Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 495
Filter
Add more filters

Publication year range
1.
J Virol ; 98(4): e0005124, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38466095

ABSTRACT

Avian metapneumovirus subgroup C (aMPV/C), an important pathogen causing acute respiratory infection in chickens and turkeys, contributes to substantial economic losses in the poultry industry worldwide. aMPV/C has been reported to induce autophagy, which is beneficial to virus replication. Sequestosome 1 (SQSTM1/P62), a selective autophagic receptor, plays a crucial role in viral replication by clearing ubiquitinated proteins. However, the relationship between SQSTM1-mediated selective autophagy and aMPV/C replication is unclear. In this study, we found that the expression of SQSTM1 negatively regulates aMPV/C replication by reducing viral protein expression and viral titers. Further studies revealed that the interaction between SQSTM1 and aMPV/C M2-2 protein is mediated via the Phox and Bem1 (PB1) domain of the former, which recognizes a ubiquitinated lysine at position 67 of the M2-2 protein, and finally degrades M2-2 via SQSTM1-mediated selective autophagy. Collectively, our results reveal that SQSTM1 degrades M2-2 via a process of selective autophagy to suppress aMPV/C replication, thereby providing novel insights for the prevention and control of aMPV/C infection.IMPORTANCEThe selective autophagy plays an important role in virus replication. As an emerging pathogen of avian respiratory virus, clarification of the effect of SQSTM1, a selective autophagic receptor, on aMPV/C replication in host cells enables us to better understand the viral pathogenesis. Previous study showed that aMPV/C infection reduced the SQSTM1 expression accompanied by virus proliferation, but the specific regulatory mechanism between them was still unclear. In this study, we demonstrated for the first time that SQSTM1 recognizes the 67th amino acid of M2-2 protein by the interaction between them, followed by M2-2 degradation via the SQSTM1-mediated selective autophagy, and finally inhibits aMPV/C replication. This information supplies the mechanism by which SQSTM1 negatively regulates viral replication, and provides new insights for preventing and controlling aMPV/C infection.


Subject(s)
Autophagy , Birds , Metapneumovirus , Proteolysis , Sequestosome-1 Protein , Viral Proteins , Virus Replication , Animals , Humans , HEK293 Cells , Metapneumovirus/classification , Metapneumovirus/growth & development , Paramyxoviridae Infections/metabolism , Paramyxoviridae Infections/veterinary , Paramyxoviridae Infections/virology , Protein Binding , Sequestosome-1 Protein/chemistry , Sequestosome-1 Protein/metabolism , Vero Cells , Viral Proteins/chemistry , Viral Proteins/metabolism , Birds/virology
2.
Chem Rev ; 123(13): 8638-8700, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37315192

ABSTRACT

Understanding the structural dynamics/evolution of catalysts and the related surface chemistry is essential for establishing structure-catalysis relationships, where spectroscopic and scattering tools play a crucial role. Among many such tools, neutron scattering, though less-known, has a unique power for investigating catalytic phenomena. Since neutrons interact with the nuclei of matter, the neutron-nucleon interaction provides unique information on light elements (mainly hydrogen), neighboring elements, and isotopes, which are complementary to X-ray and photon-based techniques. Neutron vibrational spectroscopy has been the most utilized neutron scattering approach for heterogeneous catalysis research by providing chemical information on surface/bulk species (mostly H-containing) and reaction chemistry. Neutron diffraction and quasielastic neutron scattering can also supply important information on catalyst structures and dynamics of surface species. Other neutron approaches, such as small angle neutron scattering and neutron imaging, have been much less used but still give distinctive catalytic information. This review provides a comprehensive overview of recent advances in neutron scattering investigations of heterogeneous catalysis, focusing on surface adsorbates, reaction mechanisms, and catalyst structural changes revealed by neutron spectroscopy, diffraction, quasielastic neutron scattering, and other neutron techniques. Perspectives are also provided on the challenges and future opportunities in neutron scattering studies of heterogeneous catalysis.

3.
J Am Chem Soc ; 146(25): 17158-17169, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38874447

ABSTRACT

Understanding Li-ion transport is key for the rational design of superionic solid electrolytes with exceptional ionic conductivities. LiNbOCl4 is reported to be one of the most highly conducting materials in the recently realized new class of soft oxyhalide solid electrolytes, exhibiting an ionic conductivity of ∼11 mS·cm-1. Here, we apply X-ray/neutron diffraction and pair distribution function analysis─coupled with density functional theory/ab initio molecular dynamics (AIMD)─to determine a structural model that provides a rationale for the high conductivity that we observe experimentally in this nanocrystalline solid. We show that it arises from unusually high framework flexibility at room temperature. This is due to isolated 1-D [NbOCl4]- anionic chains that exhibit energetically favorable orientational disorder that is─in turn─correlated to multiple, disordered, and equi-energetic Li+ sites in the lattice. As the Li ions sample the 3-D energy landscape with a fast predicted diffusion coefficient of 5.1 × 10-7 cm2/s at room temperature (σicalc = 17.4 mS·cm-1), the inorganic polymer chains can reorient or vice versa. The activation energy barrier for Li migration through the frustrated energy landscape is especially reduced by the elastic nature of the NbO2Cl4 octahedra evident from very widely dispersed Cl-Nb-Cl bond angles in AIMD simulations at 300 K. The phonon spectra are predominantly influenced by Cl vibrations in the low energy range, and there is a strong overlap between the framework (Cl, Nb) and Li partial density of states in the region between 1.2 and 4.0 THz. The framework flexibility is also reflected in a relatively low bulk modulus of 22.7 GPa. Our findings pave the way for the investigation of future "flex-ion" inorganic solids and open up a new direction for the design of high-conductivity, soft solid electrolytes for all-solid-state batteries.

4.
J Am Chem Soc ; 146(22): 15108-15118, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38695683

ABSTRACT

P2-type Na2/3Ni1/3Mn2/3O2 (PNNMO) has been extensively studied because of its desirable electrochemical properties as a positive electrode for sodium-ion batteries. PNNMO exhibits intralayer transition-metal ordering of Ni and Mn and intralayer Na+/vacancy ordering. The Na+/vacancy ordering is often considered a major impediment to fast Na+ transport and can be affected by transition-metal ordering. We show by neutron/X-ray diffraction and density functional theory (DFT) calculations that Li doping (Na2/3Li0.05Ni1/3Mn2/3O2, LFN5) promotes ABC-type interplanar Ni/Mn ordering without disrupting the Na+/vacancy ordering and creates low-energy Li-Mn-coordinated diffusion pathways. A structure model is developed to quantitatively identify both the intralayer cation mixing and interlayer cationic stacking fault densities. Quasielastic neutron scattering reveals that the Na+ diffusivity in LFN5 is enhanced by an order of magnitude over PNNMO, increasing its capacity at a high current. Na2/3Ni1/4Mn3/4O2 (NM13) lacks Na+/vacancy ordering but has diffusivity comparable to that of LFN5. However, NM13 has the smallest capacity at a high current. The high site energy of Mn-Mn-coordinated Na compared to that of Ni-Mn and higher density of Mn-Mn-coordinated Na+ sites in NM13 disrupts the connectivity of low-energy Ni-Mn-coordinated diffusion pathways. These results suggest that the interlayer ordering can be tuned through the control of composition, which has an equal or greater impact on Na+ diffusion than the Na+/vacancy ordering.

5.
J Am Chem Soc ; 146(1): 460-467, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38109256

ABSTRACT

Dielectric ceramic capacitors with high recoverable energy density (Wrec) and efficiency (η) are of great significance in advanced electronic devices. However, it remains a challenge to achieve high Wrec and η parameters simultaneously. Herein, based on density functional theory calculations and local structure analysis, the feasibility of developing the aforementioned capacitors is demonstrated by considering Bi0.25Na0.25Ba0.5TiO3 (BNT-50BT) as a matrix material with large local polarization and structural distortion. Remarkable Wrec and η of 16.21 J/cm3 and 90.5% have been achieved in Bi0.25Na0.25Ba0.5Ti0.92Hf0.08O3 via simple chemical modification, which is the highest Wrec value among reported bulk ceramics with η greater than 90%. The examination results of local structures at lattice and atomic scales indicate that the disorderly polarization distribution and small nanoregion (∼3 nm) lead to low hysteresis and high efficiency. In turn, the drastic increase in local polarization activated via the ultrahigh electric field (80 kV/mm) leads to large polarization and superior energy storage density. Therefore, this study emphasizes that chemical design should be established on a clear understanding of the performance-related local structure to enable a targeted regulation of high-performance systems.

6.
BMC Med ; 22(1): 20, 2024 01 10.
Article in English | MEDLINE | ID: mdl-38195549

ABSTRACT

BACKGROUND: The associations between trajectories of different health conditions and cognitive impairment among older adults were unknown. Our cohort study aimed to investigate the impact of various trajectories, including sleep disturbances, depressive symptoms, functional limitations, and multimorbidity, on the subsequent risk of cognitive impairment. METHODS: We conducted a prospective cohort study by using eight waves of national data from the Health and Retirement Study (HRS 2002-2018), involving 4319 adults aged 60 years or older in the USA. Sleep disturbances and depressive symptoms were measured using the Jenkins Sleep Scale and the Centers for Epidemiologic Research Depression (CES-D) scale, respectively. Functional limitations were assessed using activities of daily living (ADLs) and instrumental activities of daily living (IADLs), respectively. Multimorbidity status was assessed by self-reporting physician-diagnosed diseases. We identified 8-year trajectories at four examinations from 2002 to 2010 using latent class trajectory modeling. We screened participants for cognitive impairment using the 27-point HRS cognitive scale from 2010 to 2018 across four subsequent waves. We calculated hazard ratios (HR) using Cox proportional hazard models. RESULTS: During 25,914 person-years, 1230 participants developed cognitive impairment. In the fully adjusted model 3, the trajectories of sleep disturbances and ADLs limitations were not associated with the risk of cognitive impairment. Compared to the low trajectory, we found that the increasing trajectory of depressive symptoms (HR = 1.39; 95% CI = 1.17-1.65), the increasing trajectory of IADLs limitations (HR = 1.88; 95% CI = 1.43-2.46), and the high trajectory of multimorbidity status (HR = 1.48; 95% CI = 1.16-1.88) all posed an elevated risk of cognitive impairment. The increasing trajectory of IADLs limitations was associated with a higher risk of cognitive impairment among older adults living in urban areas (HR = 2.30; 95% CI = 1.65-3.21) and those who smoked (HR = 2.77; 95% CI = 1.91-4.02) (all P for interaction < 0.05). CONCLUSIONS: The results suggest that tracking trajectories of depressive symptoms, instrumental functioning limitations, and multimorbidity status may be a potential and feasible screening method for identifying older adults at risk of cognitive impairment.


Subject(s)
Cognitive Dysfunction , Sleep Wake Disorders , Humans , Aged , Activities of Daily Living , Cohort Studies , Prospective Studies , Cognitive Dysfunction/epidemiology , Multimorbidity , Sleep Wake Disorders/epidemiology
7.
J Virol ; 97(10): e0072723, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37819133

ABSTRACT

IMPORTANCE: Type I interferon (IFN) signaling plays a principal role in host innate immune responses against invading viruses. Viruses have evolved diverse mechanisms that target the Janus kinase-signal transducer and activator of transcription (STAT) signaling pathway to modulate IFN response negatively. Seneca Valley virus (SVV), an emerging porcine picornavirus, has received great interest recently because it poses a great threat to the global pork industry. However, the molecular mechanism by which SVV evades host innate immunity remains incompletely clear. Our results revealed that SVV proteinase (3Cpro) antagonizes IFN signaling by degrading STAT1, STAT2, and IRF9, and cleaving STAT2 to escape host immunity. SVV 3Cpro also degrades karyopherin 1 to block IFN-stimulated gene factor 3 nuclear translocation. Our results reveal a novel molecular mechanism by which SVV 3Cpro antagonizes the type I IFN response pathway by targeting STAT1-STAT2-IRF9 and karyopherin α1 signals, which has important implications for our understanding of SVV-evaded host innate immune responses.


Subject(s)
3C Viral Proteases , Interferon Type I , Picornaviridae , Animals , Host-Pathogen Interactions , Interferon Type I/metabolism , Karyopherins , Picornaviridae/metabolism , STAT1 Transcription Factor/metabolism , STAT2 Transcription Factor/metabolism , Swine , 3C Viral Proteases/metabolism , Interferon-Stimulated Gene Factor 3, gamma Subunit/metabolism , alpha Karyopherins/metabolism , Signal Transduction
8.
J Virol ; 97(12): e0089423, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38032196

ABSTRACT

IMPORTANCE: Porcine circovirus type 3 (PCV3) is an emerging pathogen that causes multisystem disease in pigs and poses a severe threat to the swine industry. However, the mechanisms of how PCV3 uses host proteins to regulate its own life cycle are not well understood. In this study, we found that PCV3 capsid protein interacts with nucleolin and degrades it. Degradation of nucleolin by the PCV3 capsid protein requires recruitment of the enzyme RNF34, which is transported to the nucleolus from the cytoplasm in the presence of the PCV3 capsid protein. Nucleolin also decreases PCV3 replication by promoting the release of interferon ß. These findings clarify the mechanism by which nucleolin modulates PCV3 replication in cells, thereby facilitating to provide an important strategy for preventing and controlling PCV3 infection.


Subject(s)
Capsid Proteins , Circoviridae Infections , Circovirus , Nucleolin , Swine Diseases , Animals , Capsid Proteins/genetics , Capsid Proteins/metabolism , Circoviridae Infections/metabolism , Circoviridae Infections/veterinary , Circoviridae Infections/virology , Circovirus/metabolism , Nucleolin/metabolism , Phylogeny , Swine , Swine Diseases/virology , Ubiquitination
9.
J Transl Med ; 22(1): 46, 2024 01 11.
Article in English | MEDLINE | ID: mdl-38212795

ABSTRACT

BACKGROUND: Ovarian cancer (OC) is a malignant neoplasm that displays increased vascularization. Angiopoietin-like 4 (ANGPTL4) is a secreted glycoprotein that functions as a regulator of cell metabolism and angiogenesis and plays a critical role in tumorigenesis. However, the precise role of ANGPTL4 in the OC microenvironment, particularly its involvement in angiogenesis, has not been fully elucidated. METHODS: The expression of ANGPTL4 was confirmed by bioinformatics and IHC in OC. The potential molecular mechanism of ANGPTL4 was measured by RNA-sequence. We used a series of molecular biological experiments to measure the ANGPTL4-JAK2-STAT3 and ANGPTL4-ESM1 axis in OC progression, including MTT, EdU, wound healing, transwell, xenograft model, oil red O staining, chick chorioallantoic membrane assay and zebrafish model. Moreover, the molecular mechanisms were confirmed by Western blot, Co-IP and molecular docking. RESULTS: Our study demonstrates a significant upregulation of ANGPTL4 in OC specimens and its strong association with unfavorable prognosis. RNA-seq analysis affirms that ANGPTL4 facilitates OC development by driving JAK2-STAT3 signaling pathway activation. The interaction between ANGPTL4 and ESM1 promotes ANGPTL4 binding to lipoprotein lipase (LPL), thereby resulting in reprogrammed lipid metabolism and the promotion of OC cell proliferation, migration, and invasion. In the OC microenvironment, ESM1 may interfere with the binding of ANGPTL4 to integrin and vascular-endothelial cadherin (VE-Cad), which leads to stabilization of vascular integrity and ultimately promotes angiogenesis. CONCLUSION: Our findings underscore that ANGPTL4 promotes OC development via JAK signaling and induces angiogenesis in the tumor microenvironment through its interaction with ESM1.


Subject(s)
Cystadenocarcinoma, Serous , Janus Kinase 2 , Ovarian Neoplasms , STAT3 Transcription Factor , Animals , Female , Humans , Tumor Microenvironment , Molecular Docking Simulation , Angiogenesis , Zebrafish/metabolism , Carcinogenesis , Cell Proliferation , Carcinoma, Ovarian Epithelial , Ovarian Neoplasms/genetics , Cell Line, Tumor , Angiopoietin-Like Protein 4/genetics , Neoplasm Proteins , Proteoglycans
10.
Cardiovasc Diabetol ; 23(1): 14, 2024 01 06.
Article in English | MEDLINE | ID: mdl-38184583

ABSTRACT

OBJECTIVE: To delineate the metabolomic differences in plasma samples between patients with coronary artery disease (CAD) and those with concomitant CAD and type 2 diabetes mellitus (T2DM), and to pinpoint distinctive metabolites indicative of T2DM risk. METHOD: Plasma samples from CAD and CAD-T2DM patients across three centers underwent comprehensive metabolomic and lipidomic analyses. Multivariate logistic regression was employed to discern the relationship between the identified metabolites and T2DM risk. Characteristic metabolites' metabolic impacts were further probed through hepatocyte cellular experiments. Subsequent transcriptomic analyses elucidated the potential target sites explaining the metabolic actions of these metabolites. RESULTS: Metabolomic analysis revealed 192 and 95 significantly altered profiles in the discovery (FDR < 0.05) and validation (P < 0.05) cohorts, respectively, that were associated with T2DM risk in univariate logistic regression. Further multivariate regression analyses identified 22 characteristic metabolites consistently associated with T2DM risk in both cohorts. Notably, pipecolinic acid and L-pipecolic acid, lysine derivatives, exhibited negative association with CAD-T2DM and influenced cellular glucose metabolism in hepatocytes. Transcriptomic insights shed light on potential metabolic action sites of these metabolites. CONCLUSIONS: This research underscores the metabolic disparities between CAD and CAD-T2DM patients, spotlighting the protective attributes of pipecolinic acid and L-pipecolic acid. The comprehensive metabolomic and transcriptomic findings provide novel insights into the mechanism research, prophylaxis and treatment of comorbidity of CAD and T2DM.


Subject(s)
Coronary Artery Disease , Diabetes Mellitus, Type 2 , Humans , Coronary Artery Disease/diagnosis , Coronary Artery Disease/epidemiology , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/epidemiology , Metabolomics , Gene Expression Profiling , Hepatocytes
11.
Microb Pathog ; 191: 106673, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705218

ABSTRACT

The Seneca Valley virus (SVV) is a recently discovered porcine pathogen that causes vesicular diseases and poses a significant threat to the pig industry worldwide. Erythropoietin-producing hepatoma receptor A2 (EphA2) is involved in the activation of the AKT/mTOR signaling pathway, which is involved in autophagy. However, the regulatory relationship between SVV and EphA2 remains unclear. In this study, we demonstrated that EphA2 is proteolysed in SVV-infected BHK-21 and PK-15 cells. Overexpression of EphA2 significantly inhibited SVV replication, as evidenced by decreased viral protein expression, viral titers, and viral load, suggesting an antiviral function of EphA2. Subsequently, viral proteins involved in the proteolysis of EphA2 were screened, and the SVV 3C protease (3Cpro) was found to be responsible for this cleavage, depending on its protease activity. However, the protease activity sites of 3Cpro did not affect the interactions between 3Cpro and EphA2. We further determined that EphA2 overexpression inhibited autophagy by activating the mTOR pathway and suppressing SVV replication. Taken together, these results indicate that SVV 3Cpro targets EphA2 for cleavage to impair its EphA2-mediated antiviral activity and emphasize the potential of the molecular interactions involved in developing antiviral strategies against SVV infection.


Subject(s)
3C Viral Proteases , Autophagy , Picornaviridae , Receptor, EphA2 , Signal Transduction , TOR Serine-Threonine Kinases , Viral Proteins , Virus Replication , Animals , Receptor, EphA2/metabolism , Receptor, EphA2/genetics , TOR Serine-Threonine Kinases/metabolism , Cell Line , Swine , Picornaviridae/physiology , Picornaviridae/genetics , 3C Viral Proteases/metabolism , Viral Proteins/metabolism , Viral Proteins/genetics , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/genetics , Proteolysis , Cricetinae , Host-Pathogen Interactions , Viral Load
12.
Phys Rev Lett ; 132(15): 156701, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38682975

ABSTRACT

A new perovskite KOsO_{3} has been stabilized under high-pressure and high-temperature conditions. It is cubic at 500 K (Pm-3m) and undergoes subsequent phase transitions to tetragonal at 320 K (P4/mmm) and rhombohedral (R-3m) at 230 K as shown from refining synchrotron x-ray powder diffraction (SXRD) data. The larger orbital overlap integral and the extended wave function of 5d electrons in the perovskite KOsO_{3} allow to explore physics from the regime where Mott and Hund's rule couplings dominate to the state where the multiple interactions are on equal footing. We demonstrate an exotic magnetic ordering phase found by neutron powder diffraction along with physical properties via a suite of measurements including magnetic and transport properties, differential scanning calorimetry, and specific heat, which provide comprehensive information for a system at the crossover from localized to itinerant electronic behavior.

13.
Bull World Health Organ ; 102(6): 410-420, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38812801

ABSTRACT

Objective: To assess global, regional and national trends in the impact of floods from 1990 to 2022 and determine factors influencing flood-related deaths. Methods: We used data on flood disasters from the International Disaster Database for 1990-2022 from 168 countries. We calculated the annual percentage change to estimate trends in the rates of people affected and killed by floods by study period, World Health Organization (WHO) region, country income level and flood type. We used multivariable logistic regression analysis to assess the factors associated with death from floods. Findings: From 1990 to 2022, 4713 floods were recorded in 168 countries, which affected > 3.2 billion people, caused 218 353 deaths and were responsible for more than 1.3 trillion United States dollars of economic losses. The WHO Western Pacific Region had the most people affected by floods (> 2.0 billion), accounting for 63.19% (2 024 599 380/3 203 944 965) of all affected populations. The South-East Asia Region had the most deaths (71 713, 32.84%). The African and Eastern Mediterranean Regions had the highest number of people affected and killed by floods per 100 000 population in 2022. The odds of floods causing more than 50 deaths were significantly higher in low-income countries (adjusted odds ratio: 14.34; 95% confidence interval: 7.46 to 30.04) compared with high-income countries. Numbers of people affected and mortality due to floods declined over time. Conclusion: Despite the decreases in populations affected and deaths, floods still have a serious impact on people and economies globally, particularly in lower-income countries. Action is needed to improve disaster risk management and flood mitigation.


Subject(s)
Floods , Humans , Global Health , Disasters , Developing Countries , Logistic Models , Natural Disasters
14.
J Magn Reson Imaging ; 59(2): 496-509, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37222638

ABSTRACT

BACKGROUND: Diagnostic performance of placenta accreta spectrum (PAS) by prenatal MRI is unsatisfactory. Deep learning radiomics (DLR) has the potential to quantify the MRI features of PAS. PURPOSE: To explore whether DLR from MRI can be used to identify pregnancies with PAS. STUDY TYPE: Retrospective. POPULATION: 324 pregnant women (mean age, 33.3 years) suspected PAS (170 training and 72 validation from institution 1, 82 external validation from institution 2) with clinicopathologically proved PAS (206 PAS, 118 non-PAS). FIELD STRENGTH/SEQUENCE: 3-T, turbo spin-echo T2-weighted images. ASSESSMENT: The DLR features were extracted using the MedicalNet. An MRI-based DLR model incorporating DLR signature, clinical model (different clinical characteristics between PAS and non-PAS groups), and MRI morphologic model (radiologists' binary assessment for the PAS diagnosis) was developed. These models were constructed in the training dataset and then validated in the validation datasets. STATISTICAL TESTS: The Student t-test or Mann-Whitney U, χ2 or Fisher exact test, Kappa, dice similarity coefficient, intraclass correlation coefficients, least absolute shrinkage and selection operator logistic regression, multivariate logistic regression, receiver operating characteristic (ROC) curve, DeLong test, net reclassification improvement (NRI) and integrated discrimination improvement (IDI), calibration curve with Hosmer-Lemeshow test, decision curve analysis (DCA). P < 0.05 indicated a significant difference. RESULTS: The MRI-based DLR model had a higher area under the curve than the clinical model in three datasets (0.880 vs. 0.741, 0.861 vs. 0.772, 0.852 vs. 0.675, respectively) or MRI morphologic model in training and independent validation datasets (0.880 vs. 0.760, 0.861, vs. 0.781, respectively). The NRI and IDI were 0.123 and 0.104, respectively. The Hosmer-Lemeshow test had nonsignificant statistics (P = 0.296 to 0.590). The DCA offered a net benefit at any threshold probability. DATA CONCLUSION: An MRI-based DLR model may show better performance in diagnosing PAS than a clinical or MRI morphologic model. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY STAGE: 2.


Subject(s)
Deep Learning , Placenta Accreta , Placenta Diseases , Pregnancy , Female , Humans , Adult , Placenta Accreta/diagnostic imaging , Radiomics , Retrospective Studies , Magnetic Resonance Imaging , Prenatal Diagnosis
15.
Inorg Chem ; 63(24): 11176-11186, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38767205

ABSTRACT

Pair distribution function (PDF) analysis of the scheelite-type material PbWO4 reveals previously unidentified short-range structural distortions in the PbO8 polyhedra and WO4 tetrahedra not observed in the similarly structured CaWO4. These local distortions are a result of the structural influence of the Pb2+ 6s2 lone pair electrons. These are not evident from the Rietveld analysis of synchrotron X-ray or neutron powder diffraction data, nor do they strongly influence the X-ray PDF (XPDF). This illustrates the importance of neutron PDF (NPDF) in the study of such materials. First-principles density function theory (DFT) calculations show that the Pb2+ 6s2 electrons are hybridized with the O2- 2p electrons near the Fermi level. The presence of local-scale distortions has previously been neglected in studies of structure-functionality relationships in PbWO4 and other scheelite-structured photocatalytic materials, including BiVO4, and this observation opens new avenues for their optimization.

16.
Psychiatry Clin Neurosci ; 78(3): 169-175, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37984429

ABSTRACT

AIM: This study aims to assess the association between trajectories of depressive symptoms and the risk of dementia, and to compare the predictive ability of trajectories using multiple data points with depressive symptoms at a single data point. METHODS: We included 5306 older adults from the Health and Retirement Study. We assessed depressive symptoms using the Center for Epidemiology Depression Scale (CES-D), and identified its 8- year trajectories (2002-2010) using latent class trajectory modeling. We calculated hazard ratios (HR) using Cox proportional hazards models. The concordance index (C-index) was used to compare the discriminative power of the models. RESULTS: We identified two trajectories of depressive symptoms, characterized by maintaining low CES-D scores, and moderate starting scores that steadily increased throughout the follow-up period. During 40,199 person-years, compared to the low trajectory, the increasing trajectory of depressive symptoms was associated with a higher risk of dementia (HR = 1.35; 95% CI: 1.09-1.67) (C-index = 0.759). For every point increase in the degree of depressive symptoms (CES-D scores) in 2010, the risk of dementia increased by 7% (95% CI: 1.03-1.12) (C-index = 0.760). The presence of depressive symptoms (CES-D scores ≥3) in 2010 was not associated with an increased risk of dementia (HR = 1.18; 95% CI: 0.98-1.43) (C-index = 0.759). The C-index values of cox models showed similar discriminative power. CONCLUSIONS: The increasing trajectory of depressive symptoms at multiple data points and the degree of depressive symptoms at a single data point were associated with an increased risk of subsequent dementia among older adults.


Subject(s)
Dementia , Depression , Humans , Aged , Depression/epidemiology , Depression/diagnosis , Prospective Studies , Risk Factors , Dementia/epidemiology , Longitudinal Studies
17.
Int J Mol Sci ; 25(2)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38255903

ABSTRACT

Avian metapneumovirus subgroup C (aMPV/C) causes respiratory diseases and egg dropping in chickens and turkeys, resulting in severe economic losses to the poultry industry worldwide. Integrin ß1 (ITGB1), a transmembrane cell adhesion molecule, is present in various cells and mediates numerous viral infections. Herein, we demonstrate that ITGB1 is essential for aMPV/C infection in cultured DF-1 cells, as evidenced by the inhibition of viral binding by EDTA blockade, Arg-Ser-Asp (RSD) peptide, monoclonal antibody against ITGB1, and ITGB1 short interfering (si) RNA knockdown in cultured DF-1 cells. Simulation of the binding process between the aMPV/C fusion (F) protein and avian-derived ITGB1 using molecular dynamics showed that ITGB1 may be a host factor benefiting aMPV/C attachment or internalization. The transient expression of avian ITGB1-rendered porcine and feline non-permissive cells (DQ cells and CRFK cells, respectively) is susceptible to aMPV/C infection. Kinetic replication of aMPV/C in siRNA-knockdown cells revealed that ITGB1 plays an important role in aMPV/C infection at the early stage (attachment and internalization). aMPV/C was also able to efficiently infect human non-small cell lung cancer (A549) cells. This may be a consequence of the similar structures of both metapneumovirus F protein-specific motifs (RSD for aMPV/C and RGD for human metapneumovirus) recognized by ITGB1. Overexpression of avian-derived ITGB1 and human-derived ITGB1 in A549 cells enhanced aMPV/C infectivity. Taken together, this study demonstrated that ITGB1 acts as an essential receptor for aMPV/C attachment and internalization into host cells, facilitating aMPV/C infection.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Metapneumovirus , Humans , Animals , Cats , Swine , Metapneumovirus/genetics , Integrin beta1/genetics , Chickens , Antibodies, Viral
18.
Int J Environ Health Res ; 34(2): 767-778, 2024 Feb.
Article in English | MEDLINE | ID: mdl-36649482

ABSTRACT

To assess the impact of absolute humidity on influenza transmission in Beijing from 2014 to 2019, we estimated the influenza transmissibility via the instantaneous reproduction number (Rt), and evaluated its nonlinear exposure-response association and delayed effects with absolute humidity by using the distributed lag nonlinear model (DLNM). Attributable fraction (AF) of Rt due to absolute humidity was calculated. The result showed a significant M-shaped relationship between Rt and absolute humidity. Compared with the effect of high absolute humidity, the low absolute humidity effect was more immediate with the most significant effect observed at lag 6 days. AFs were relatively high for the group aged 15-24 years, and was the lowest for the group aged 0-4 years with low absolute humidity. Therefore, we concluded that the component attributed to the low absolute humidity effect is greater. Young and middle-aged people are more sensitive to low absolute humidity than children and elderly.


Subject(s)
Influenza, Human , Child , Aged , Middle Aged , Humans , Beijing/epidemiology , Influenza, Human/epidemiology , Humidity , China/epidemiology , Risk Assessment , Temperature
19.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(3): 390-396, 2024 Jun 18.
Article in Zh | MEDLINE | ID: mdl-38864122

ABSTRACT

OBJECTIVE: To compare the association between body mass index (BMI) trajectories determined by different methods and the risk of overweight in early childhood in a prospective cohort study, and to identify children with higher risk of obesity during critical growth windows of early childhood. METHODS: A total of 1 330 children from Peking University Birth Cohort in Tongzhou (PKUBC-T) were included in this study. The children were followed up at birth, 1, 3, 6, 9, 12, 18, and 24 months and 3 years of age to obtain their height/length and weight data, and calculate BMI Z-score. Latent class growth mixture modeling (GMM) and longitudinal data-based k-means clustering algorithm (KML) were used to determine the grouping of early childhood BMI trajectories from birth to 24 mouths. Linear regression was used to compare the association between early childhood BMI trajectories determined by different methods and BMI Z-score at 3 years of age. The predictive performance of early childhood BMI trajectories determined by different methods in predicting the risk of overweight (BMI Z-score > 1) at 3 years was compared using the average area under the curve (AUC) of 5-fold cross-validation in Logistic regression models. RESULTS: In the study population included in this research, the three-category trajectories determined using GMM were classified as low, medium, and high, accounting for 39.7%, 54.1%, and 6.2% of the participants, respectively. The two-category trajectories determined using the KML method were classified as low and high, representing 50. 3% and 49. 7% of the participants, respectively. The three-category trajectories determined using the KML method were classified as low, medium, and high, accounting for 31.1%, 47.4%, and 21.5% of the participants, respectively. There were certain differences in the growth patterns reflected by the early childhood BMI trajectories determined using different methods. Linear regression analysis found that after adjusting for maternal ethnicity, educational level, delivery mode, parity, maternal age at delivery, gestational week at delivery, children' s gender, and breastfeeding at 1 month of age, the association between the high trajectory group in the three-category trajectories determined by the KML method (manifested by a slightly higher BMI at birth, followed by rapid growth during infancy and a stable-high BMI until 24 months) and BMI Z-scores at 3 years was the strongest. Logistic regression analysis revealed that the three-category trajectory grouping determined by the KML method had the best predictive performance for the risk of overweight at 3 years. The results were basically consistent after additional adjustment for the high bound score of the child' s diet balanced index, average daily physical activity time, and screen time. CONCLUSION: This study used different methods to identify early childhood BMI trajectories with varying characteristics, and found that the high trajectory group determined by the KML method was better able to identify children with a higher risk of overweight in early childhood. This provides scientific evidence for selecting appropriate methods to define early childhood BMI trajectories.


Subject(s)
Body Mass Index , Overweight , Humans , Prospective Studies , Female , Male , Overweight/epidemiology , Child, Preschool , Infant , Risk Factors , China/epidemiology , Pediatric Obesity/etiology , Cohort Studies , Infant, Newborn
20.
J Infect Dis ; 228(11): 1592-1599, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37565503

ABSTRACT

To assess the prevalence and exacerbating factors of intimate partner violence in people with human immunodeficiency virus (PWH) in China, we conducted a cross-sectional study, involving 2792 PWH in 4 provinces in China from 1 September 2020 to 1 June 2021. The categories of intimate partner violence (IPV) included physical violence, sexual violence, emotional abuse, and controlling behavior. The severity of a violent act was divided into mild, moderate, and severe. Among PWH, the prevalence of IPV was 15.4% (95% confidence interval, 14.1%-16.8%). The severity of physical violence was mainly moderate, and the severity of sexual violence, emotional abuse, and controlling behavior was mainly mild. The prevalence of IPV in men was higher than that in women. Results from the multivariable logistic regression showed that age, ethnic, registered residence, education, and duration of HIV antiretroviral therapy were factors related to IPV in PWH (P < .05).


Subject(s)
HIV Infections , Intimate Partner Violence , Male , Humans , Female , HIV , Cross-Sectional Studies , Prevalence , Intimate Partner Violence/psychology , HIV Infections/complications , HIV Infections/epidemiology , Risk Factors , Sexual Partners/psychology
SELECTION OF CITATIONS
SEARCH DETAIL