Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
J Am Chem Soc ; 146(23): 16281-16294, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38812457

ABSTRACT

Interfacial water on a metal surface acts as an active layer through the reorientation of water, thereby facilitating the energy transfer and chemical reaction across the metal surface in various physicochemical and industrial processes. However, how this active interfacial water collectively behaves on flat noble metal substrates remains largely unknown due to the experimental limitation in capturing librational vibrational motion of interfacial water and prohibitive computational costs at the first-principles level. Herein, by implementing a machine-learning approach to train neural network potentials, we enable performing advanced molecular dynamics simulations with ab initio accuracy at a nanosecond scale to map the distinct rotational motion of water molecules on a metal surface at room temperature. The vibrational density of states of the interfacial water with two-layer profiles reveals that the rotation and vibration of water within the strong adsorption layer on the metal surface behave as if the water molecules in the bulk ice, wherein the O-H stretching frequency is well consistent with the experimental results. Unexpectedly, the water molecules within the adjacent weak adsorption layer exhibit superdiffusive rotation, contrary to the conventional diffusive rotation of bulk water, while the vibrational motion maintains the characteristic of bulk water. The mechanism underlying this abnormal superdiffusive rotation is attributed to the translation-rotation decoupling of water, in which the translation is restrained by the strong hydrogen bonding within the bilayer interfacial water, whereas the rotation is accelerated freely by the asymmetric water environment. This superdiffusive rotation dynamics may elucidate the experimentally observed large fluctuation of the potential of zero charge on Pt and thereby the conventional Helmholtz layer model revised by including the contribution of interfacial water orientation. The surprising superdiffusive rotation of vicinal water next to noble metals will shed new light on the physicochemical processes and the activity of water molecules near metal electrodes or catalysts.

2.
Small ; : e2402526, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958071

ABSTRACT

The intricate processes that govern the interactions between peripatetic immune cells and distal renal injury in obesity are not fully understood. Employing transcriptomic analysis of circulating extracellular vesicles (EVs), a marked amplification of small RNA (miR-3960) is discerned within CD3-CD19+ B cells. This RNA is found to be preferentially augmented in kidney tissues, contrasting with its subdued expression in other organs. By synthesizing dual-luciferase reporter assay with co-immunoprecipitation analysis, it is pinpointed that miR-3960 specifically targets the nuclear gene TRMT5, a pivotal actor in the methylation of mitochondrial tRNA. This liaison instigates aberrations in the post-transcriptional modifications of mitochondrial tRNA, engendering deficiencies within the electron respiratory chain, primarily attributable to the diminution of the mitochondrial bioenergetic compound (NDUFA7) complex I. Such perturbations lead to a compromised mitochondrial respiratory capacity in renal tubular cells, thereby exacerbating tubular injury. In contrast, EV blockade or miR-3960 depletion markedly alleviates renal tubular injury in obesity. This investigation unveils a hitherto unexplored pathway by which obesity-induced circulating immune cells remotely manipulate mitochondrial metabolism in target organs. The strategic targeting of obese EVs or infiltrative immune cells and their specifically secreted RNAs emerges as a promising therapeutic avenue to forestall obesity-related renal afflictions.

3.
Opt Express ; 32(10): 16891-16900, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38858885

ABSTRACT

In the field of high-speed data transmission, wireless optical communications provide a paradigm shift from the conventional tethered connections, offering promising bandwidth and minimal latency. The cornerstone of such systems lies in their ability to precisely control the propagation of Gaussian beams, which are favored due to their inherent properties of minimal divergence and high spatial coherence over long distances. Efficient transmission hinges on the proper manipulation of these beams' spatial characteristics, particularly the waist radius and the associated Rayleigh length, which together delineate the beam's diffraction and spread. This manuscript methodically explores the theoretical and practical aspects of Gaussian beam focusing through lens systems, aiming to elucidate the pivotal relationship between the optimally adjusted focal parameters and the resultant augmentation of the Rayleigh length. Through rigorous diffraction integral simulations and a keen analysis of constraints posed by finite apertures, the study articulates strategies to considerably enhance the Gaussian beam's propagation characteristics, thereby bolstering the reliability and efficacy of wireless optical communication systems.

4.
Exp Eye Res ; 244: 109939, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38789021

ABSTRACT

Transforming growth factor-ß2 (TGF-ß2) induced fibrogenic changes in human trabecular meshwork (HTM) cells have been implicated in trabecular meshwork (TM) damage and intraocular pressure (IOP) elevation in primary open-angle glaucoma (POAG) patients. Silibinin (SIL) exhibited anti-fibrotic properties in various organs and tissues. This study aimed to assess the effects of SIL on the TGF-ß2-treated HTM cells and to elucidate the underlying mechanisms. Our study found that SIL effectively inhibited HTM cell proliferation, attenuated TGF-ß2-induced cell migration, and mitigated TGF-ß2-induced reorganization of both actin and vimentin filaments. Moreover, SIL suppressed the expressions of fibronectin (FN), collagen type I alpha 1 chain (COL1A1), and alpha-smooth muscle actin (α-SMA) in the TGF-ß2-treated HTM cells. RNA sequencing indicated that SIL interfered with the phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB, also known as AKT) signaling pathway, extracellular matrix (ECM)-receptor interaction, and focal adhesion in the TGF-ß2-treated HTM cells. Western blotting demonstrated SIL inhibited the activation of Janus kinase 2 (JAK2)/signal transducers and activators of transcription 3 (STAT3) and the downstream PI3K/AKT signaling pathways induced by TGF-ß2, potentially contributing to its inhibitory effects on ECM protein production in the TGF-ß2-treated HTM cells. Our study demonstrated the ability of SIL to inhibit TGF-ß2-induced fibrogenic changes in HTM cells. SIL could be a potential IOP-lowering agent by reducing the fibrotic changes in the TM tissue of POAG patients, which warrants further investigation through additional animal and clinical studies.


Subject(s)
Cell Movement , Cell Proliferation , Signal Transduction , Silybin , Trabecular Meshwork , Humans , Antioxidants/pharmacology , Blotting, Western , Cell Movement/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Fibrosis , Glaucoma, Open-Angle/metabolism , Glaucoma, Open-Angle/drug therapy , Glaucoma, Open-Angle/pathology , Janus Kinase 2/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Silybin/pharmacology , Silymarin/pharmacology , STAT3 Transcription Factor/metabolism , Trabecular Meshwork/drug effects , Trabecular Meshwork/metabolism , Trabecular Meshwork/pathology , Transforming Growth Factor beta2/pharmacology , Transforming Growth Factor beta2/metabolism
5.
Environ Sci Technol ; 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38272008

ABSTRACT

Surface-enhanced Raman spectroscopy (SERS) has been well explored as a highly effective characterization technique that is capable of chemical pollutant detection and identification at very low concentrations. Machine learning has been previously used to identify compounds based on SERS spectral data. However, utilization of SERS to quantify concentrations, with or without machine learning, has been difficult due to the spectral intensity being sensitive to confounding factors such as the substrate parameters, orientation of the analyte, and sample preparation technique. Here, we demonstrate an approach for predicting the concentration of sample pollutants from SERS spectra using machine learning. Frequency domain transform methods, including the Fourier and Walsh-Hadamard transforms, are applied to spectral data sets of three analytes (rhodamine 6G, chlorpyrifos, and triclosan), which are then used to train machine learning algorithms. Using standard machine learning models, the concentration of the sample pollutants is predicted with >80% cross-validation accuracy from raw SERS data. A cross-validation accuracy of 85% was achieved using deep learning for a moderately sized data set (∼100 spectra), and 70-80% was achieved for small data sets (∼50 spectra). Performance can be maintained within this range even when combining various sample preparation techniques and environmental media interference. Additionally, as a spectral pretreatment, the Fourier and Hadamard transforms are shown to consistently improve prediction accuracy across multiple data sets. Finally, standard models were shown to accurately identify characteristic peaks of compounds via analysis of their importance scores, further verifying their predictive value.

6.
BMC Cardiovasc Disord ; 24(1): 333, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961333

ABSTRACT

BACKGROUND: Oxidative stress may contribute to cardiac ryanodine receptor (RyR2) dysfunction in diabetic cardiomyopathy. Ginsenoside Rb1 (Rb1) is a major pharmacologically active component of ginseng to treat cardiovascular diseases. Whether Rb1 treat diabetes injured heart remains unknown. This study was to investigate the effect of Rb1 on diabetes injured cardiac muscle tissue and to further investigate its possible molecular pharmacology mechanisms. METHODS: Male Sprague-Dawley rats were injected streptozotocin solution for 2 weeks, followed 6 weeks Rb1 or insulin treatment. The activity of SOD, CAT, Gpx, and the levels of MDA was measured; histological and ultrastructure analyses, RyR2 activity and phosphorylated RyR2(Ser2808) protein expression analyses; and Tunel assay were performed. RESULTS: There was decreased activity of SOD, CAT, Gpx and increased levels of MDA in the diabetic group from control. Rb1 treatment increased activity of SOD, CAT, Gpx and decreased the levels of MDA as compared with diabetic rats. Neutralizing the RyR2 activity significantly decreased in diabetes from control, and increased in Rb1 treatment group from diabetic group. The expression of phosphorylation of RyR2 Ser2808 was increased in diabetic rats from control, and were attenuated with insulin and Rb1 treatment. Diabetes increased the apoptosis rate, and Rb1 treatment decreased the apoptosis rate. Rb1 and insulin ameliorated myocardial injury in diabetic rats. CONCLUSIONS: These data indicate that Rb1 could be useful for mitigating oxidative damage, reduced phosphorylation of RyR2 Ser2808 and decreased the apoptosis rate of cardiomyocytes in diabetic cardiomyopathy.


Subject(s)
Antioxidants , Apoptosis , Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Ginsenosides , Myocytes, Cardiac , Oxidative Stress , Rats, Sprague-Dawley , Ryanodine Receptor Calcium Release Channel , Streptozocin , Animals , Diabetes Mellitus, Experimental/drug therapy , Male , Oxidative Stress/drug effects , Ryanodine Receptor Calcium Release Channel/metabolism , Ryanodine Receptor Calcium Release Channel/drug effects , Ginsenosides/pharmacology , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/physiopathology , Diabetic Cardiomyopathies/etiology , Apoptosis/drug effects , Antioxidants/pharmacology , Phosphorylation , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Myocytes, Cardiac/metabolism , Myocardium/pathology , Myocardium/metabolism , Insulin , Malondialdehyde/metabolism
7.
Phytother Res ; 38(5): 2496-2517, 2024 May.
Article in English | MEDLINE | ID: mdl-38447978

ABSTRACT

We investigated the mechanism by which quercetin preserves mitochondrial quality control (MQC) in cardiomyocytes subjected to ischemia-reperfusion stress. An enzyme-linked immunosorbent assay was employed in the in vivo experiments to assess myocardial injury markers, measure the transcript levels of SIRT5/DNAPK-cs/MLKL during various time intervals of ischemia-reperfusion, and observe structural changes in cardiomyocytes using transmission electron microscopy. In in vitro investigations, adenovirus transfection was employed to establish a gene-modified model of DNA-PKcs, and primary cardiomyocytes were obtained from a mouse model with modified SIRT5 gene. Reverse transcription polymerase chain reaction, laser confocal microscopy, immunofluorescence localization, JC-1 fluorescence assay, Seahorse energy analysis, and various other assays were applied to corroborate the regulatory influence of quercetin on the MQC network in cardiomyocytes after ischemia-reperfusion. In vitro experiments demonstrated that ischemia-reperfusion injury caused changes in the structure of the myocardium. It was seen that quercetin had a beneficial effect on the myocardial tissue, providing protection. As the ischemia-reperfusion process continued, the levels of DNA-PKcs/SIRT5/MLKL transcripts were also found to change. In vitro investigations revealed that quercetin mitigated cardiomyocyte injury caused by mitochondrial oxidative stress through DNA-PKcs, and regulated mitophagy and mitochondrial kinetics to sustain optimal mitochondrial energy metabolism levels. Quercetin, through SIRT5 desuccinylation, modulated the stability of DNA-PKcs, and together they regulated the "mitophagy-unfolded protein response." This preserved the integrity of mitochondrial membrane and genome, mitochondrial dynamics, and mitochondrial energy metabolism. Quercetin may operate synergistically to oversee the regulation of mitophagy and the unfolded protein response through DNA-PKcs-SIRT5 interaction.


Subject(s)
Myocytes, Cardiac , Quercetin , Sirtuins , Quercetin/pharmacology , Animals , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Mice , Sirtuins/metabolism , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , Oxidative Stress/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , DNA-Activated Protein Kinase/metabolism , Male , Mice, Inbred C57BL , Mitophagy/drug effects
8.
Molecules ; 29(4)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38398632

ABSTRACT

The major histocompatibility complex (MHC) can recognize and bind to external peptides to generate effective immune responses by presenting the peptides to T cells. Therefore, understanding the binding modes of peptide-MHC complexes (pMHC) and predicting the binding affinity of pMHCs play a crucial role in the rational design of peptide vaccines. In this study, we employed molecular dynamics (MD) simulations and free energy calculations with an Alanine Scanning with Generalized Born and Interaction Entropy (ASGBIE) method to investigate the protein-peptide interaction between HLA-A*02:01 and the G9209 peptide derived from the melanoma antigen gp100. The energy contribution of individual residue was calculated using alanine scanning, and hotspots on both the MHC and the peptides were identified. Our study shows that the pMHC binding is dominated by the van der Waals interactions. Furthermore, we optimized the ASGBIE method, achieving a Pearson correlation coefficient of 0.91 between predicted and experimental binding affinity for mutated antigens. This represents a significant improvement over the conventional MM/GBSA method, which yields a Pearson correlation coefficient of 0.22. The computational protocol developed in this study can be applied to the computational screening of antigens for the MHC1 as well as other protein-peptide binding systems.


Subject(s)
Peptides , Proteins , Peptides/chemistry , Proteins/metabolism , Protein Binding , Major Histocompatibility Complex , Histocompatibility Antigens/metabolism , Alanine/metabolism
9.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(3): 335-338, 2024 Mar 10.
Article in Zh | MEDLINE | ID: mdl-38448025

ABSTRACT

OBJECTIVE: To explore the clinical characteristics and genetic basis for a child with global developmental delay and autism. METHODS: A child who had presented at West China Second University Hospital of Sichuan University on April 13, 2021 was selected as the study subject. Clinical manifestations, laboratory examination and result of genetic testing were analyzed. RESULTS: The main symptoms of the child had included cognitive, language and motor delay, autism and epilepsy. Electroencephalogram revealed multiple focal discharges in both waking and sleeping stages, with the remarkable one seen at the sleeping stage. Cranial MRI showed pachygyria and local cortical thickening, Whole exome sequencing (WES) revealed that the child has harbored a heterozygous c.1589_1595dup (p.Gly533Leufs*143) frameshifting variant in the TBR1 gene (OMIM 604616). Based on the guidelines from the American College of Medical Genetics and Genomics, the variant was predicted to be likely pathogenic (PS2+PVS1_Supporting+PM2_Supporting). After treated with levetiracetam and rehabilitation training, the child did not have seizure in the past 5 months, and his motor development has also significantly improved. CONCLUSION: The c.1589_1595dup variant of the TBR1 gene probably underlay the disease in this patient.


Subject(s)
Autistic Disorder , Child , Humans , Autistic Disorder/genetics , China , Developmental Disabilities/genetics , Electroencephalography , Genetic Testing , T-Box Domain Proteins
10.
Front Public Health ; 12: 1322366, 2024.
Article in English | MEDLINE | ID: mdl-38660349

ABSTRACT

Background: To investigate the knowledge, attitude, and practice (KAP) of atrial fibrillation (AF) among the general population in high-altitude areas. Methodology: A web-based cross-sectional study was conducted among the general population in high-altitude areas. Results: A total of 786 valid questionnaires were enrolled, with a mean age of 34.75 ± 14.16 years. The mean score of knowledge, attitude and practice were 8.22 ± 6.50 (possible range: 0-10), 28.90 ± 5.63 (possible range: 8-40), 34.34 ± 6.44 (possible range: 9-45), respectively. The multivariate analysis showed that knowledge scores (OR = 1.108, 95% CI = 1.075-1.142, p < 0.001), attitude scores (OR = 1.118, 95% CI = 1.081-1.156, p < 0.001), and never smoking (OR = 2.438, 95% CI = 1.426-4.167, p = 0.001) were independently associated with proactive practice. The structural equation modeling (SEM) showed direct effect of knowledge on practice (p = 0.014), and attitude on practice (p = 0.004), while no effect of knowledge on attitude (p = 0.190). Conclusion: The general population in high-altitude regions had adequate knowledge, positive attitude, and proactive practice towards AF. The SEM was suitable for explaining general population' KAP regarding AF, revealing that knowledge directly and positively affected attitude and practice.


Subject(s)
Altitude , Atrial Fibrillation , Health Knowledge, Attitudes, Practice , Humans , Female , Male , Cross-Sectional Studies , Adult , Surveys and Questionnaires , Middle Aged , Young Adult , Aged
11.
Int J Biol Macromol ; 275(Pt 1): 133609, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38960220

ABSTRACT

Developing plastic/fluorine/silicon-free and degradable water/oil-resistant coatings for paper-based packaging materials to replace disposable plastic products is a very effective way to solve the problem of 'white pollution' or microplastics pollution. A novel water/oil-resistant coating was developed by alkyl ketene dimer (AKD)-based Pickering emulsion and chitosan in this work. Cellulose nanofibrils (CNF) were used as a stabilizing solid for AKD emulsion, with the addition of chitosan as an oil-resistance agent. The coating provides excellent hydrophobicity, water/oil resistance as well as good barrier properties. The water contact angle was as high as 130° and the minimum Cobb60 value was 5.7 g/m2, which was attributed to the hydrophobicity of AKD. In addition, the kit rating reached maximum 12/12 at coating weight of 8.26 g/m2 and the water vapor transmittance rate (WVTR) was reduced to 153.4 g/(m2⋅day) at the coating weight of 10.50 g/m2. The tensile strength of the paper was increased from 28.1 to 43.6 MPa after coating. Overall, this coating can effectively improve the performance of paper-based materials, which may play an important role in the process of replacing disposable plastic packaging with paper-based materials.


Subject(s)
Cellulose , Chitosan , Emulsions , Oils , Paper , Water , Chitosan/chemistry , Cellulose/chemistry , Emulsions/chemistry , Water/chemistry , Oils/chemistry , Hydrophobic and Hydrophilic Interactions , Tensile Strength , Nanofibers/chemistry
12.
Sci Rep ; 14(1): 9353, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654025

ABSTRACT

Welding process, as one of the crucial industrial technologies in ship construction, accounts for approximately 70% of the workload and costs account for approximately 40% of the total cost. The existing welding quality prediction methods have hypothetical premises and subjective factors, which cannot meet the dynamic control requirements of intelligent welding for processing quality. Aiming at the low efficiency of quality prediction problems poor timeliness and unpredictability of quality control in ship assembly-welding process, a data and model driven welding quality prediction method is proposed. Firstly, the influence factors of welding quality are analyzed and the correlation mechanism between process parameters and quality is determined. According to the analysis results, a stable and reliable data collection architecture is established. The elements of welding process monitoring are also determined based on the feature dimensionality reduction method. To improve the accuracy of welding quality prediction, the prediction model is constructed by fusing the adaptive simulated annealing, the particle swarm optimization, and the back propagation neural network algorithms. Finally, the effectiveness of the prediction method is verified through 74 sets of plate welding experiments, the prediction accuracy reaches over 90%.

13.
Glob Med Genet ; 11(2): 150-158, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38628662

ABSTRACT

Background NFE2L2 (nuclear factor erythroid-2-related factor-2) encodes a basic leucine zipper (bZIP) transcription factor and exhibits variations in various tumor types, including lung cancer. In this study, we comprehensively investigated the impact of simultaneous mutations on the survival of NFE2L2 -mutant lung cancer patients within specific subgroups. Methods A cohort of 1,103 lung cancer patients was analyzed using hybridization capture-based next-generation sequencing. Results The NFE2L2 gene had alterations in 3.0% (33/1,103) of lung cancer samples, including 1.5% (15/992) in adenocarcinoma and 16.2% (18/111) in squamous cell carcinoma. Thirty-four variations were found, mainly in exons 2 (27/34). New variations in exon 2 (p.D21H, p.V36_E45del, p.F37_E45del, p.R42P, p.E67Q, and p.L76_E78delinsQ) were identified. Some patients had copy number amplifications. Co-occurrence with TP53 (84.8%), CDKN2A (33.3%), KMT2B (33.3%), LRP1B (33.3%), and PIK3CA (27.3%) mutations was common. Variations of NFE2L2 displayed the tightest co-occurrence with IRF2 , TERC , ATR , ZMAT3 , and SOX2 ( p < 0.001). In The Cancer Genome Atlas Pulmonary Squamous Carcinoma project, patients with NFE2L2 variations and 3q26 amplification had longer median survival (63.59 vs. 32.04 months, p = 0.0459) and better overall survival. Conclusions NFE2L2 mutations display notable heterogeneity in lung cancer. The coexistence of NFE2L2 mutations and 3q26 amplification warrants in-depth exploration of their potential clinical implications and treatment approaches for affected patients.

14.
Glob Med Genet ; 11(2): 175-186, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38873557

ABSTRACT

Background Anaplastic lymphoma kinase ( ALK ) fusion events account for 3 to 7% of genetic alterations in patients with nonsmall cell lung cancer (NSCLC). This study aimed to explore the landscape of ALK fusion-positive and ALK fusion-negative in a large cohort of NSCLC patients. Methods The formalin-fixed paraffin-embedded specimens of NSCLC patients who underwent next-generation sequencing from 2020 to 2023 in Yinfeng Gene Technology Co., Ltd. Clinical laboratory were included in this study. Results In the current study, a total of 180 (3.20%) patients tested positive for ALK fusions in 5,622 NSCLC samples. Within the ALK -positive cohort, a total of 228 ALK fusions were identified. Furthermore, five novel ALK fusion partners, including DAB1-ALK , KCMF1-ALK , KIF13A-ALK , LOC643770-ALK , and XDH-ALK were identified. In cases with ALK fusion-positive, TP53 alterations were the most prevalent (26.3%), followed by CDKN2A (8.4%), epidermal growth factor receptor ( EGFR , 5.6%), and ALK (5.6%). By contrast, EGFR alterations were most prevalent (51%) in patients with ALK fusion-negative NSCLC, followed by TP53 (42.7%), KRAS (11.6%), and CDKN2A (11.3%). A total of 10 cases where ALK fusion co-occurred with EGFR mutations were also identified. Notably, the ALK fusion positivity rate was higher in younger patients ( p < 0.0001) and in female patients ( p = 0.0429). Additionally, positive ALK test results were more prevalent in patients with high programmed death-ligand 1 expression, especially when applying a 50% cutoff. Conclusions Collectively, these findings offer valuable genomic insights that could inform the personalized clinical care of patients with NSCLC harboring ALK fusions within the context of precision medicine.

15.
Expert Opin Drug Saf ; : 1-8, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38700323

ABSTRACT

OBJECTIVE: Elagolix is approved for the treatment of moderate-to-severe pain associated with endometriosis. However, the long-term safety of elagolix in a large sample of real-world patients is unknown. METHODS: The U.S. Food and Drug Administration Adverse Event Reporting System (FAERS) reports were collected and analyzed from January 2019 to June 2023. Disproportionality analyses, including the reporting odds ratio (ROR), the proportional reporting ratio (PRR), the Bayesian confidence propagation neural network (BCPNN), and the multi-item gamma Poisson shrinker (MGPS) algorithms, were employed in data mining to quantify the signals of elagolix-related adverse events (AEs). RESULTS: After removing the non-drug-related AE signals, we detected several AE signals such as hot flushes, bone pain, suicidal ideation, depression, and increased liver enzymes, which were known during the clinical trial phase. In addition to this, we detected several unexpected important AEs that were not mentioned in the drug insert, including cystitis interstitial, parosmia, and epiploic appendagitis. The median onset time of elagolix-associated AEs was 28.5 days. CONCLUSION: Our study provides a comprehensive picture of the safety of elagolix in the post-marketing setting, while also identifying potential new AE signals. These findings emphasize the importance of continued monitoring of the potential risks of elagolix.

16.
Expert Opin Drug Saf ; : 1-9, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39078338

ABSTRACT

OBJECTIVE: Fostamatinib, an FDA-approved oral small-molecule spleen tyrosine kinase (SYK) inhibitor, is used to treat thrombocytopenia in adults with chronic immune thrombocytopenia (ITP) who have not responded to previous treatments. However, comprehensive safety data is lacking. This study uses the FDA Adverse Event Reporting System (FAERS) database to explore real-world adverse events (AEs) related to fostamatinib, aiming to inform its clinical use. METHODS: The FAERS database was retrospectively queried to extract reports associated with fostamatinib from 2019 to 2023. To identify and evaluate potential AEs in patients receiving fostamatinib, various disproportionality analyses such as the reporting odds ratio (ROR), the proportional reporting ratio (PRR), the Bayesian confidence propagation neural network (BCPNN), and the multi-item gamma Poisson shrinker (MGPS) were employed. RESULTS: A total of 23 AE signals were included in our analysis. Among them, hypertension, blood pressure increase, blood pressure abnormality, hepatic enzyme increase, and diarrhea were consistent with the common AEs described for fostamatinib in clinical trials. In addition, unexpected serious AEs were detected including cerebral thrombosis and necrotizing soft tissue infection. The median time to onset of fostamatinib-related AEs was 86 days. CONCLUSION: Our investigation revealed several possibly emergent safety concerns associated with fostamatinib in real-world clinical practice, which might provide essential vigilance evidence for clinicians and pharmacists to manage the safety issues of fostamatinib.

17.
Front Neurol ; 15: 1414738, 2024.
Article in English | MEDLINE | ID: mdl-39081341

ABSTRACT

Unilateral auditory deprivation (UAD) results in cross-modal reorganization of the auditory cortex (AC), which can impair auditory and cognitive functions and diminish the recovery effect of cochlear implantation. Moreover, the subcortical areas provide extensive ascending projections to the AC. To date, a thorough systematic study of subcortical auditory neural plasticity has not been undertaken. Therefore, this review aims to summarize the current evidence on the bidirectional remodeling of the central auditory system caused by UAD, particularly the changes in subcortical neural plasticity. Lateral changes occur in the cochlear nucleus, lateral superior olive, medial nucleus of the trapezoid body, inferior colliculus, and AC of individuals with UAD. Moreover, asymmetric neural activity becomes less prominent in the higher auditory nuclei, which may be due to cross-projection regulation of the bilateral pathway. As a result, subcortical auditory neural plasticity caused by UAD may contribute to the outcomes of cochlear implantation in patients with single-sided deafness (SSD), and the development of intervention strategies for patients with SSD is crucial. Considering that previous studies have focused predominantly on the neural plasticity of the AC, we believe that bidirectional remodeling of subcortical areas after UAD is also crucial for investigating the mechanisms of interventions.

18.
Front Pharmacol ; 15: 1391003, 2024.
Article in English | MEDLINE | ID: mdl-39050747

ABSTRACT

Background: Oseltamivir and baloxavir marboxil are the two primary oral drugs approved by the Food and Drug Administration (FDA) for treating influenza. Limited real-world evidence exists on their adverse events in children. The purpose of this study was to explore the adverse event (AE) profiles of oseltamivir and baloxavir marboxil in children based on the U.S. Food and Drug Administration Adverse Event Reporting System (FAERS) database. Methods: FAERS reports were collected and analyzed from the first quarter of 2019 to the third quarter of 2023. Disproportionality analyses, including the reporting odds ratio (ROR), the proportional reporting ratio (PRR), the Bayesian confidence propagation neural network (BCPNN), and the multi-item gamma Poisson shrinker (MGPS) algorithms, were employed in data mining to quantify the signals of oseltamivir and baloxavir marboxil-related AEs. Results: A total of 464 reports of AEs to oseltamivir as the "primary suspect (PS)" and 429 reports of AEs to baloxavir marboxil as the "PS" were retrieved in pediatric patients. A total of 100 oseltamivir-induced AE signals were detected in 17 system organ classes (SOCs), and 11 baloxavir marboxil-induced AE signals were detected in 6 SOCs after complying with the four algorithms simultaneously. Categorized and summarized by the number of reports of involvement in each SOC, the top 3 for oseltamivir were psychiatric disorders, gastrointestinal disorders, general disorders and site-of-administration conditions, respectively. The top 3 for baloxavir marboxil were injury, poisoning and surgical complications, general disorders and site of administration conditions, and psychiatric disorders, respectively. Conclusion: Our study identifies potential new AE signals for oseltamivir and provides a broader understanding of the safety of oseltamivir and baloxavir marboxil in children.

19.
Chin J Integr Med ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38941043

ABSTRACT

OBJECTIVE: To explore the specific pharmacological molecular mechanisms of Laoke Formula (LK) on treating advanced non-small cell lung cancer (NSCLC) based on clinical application, network pharmacology and experimental validation. METHODS: Kaplan-Meier method and Cox regression analysis were used to evaluate the survival benefit of Chinese medicine (CM) treatment in 296 patients with NSCLC in Tianjin Medical University Cancer Institute and Hospital from January 2011 to December 2015. The compounds of LK were screened using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, and the corresponding targets were performed from Swiss Target Prediction. NSCLC-related targets were obtained from Therapeutic Target Database and Comparative Toxicogenomics Database. Key compounds and targets were identified from the compound-target-disease network and protein-protein interaction (PPI) network analysis, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analysis were used to predict the potential signaling pathways involved in the treatment of advanced NSCLC with LK. The binding affinities between key ingredients and targets were further verified using molecular docking. Finally, A549 cell proliferation and migration assay were used to evaluate the antitumor activity of LK. Western blot was used to further verify the expression of key target proteins related to the predicted pathways. RESULTS: Kaplan-Meier survival analysis showed that the overall survival of the CM group was longer than that of the non-CM group (36 months vs. 26 months), and COX regression analysis showed that LK treatment was an independent favorable prognostic factor (P=0.027). Next, 97 components and 86 potential targets were included in the network pharmacology, KEGG and GO analyses, and the results indicated that LK was associated with proliferation and apoptosis. Moreover, molecular docking revealed a good binding affinity between the key ingredients and targets. In vitro, A549 cell proliferation and migration assay showed that the biological inhibition effect was more obvious with the increase of LK concentration (P<0.05). And decreased expressions of nuclear factor κB1 (NF-κB1), epidermal growth factor receptor (EGFR) and AKT serine/threonine kinase 1 (AKT1) and increased expression of p53 (P<0.05) indicated the inhibitory effect of LK on NSCLC by Western blot. CONCLUSION: LK inhibits NSCLC by inhibiting EGFR/phosphoinositide 3-kinase (PI3K)/AKT signaling pathway, NFκB signaling pathway and inducing apoptosis, which provides evidence for the therapeutic mechanism of LK to increase overall survival in NSCLC patients.

20.
Materials (Basel) ; 17(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38893827

ABSTRACT

Amidst the rapid advancements in the fields of photovoltaics and optoelectronic devices, CsPbBr3 nanosheets (NSs) have emerged as a focal point of research due to their exceptional optical and electronic properties. This work explores the application potential of CsPbBr3 NSs in photonic and catalytic domains. Utilizing an optimized hot-injection method and a ZnBr2-assisted in situ passivation strategy, we successfully synthesized CsPbBr3 NSs with controlled dimensions and optical characteristics. Comprehensive characterization revealed that the nucleation environment and thickness significantly influenced the structure and optical performance of the materials. The results indicate that the optimized synthesis method enables control over the lateral dimensions of the nanoparticles, ranging from 9.1 ± 0.06 nm to 334.5 ± 4.40 nm, facilitating the tuning of the excitation wavelength from 460 nm (blue) to 510 nm (green). Further analyses involving photoresponse and electrochemical impedance spectroscopy demonstrated the substantial potential of these NSs in applications such as photocatalysis and energy conversion.

SELECTION OF CITATIONS
SEARCH DETAIL