , Animals , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Formaldehyde
3.
J Am Chem Soc ; 146(4): 2615-2623, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38117537

ABSTRACT

Herpes simplex virus-1 (HSV-1) utilizes multiple viral surface glycoproteins to trigger virus entry and fusion. Among these glycoproteins, glycoprotein D (gD) functions as a receptor-binding protein, which makes it an attractive target for the development of vaccines against HSV-1 infection. Several recombinant gD subunit vaccines have been investigated in both preclinical and clinical phases with varying degrees of success. It is fundamentally critical to explore the functions of gD glycans. In light of this, we report an efficient synthetic platform to construct glycosylated gDs bearing homogeneous glycans at N94 and N121. The oligosaccharides were prepared by enzymatic synthesis and conjugated to peptidyl sectors. The glycoproteins were constructed via a combination of 7-(piperazin-1-yl)-2-(methyl)quinolinyl (PPZQ)-assisted expressed protein ligation and ß-mercapto amino acid-assisted-desulfurization strategies. Biological studies showed that synthetic gDs exhibited potent in vivo activity in mice.


Subject(s)
Herpesviridae Infections , Herpesvirus 1, Human , Animals , Mice , Herpesvirus 1, Human/metabolism , Viral Envelope Proteins/metabolism , Glycoproteins/metabolism , Polysaccharides/metabolism
4.
Genome Res ; 31(9): 1573-1581, 2021 09.
Article in English | MEDLINE | ID: mdl-34266978

ABSTRACT

Inter-species comparisons of both morphology and gene expression within a phylum have revealed a period in the middle of embryogenesis with more similarity between species compared with earlier and later time points. This "developmental hourglass" pattern has been observed in many phyla, yet the evolutionary constraints on gene expression, as well as the underlying mechanisms of how this is regulated, remain elusive. Moreover, the role of positive selection on gene regulation in the more diverged earlier and later stages of embryogenesis remains unknown. Here, using DNase-seq to identify regulatory regions in two distant Drosophila species (D. melanogaster and D. virilis), we assessed the evolutionary conservation and adaptive evolution of enhancers throughout multiple stages of embryogenesis. This revealed a higher proportion of conserved enhancers at the phylotypic period, providing a regulatory basis for the hourglass expression pattern. Using an in silico mutagenesis approach, we detect signatures of positive selection on developmental enhancers at early and late stages of embryogenesis, with a depletion at the phylotypic period, suggesting positive selection as one evolutionary mechanism underlying the hourglass pattern of animal evolution.


Subject(s)
Drosophila melanogaster , Evolution, Molecular , Animals , Drosophila/genetics , Drosophila melanogaster/genetics , Embryonic Development/genetics , Gene Expression Regulation, Developmental , Regulatory Sequences, Nucleic Acid
5.
Plant Biotechnol J ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39031643

ABSTRACT

Dual base editors (DBEs) enable simultaneous A-to-G and C-to-T conversions, expanding mutation types. However, low editing efficiency and narrow targeting range limit the widespread use of DBEs in plants. The single-strand DNA binding domain of RAD51 DBD can be fused to base editors to improve their editing efficiency. However, it remains unclear how the DBD affects dual base editing performance in plants. In this study, we generated a series of novel plant DBE-SpGn tools consisting of nine constructs using the high-activity cytidine deaminase evoFERNY, adenosine deaminase TadA8e and DBD in various fusion modes with the PAM-flexible Streptococcus pyogenes Cas9 (SpCas9) nickase variant SpGn (with NG-PAM). By analysing their editing performance on 48 targets in rice, we found that DBE-SpGn constructs containing a single DBD and deaminases located at the N-terminus of SpGn exhibited the highest editing efficiencies. Meanwhile, constructs with deaminases located at the C-terminus and/or multiple DBDs failed to function normally and exhibited inhibited editing activity. We identified three particularly high-efficiency dual base editors (C-A-SpGn, C-A-D-SpGn and A-C-D-SpGn), named PhieDBEs (Plant high-efficiency dual base editors), capable of producing efficient dual base conversions within a narrow editing window (M5 ~ M9, M = A/C). The editing efficiency of C-A-D-SpGn was as high as 95.2% at certain target sites, with frequencies of simultaneous C-to-T and A-to-G conversions as high as 81.0%. In summary, PhieDBEs (especially C-A-D-SpGn) can produce diverse mutants and may prove useful in a wide variety of applications, including plant functional genomics, precise mutagenesis, directed evolution and crop genetic improvement, among others.

6.
Opt Express ; 32(10): 16629-16644, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38858864

ABSTRACT

Differential phase contrast (DPC) imaging relies on computational analysis to extract quantitative phase information from phase gradient images. However, even modest noise level can introduce errors that propagate through the computational process, degrading the quality of the final phase result and further reducing phase sensitivity. Here, we introduce the noise-corrected DPC (ncDPC) to enhance phase sensitivity. This approach is based on a theoretical DPC model that effectively considers most relevant noise sources in the camera and non-uniform illumination in DPC. In particular, the dominating shot noise and readout noise variance can be jointly estimated using frequency analysis and further corrected by block-matching 3D (BM3D) method. Finally, the denoised images are used for phase retrieval based on the common Tikhonov inversion. Our results, based on both simulated and experimental data, demonstrate that ncDPC outperforms the traditional DPC (tDPC), enabling significant improvements in both phase reconstruction quality and phase sensitivity. Besides, we have demonstrated the broad applicability of ncDPC by showing its performance in various experimental datasets.

7.
Glob Chang Biol ; 30(5): e17314, 2024 May.
Article in English | MEDLINE | ID: mdl-38747309

ABSTRACT

Unveiling spatial variation in vegetation resilience to climate extremes can inform effective conservation planning under climate change. Although many conservation efforts are implemented on landscape scales, they often remain blind to landscape variation in vegetation resilience. We explored the distribution of drought-resilient vegetation (i.e., vegetation that could withstand and quickly recover from drought) and its predictors across a heterogeneous coastal landscape under long-term wetland conversion, through a series of high-resolution satellite image interpretations, spatial analyses, and nonlinear modelling. We found that vegetation varied greatly in drought resilience across the coastal wetland landscape and that drought-resilient vegetation could be predicted with distances to coastline and tidal channel. Specifically, drought-resilient vegetation exhibited a nearly bimodal distribution and had a seaward optimum at ~2 km from coastline (corresponding to an inundation frequency of ~30%), a pattern particularly pronounced in areas further away from tidal channels. Furthermore, we found that areas with drought-resilient vegetation were more likely to be eliminated by wetland conversion. Even in protected areas where wetland conversion was slowed, drought-resilient vegetation was increasingly lost to wetland conversion at its landward optimum in combination with rapid plant invasions at its seaward optimum. Our study highlights that the distribution of drought-resilient vegetation can be predicted using landscape features but without incorporating this predictive understanding, conservation efforts may risk failing in the face of climate extremes.


Subject(s)
Climate Change , Conservation of Natural Resources , Droughts , Wetlands , Plants , Models, Theoretical , Satellite Imagery
8.
Theor Appl Genet ; 137(7): 170, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38913206

ABSTRACT

The timely degradation of tapetum, the innermost somatic anther cell layer in flowering plants, is critical for pollen development. Although several genes involved in tapetum development have been characterized, the molecular mechanisms underlying tapetum degeneration remain elusive. Here, we showed that mutation in Abnormal Degraded Tapetum 1 (ADT1) resulted in overaccumulation of Reactive Oxygen Species (ROS) and abnormal anther development, causing earlier tapetum Programmed Cell Death (PCD) and pollen abortion. ADT1 encodes a nuclear membrane localized protein, which is strongly expressed in the developing microspores and tapetal cells during early anther development. Moreover, ADT1 could interact with metallothionein MT2b, which was related to ROS scavenging and cell death regulation. These findings indicate that ADT1 is required for proper timing of tapetum PCD by regulating ROS homeostasis, expanding our understanding of the regulatory network of male reproductive development in rice.


Subject(s)
Gene Expression Regulation, Plant , Mutation , Oryza , Plant Proteins , Pollen , Reactive Oxygen Species , Oryza/genetics , Oryza/growth & development , Oryza/metabolism , Pollen/growth & development , Pollen/genetics , Reactive Oxygen Species/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Cell Death , Flowers/growth & development , Flowers/genetics , Apoptosis
9.
Inflamm Res ; 73(10): 1781-1801, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39180691

ABSTRACT

OBJECTIVE: Intestinal mucositis is one of the common side effects of anti-cancer chemotherapy. However, the molecular mechanisms involved in mucositis development remain incompletely understood. In this study, we investigated the function of receptor-interacting protein kinase 3 (RIP3/RIPK3) in regulating doxorubicin-induced intestinal mucositis and its potential mechanisms. METHODS: Intestinal mucositis animal models were induced in mice for in vivo studies. Rat intestinal cell line IEC-6 was used for in vitro studies. RNA­seq was used to explore the transcriptomic changes in doxorubicin-induced intestinal mucositis. Intact glycopeptide characterization using mass spectrometry was applied to identify α-1,2-fucosylated proteins associated with mucositis. RESULTS: Doxorubicin treatment increased RIP3 expression in the intestine and caused severe intestinal mucositis in the mice, depletion of RIP3 abolished doxorubicin-induced intestinal mucositis. RIP3-mediated doxorubicin-induced mucositis did not depend on mixed lineage kinase domain-like (MLKL) but on α-1,2-fucosyltransferase 2 (FUT2)-catalyzed α-1,2-fucosylation on inflammation-related proteins. Deficiency of MLKL did not affect intestinal mucositis, whereas inhibition of α-1,2-fucosylation by 2-deoxy-D-galactose (2dGal) profoundly attenuated doxorubicin-induced inflammation and mucositis. CONCLUSIONS: RIP3-FUT2 pathway is a central node in doxorubicin-induced intestinal mucositis. Targeting intestinal RIP3 and/or FUT2-mediated α-1,2-fucosylation may provide potential targets for preventing chemotherapy-induced intestinal mucositis.


Subject(s)
Doxorubicin , Fucosyltransferases , Galactoside 2-alpha-L-fucosyltransferase , Mice, Inbred C57BL , Mucositis , Receptor-Interacting Protein Serine-Threonine Kinases , Animals , Doxorubicin/adverse effects , Mucositis/chemically induced , Mucositis/metabolism , Mucositis/pathology , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Fucosyltransferases/genetics , Fucosyltransferases/metabolism , Rats , Cell Line , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Male , Mice , Antibiotics, Antineoplastic/toxicity , Antibiotics, Antineoplastic/adverse effects , Mice, Knockout
10.
J Nanobiotechnology ; 22(1): 79, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38419097

ABSTRACT

Osteoarthritis (OA) is a degenerative disease that significantly impairs quality of life. There is a pressing need for innovative OA therapies. While small extracellular vesicles (sEVs) show promising therapeutic effects against OA, their limited yield restricts clinical translation. Here, we devised a novel production system for sEVs that enhances both their yield and therapeutic properties. By stimulating mesenchymal stem cells (MSCs) using electromagnetic field (EMF) combined with ultrasmall superparamagnetic iron oxide (USPIO) particles, we procured an augmented yield of EMF-USPIO-sEVs. These vesicles not only activate anabolic pathways but also inhibit catabolic activities, and crucially, they promote M2 macrophage polarization, aiding cartilage regeneration. In an OA mouse model triggered by anterior cruciate ligament transection surgery, EMF-USPIO-sEVs reduced OA severity, and augmented matrix synthesis. Moreover, they decelerated OA progression through the microRNA-99b/MFG-E8/NF-κB signaling axis. Consequently, EMF-USPIO-sEVs present a potential therapeutic option for OA, acting by modulating matrix homeostasis and macrophage polarization.


Subject(s)
Extracellular Vesicles , Osteoarthritis , Animals , Mice , Quality of Life , Osteoarthritis/metabolism , Homeostasis , Macrophages/metabolism , Extracellular Vesicles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL