Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters

Country/Region as subject
Publication year range
1.
BMC Neurol ; 24(1): 204, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879468

ABSTRACT

Hypoxia can cause a variety of diseases, including ischemic stroke and neurodegenerative diseases. Within a certain range of partial pressure of oxygen, cells can respond to changes in oxygen. Changes in oxygen concentration beyond a threshold will cause damage or even necrosis of tissues and organs, especially for the central nervous system. Therefore, it is very important to find appropriate measures to alleviate damage. MiRNAs can participate in the regulation of hypoxic responses in various types of cells. MiRNAs are involved in regulating hypoxic responses in many types of tissues by activating the hypoxia-inducible factor (HIF) to affect angiogenesis, glycolysis and other biological processes. By analyzing differentially expressed miRNAs in hypoxia and hypoxia-related studies, as well as the HT22 neuronal cell line under hypoxic stress, we found that the expression of miR-18a was changed in these models. MiR-18a could regulate glucose metabolism in HT22 cells under hypoxic stress by directly regulating the 3'UTR of the Hif1a gene. As a small molecule, miRNAs are easy to be designed into small nucleic acid drugs, so this study can provide a theoretical basis for the research and treatment of nervous system diseases caused by hypoxia.


Subject(s)
Glucose , Hippocampus , Hypoxia-Inducible Factor 1, alpha Subunit , MicroRNAs , Neurons , Animals , Humans , Mice , Cell Hypoxia/physiology , Cell Line , Glucose/metabolism , Glucose/deficiency , Hippocampus/metabolism , Hippocampus/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , MicroRNAs/metabolism , MicroRNAs/genetics , Neurons/metabolism
2.
Environ Res ; 262(Pt 2): 119972, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39260721

ABSTRACT

Photocatalytic property of nano Ag is weak and its enhancement is important to enlarge its application. Herein, a novel strategy of constructing silver g-C3N4 biochar composite (Ag-CN@BC) as photocatalyst is developed and its photocatalytic degradation of bisphenol A (BPA) coupled with peroxydisulfate (PDS) oxidation process is characterized. Characterization result showed that silver was evenly embedded into the g-C3N4 structure of the nitrogen atoms format, impeding agglomeration of Ag by distributing stably on biochar. In optimum condition, BPA of 10 mg/L could be degraded completely at pH of 9.0 with a 0.5 g/L photocatalyst, 2 mM PDS in Ag-CN@BC-2 (Ag/melamine molar ratio of 0.5)/PDS system (99.2%, k = 4.601 h-1). Ag-CN@BC shows superior mineralization ratio in degrading BPA to CO2 and H2O via active radical way, including holes (h⁺), superoxide radicals (•O2⁻), sulfate radicals (SO4•⁻), and hydroxyl radicals (•OH). Proper amount of silver can be dispersed effectively by gC3N4, which is responsible for improving the visible-light absorbing capability and accelerate charge transfer during activation of PDS for BPA degradation, while biochar as carrier in the composite is supposed to enhance the photoelectric degradation of BPA by reducing the band gap and increasing the photocurrent of Ag-CN@BC catalyst. Ag-CN@BC exhibits excellent catalyst stability and photocatalytic activity for treatment of toxic organic contaminants in the environment.

3.
Ecotoxicol Environ Saf ; 271: 115979, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38244511

ABSTRACT

Micro/nanoplastics (M/NPs) in water have raised global concern due to their potential environmental risks. To reestablish a M/NPs free world, enormous attempts have been made toward employing chemical technologies for their removal in water. This review comprehensively summarizes the advances in chemical degradation approaches for M/NPs elimination. It details and discusses promising techniques, including photo-based technologies, Fenton-based reaction, electrochemical oxidation, and novel micro/nanomotors approaches. Subsequently, critical influence factors, such as properties of M/NPs and operating factors, are analyzed in this review specifically. Finally, it concludes by addressing the current challenges and future perspectives in chemical degradation. This review will provide guidance for scientists to further explore novel strategies and develop feasible chemical methods for the improved control and remediation of M/NPs in the future.


Subject(s)
Environmental Restoration and Remediation , Water Pollutants, Chemical , Plastics , Microplastics , Water , Water Pollutants, Chemical/analysis
4.
Inorg Chem ; 62(29): 11633-11644, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37439595

ABSTRACT

Small-pore Lewis acid zeolites have been showing increasing potential in shape-selective reactions regarding small-molecule conversion. In this study, Sn-CHA with tunable framework Sn contents was facilely prepared via a fluoride-free, seed-assisted interzeolite conversion (IZC) pathway. Commercially available dealuminated USY functioned as the parent sample, and seeding played a vital role in accelerating the transformation process, promoting the target zeolite yield, and guiding the attached-growth pathway. Notably, a proto-zeolite phase with a semi-constructed pore structure was captured during the IZC process, which represents a crucial intermediate stage for developing the complete CHA structure and ensuring a well-defined Sn status. The detailed synthesis mechanism was explored in multiscale by a series of techniques. The obtained Sn-CHA and proto-Sn-CHA exhibited excellent catalytic performance in converting 1,3-dihydroxyacetone to methyl lactate. Proto-Sn-CHA was proven to be a highly effective glucose isomerization catalyst owing to its larger pore size and Lewis acidic nature.

5.
Aesthetic Plast Surg ; 47(5): 1957-1966, 2023 10.
Article in English | MEDLINE | ID: mdl-37580561

ABSTRACT

BACKGROUND: The objective of the present study was to assess the hard and soft tissue differences of skeletal Class III malocclusion patients treated with orthodontic-orthognathic surgery treatment between two decompensation approaches including extraction of maxillary premolars in preoperative orthodontics and clockwise rotation of the maxilla in orthognathic surgery. METHODS: 22 skeletal Class III patients with the crowding of maxillary dental arch less than 3mm were included in this study. These patients were divided into two groups: extraction group and non-extraction group. Lateral cephalograms taken before preoperative orthodontic treatment and after postoperative orthodontic treatment were used to analyze the differences of hard and soft tissues between two groups. Independent t test was used to evaluate the differences of variables between extraction group and non-extraction group. RESULTS: After treatment, there was significant difference of Wits between extraction group and non-extraction group (- 4.34 mm vs - 2.82 mm, respectively, P <0.05). Co-Gn was significantly greater in non-extraction group than in extraction group (77.18 mm vs 71.58 mm, P <0.05). U1-SN and L1-MP in extraction group were significantly closer to the normal values than non-extraction group (P <0.05). Regarding the change of variables before and after orthodontic-orthognathic treatment, NLA (7.25° vs 1.46°, P <0.01) and G-Sn-Pog' (8.06° vs 4.62°, P <0.05) were significantly greater in extraction group than in non-extraction group. CONCLUSION: For patients with skeletal Class III malocclusion, extraction of maxillary premolars in preoperative orthodontic treatment can more effectively eliminate the dental compensation and achieve a more harmonious facial profile compared to clockwise rotation of the maxilla in orthognathic surgery. LEVEL OF EVIDENCE IV: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Subject(s)
Malocclusion, Angle Class III , Orthognathic Surgical Procedures , Humans , Mandible/surgery , Malocclusion, Angle Class III/surgery , Maxilla/surgery , Cephalometry
6.
J Environ Manage ; 344: 118546, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37418916

ABSTRACT

Biosynthesis of silver nanoparticles (AgNPs) by plant extracts and its antibacterial utilization has attracted great attention due to the spontaneous reducing and capping capacities of phytochemicals. However, the preferential role and mechanisms of the functional phytochemicals from different plants on AgNPs synthesis, and its catalytic and antibacterial performance remain largely unknown. This study used three widespread arbor species, including Eriobotrya japonica (EJ), Cupressus funebris (CF) and Populus (PL), as the precursors and their leaf extracts as reducing and stabilizing agents for the biosynthesis of AgNPs. A total of 18 phytochemicals in leaf extracts were identified by ultra-high liquid-phase mass spectrometer. For EJ extracts, most kinds of flavonoids participated in the generation of AgNPs by a reduced content of 5∼10%, while for CF extracts, about 15∼40% of the polyphenols were consumed to reduce Ag+ to Ag0. Notably, the more stable and homogeneous spherical AgNPs with smaller size (≈38 nm) and high catalytic capacity on Methylene blue were obtained from EJ extracts rather than CF extracts, and no AgNPs were synthesized from PL extracts, indicating that flavonoids are superior than polyphenols to act as reducer and stabilizer in AgNPs biosynthesis. The antibacterial activities against Gram-positive (Staphylococcus aureus and Bacillus mycoides) and Gram-negative bacteria (Pseudomonas putida and Escherichia coli) were higher in EJ-AgNPs than that in CF-AgNPs, which confirmed the synergistic antibacterial effects of flavonoids combined with AgNPs in EJ-AgNPs. This study provides a significant reference on the biosynthesis of AgNPs with efficient antibacterial utilization underlying effect of abundant flavonoids in plant extracts.


Subject(s)
Metal Nanoparticles , Metal Nanoparticles/chemistry , Silver/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polyphenols , Flavonoids , Spectroscopy, Fourier Transform Infrared , Microbial Sensitivity Tests
7.
J Craniofac Surg ; 32(3): 883-887, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33038180

ABSTRACT

ABSTRACT: This study summarized the literature regarding the application of pre-bent titanium miniplates in orthognathic surgery and evaluated the extra deformation of the manually pre-bent titanium miniplates via finite element analysis for acquiring higher surgical accuracy. The literature was reviewed with a chart. Three models of titanium miniplates with different thicknesses (1.0 mm, 0.8 mm, 0.6 mm) were created using COMSOL Multiphysics software for biomechanical behavior analysis. The 3 models were virtually bent into 5 angles (15 degree, 30 degree, 45 degree, 60 degree, 80 degree). respectively to simulate the preoperative virtual bending, then to simulate the practical manual bending via finite element analysis. The stresses and displacements of these models were recorded. The models from virtual bending simulation and manual bending simulation were registered to analyze the deviations. The results showed that the maximum stress and the displacement deviations between the virtual bending models and the manual bending models increased with the thickness and bending angle of the pre-bent miniplate models. To improve the surgical accuracy, measures should be applied to the manually pre-bent titanium miniplates to reduce the extra deformation when the plate being thicker and the bending angle being larger.


Subject(s)
Orthognathic Surgery , Orthognathic Surgical Procedures , Bone Plates , Finite Element Analysis , Fracture Fixation, Internal , Humans , Stress, Mechanical , Titanium
8.
J Craniofac Surg ; 31(8): 2193-2198, 2020.
Article in English | MEDLINE | ID: mdl-33136853

ABSTRACT

The aim of this study is to evaluate the osteogenesis around titanium implant and in bone defect or fracture in jaw bones and long bones in ovariectomized (OVX) animal models. The literature on the osteogenesis around titanium implant and in bone defect or fracture in jaw bones and long bones was reviewed with charts. Fourty-eight rats were randomly divided into OVX group with ovariectomy and SHAM (sham-surgery) group with sham surgery. Titanium implants were inserted in the right mandibles and tibiae; bone defects were created in the left mandibles and tibiae. Two-week postoperatively, mandibles and tibiae of 8 rats were harvested and examined by hematoxylin and eosin staining and histological analysis; 4-week postoperatively, all mandibles and tibiae were harvested and examined by Micro-CT and histological analysis. A total of 52 articles were included in this literature review. Tibial osteogenesis around titanium implant and in bone defect in OVX group were significantly decreased compared with SHAM group. However, osteogenesis differences in the mandible both around titanium implant and in bone defect between groups were not statistically significant. OVX-induced osteoporosis suppresses osteogenesis around titanium implant and in the bone defect or fracture in long bones significantly while has less effect on that in the jaw bones.


Subject(s)
Implants, Experimental/adverse effects , Jaw/drug effects , Tibia/drug effects , Titanium/pharmacology , Animals , Female , Orthognathic Surgical Procedures , Osteogenesis/drug effects , Osteoporosis/chemically induced , Osteoporosis/pathology , Ovariectomy , Rats , Tibia/surgery
9.
Med Sci Monit ; 25: 248-258, 2019 Jan 08.
Article in English | MEDLINE | ID: mdl-30618455

ABSTRACT

BACKGROUND Metaplastic breast cancer (MBC) is a rare type of breast cancer, characterized histologically by the presence of two or more malignant cell types (epithelial and mesenchymal). This retrospective study aimed to review the imaging and histological features of MBC, with a review of the literature. MATERIAL AND METHODS Nineteen patients with MBC (age range, 28-75 years; mean, 55 years) underwent review of their clinical records, histopathology, immunohistochemistry, and imaging findings, which included mammography, sonography, and magnetic resonance imaging (MRI) with T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and diffusion restriction determined by the apparent diffusion coefficient (ADC) and a time-intensity curve (TIC) for signal intensity. RESULTS The mammographic features of MBC were oval shaped (54.5%), with indistinct margin (45.5%), and high tumor density (72.7%), and on sonography, they were oval shaped (57.1%), with hypo-echogenic areas (85.8%). On MRI, MBC showed moderate hyper-intensity with a high signal intensity in the center of the tumor on T2WI (100%), an indistinct margin (75.0%), and rim enhancement (58.3%). Using a TIC, the early phase showed rapid enhancement, and the delay phase showed a signal plateau (91.7%). DWI showed diffusion restriction in all cases determined by the ADC. Immunohistochemistry showed negative expression of estrogen receptor (ER) (91.0%), progesterone receptor (PR) (81%), and HER2 (erbB-2) (80.0%). CONCLUSIONS Imaging features of MBC on mammography and ultrasound were benign. The use of T2WI MRI showed characteristic features of signal intensity using TIC curve and ADC analysis, which may support biopsy and histological analysis for definitive diagnosis.


Subject(s)
Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Diffusion Magnetic Resonance Imaging/methods , Adult , Aged , Biopsy/methods , China , Contrast Media , Female , Humans , Immunohistochemistry/methods , Magnetic Resonance Imaging/methods , Mammography/methods , Metaplasia/diagnostic imaging , Metaplasia/pathology , Middle Aged , Retrospective Studies
10.
J Med Genet ; 51(3): 185-96, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24431331

ABSTRACT

INTRODUCTION: Lenz microphthalmia syndrome (LMS) is a genetically heterogeneous X-linked disorder characterised by microphthalmia/anophthalmia, skeletal abnormalities, genitourinary malformations, and anomalies of the digits, ears, and teeth. Intellectual disability and seizure disorders are seen in about 60% of affected males. To date, no gene has been identified for LMS in the microphthalmia syndrome 1 locus (MCOPS1). In this study, we aim to find the disease-causing gene for this condition. METHODS AND RESULTS: Using exome sequencing in a family with three affected brothers, we identified a mutation in the intron 7 splice donor site (c.471+2T→A) of the N-acetyltransferase NAA10 gene. NAA10 has been previously shown to be mutated in patients with Ogden syndrome, which is clinically distinct from LMS. Linkage studies for this family mapped the disease locus to Xq27-Xq28, which was consistent with the locus of NAA10. The mutation co-segregated with the phenotype and cDNA analysis showed aberrant transcripts. Patient fibroblasts lacked expression of full length NAA10 protein and displayed cell proliferation defects. Expression array studies showed significant dysregulation of genes associated with genetic forms of anophthalmia such as BMP4, STRA6, and downstream targets of BCOR and the canonical WNT pathway. In particular, STRA6 is a retinol binding protein receptor that mediates cellular uptake of retinol/vitamin A and plays a major role in regulating the retinoic acid signalling pathway. A retinol uptake assay showed that retinol uptake was decreased in patient cells. CONCLUSIONS: We conclude that the NAA10 mutation is the cause of LMS in this family, likely through the dysregulation of the retinoic acid signalling pathway.


Subject(s)
Anophthalmos/genetics , Microphthalmos/genetics , N-Terminal Acetyltransferase A/genetics , N-Terminal Acetyltransferase E/genetics , Signal Transduction/genetics , Tretinoin/metabolism , Anophthalmos/physiopathology , Cell Proliferation , Cells, Cultured , Female , Fibroblasts , Humans , Male , Microphthalmos/physiopathology , Mutation/genetics , Pedigree , Phenotype , RNA Splice Sites/genetics
11.
Chembiochem ; 15(9): 1268-73, 2014 Jun 16.
Article in English | MEDLINE | ID: mdl-24803415

ABSTRACT

We report a simple, versatile, multivalent ligand system that is capable of specifically and efficiently modulating cell-surface receptor clustering and function. The multivalent ligand is made of a polymeric DNA scaffold decorated with biorecognition ligands (i.e., antibodies) to interrogate and modulate cell receptor signaling and function. Using CD20 clustering-mediated apoptosis in B-cell cancer cells as a model system, we demonstrated that our multivalent ligand is significantly more effective at inducing apoptosis of target cancer cells than its monovalent counterpart. This multivalent DNA material approach represents a new chemical biology tool to interrogate cell receptor signaling and functions and to potentially manipulate such functions for the development of therapeutics.


Subject(s)
Antibodies/metabolism , DNA/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Apoptosis , Humans , Jurkat Cells , Ligands , Receptors, Cell Surface/metabolism , Signal Transduction , Tumor Cells, Cultured
12.
Tissue Eng Part A ; 30(3-4): 154-167, 2024 02.
Article in English | MEDLINE | ID: mdl-37930731

ABSTRACT

The Hippo signaling pathway inhibits cell growth, and its components and functions are highly conserved in mammals. LATS1 is a core component of the Hippo signaling pathway associated with lymphatic invasion, astrogliosis, apoptosis, and autophagy. Nevertheless, the role of Hippo/LATS1 in osteogenesis remains unclear. In this study, we used ribonucleic acid (RNA) lentiviruses to inhibit the expression of Lats1 in bone marrow-derived stem cells (BMSCs) and distraction osteogenic regions in rats. Increased osteogenic, proliferative, and migratory abilities of BMSCs were observed in Lats1-inhibited BMSCs, while these phenotypes were partially reversed by YAP1 inhibition. In vivo, we found that the LATS1/YAP1 axis promoted osteogenesis during distraction osteogenesis (DO). ß-catenin was positively correlated with YAP1 expression in vivo and in vitro. When YAP1 was strongly positive in the nucleus, ß-catenin expression was upregulated; when YAP1 expression was inhibited by verteporfin, ß-catenin was not expressed in the nucleus. These findings suggest that the LATS1/YAP1 signaling axis promotes DO by activating the Wnt/ß-catenin signaling pathway. This study provides insights into the molecular mechanism of osteogenesis and a potential therapeutic strategy for bone regeneration in DO by associating with LATS1/YAP1-ß-catenin.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis, Distraction , Rats , Animals , beta Catenin/metabolism , Cell Differentiation , Mesenchymal Stem Cells/metabolism , Protein Serine-Threonine Kinases/metabolism , Osteogenesis/genetics , Wnt Signaling Pathway , Bone Regeneration , Cells, Cultured , Mammals/metabolism
13.
Chem Biol Drug Des ; 103(1): e14386, 2024 01.
Article in English | MEDLINE | ID: mdl-37923393

ABSTRACT

Baicalin (BA) is a natural product extract with anti-inflammatory, antioxidant, and hepatoprotective properties. Given that the exact underlying mechanisms responsible for the impact of BA on liver cirrhosis remain ambiguous, a detailed investigation is sorely needed. Accordingly, a rat liver cirrhosis model was established via the intraperitoneal injection of diethyl nitrosamine (DEN, 100 mg/kg). Following the modeling, these rats were given BA (100 mg/kg) or N-acetylcysteine (NAC, 150 mg/kg) alone or in combination. The pathological morphology of rat liver tissues in each group was observed by hematoxylin and eosin staining and Masson's trichrome staining. The expression of fibrosis-related proteins was evaluated by Western blot, and the levels of liver function-related biochemical indexes, oxidative stress-related indexes, and inflammatory factors in the serum by enzyme-linked immunosorbent assays (ELISA). The level of mitochondrial reactive oxygen species was measured by flow cytometry. The results depicted that in the rat model of DEN-induced liver cirrhosis, BA reduced the expression of fibrosis-related proteins (collagen type I alpha 1, α-smooth muscle actin, and transforming growth factor-ß1), thereby alleviating the structural fibrosis of liver tissue. Furthermore, BA could diminish the level of mitochondrial reactive oxygen species, and the serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), malondialdehyde (MDA), interleukin (IL)-1ß, IL-6, tumor necrosis factor-α (TNF-α), and monocyte chemotactic protein-1 (MCP-1), while promoting albumin, superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) levels. Notably, all these effects of BA above were strengthened following the combined treatment of BA and NAC. On the whole, BA suppresses liver fibrosis by inhibiting oxidative stress and inflammation, thereby exerting a hepatoprotective effect.


Subject(s)
Flavonoids , Liver Cirrhosis , Nitrosamines , Rats , Animals , Reactive Oxygen Species/metabolism , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver , Oxidative Stress , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Nitrosamines/adverse effects , Nitrosamines/metabolism
14.
J Hazard Mater ; 469: 133901, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38430602

ABSTRACT

Dissolved organic matter (DOM), which is ubiquitously distributed in groundwater, has a crucial role in the fate and reactivity of iron materials. However, there is a lack of direct evidence on how different DOMs interact with nFe/Ni in promoting or inhibiting the dechlorination efficiency of chlorinated aromatic contaminants. By comparing humic acid (HA), fulvic acid (FA), and biochar-derived dissolved organic matter (BDOM) at different pyrolysis temperatures, we first demonstrated that the dechlorination effect of nFe/Ni on 2,4-dichlorophenol (2,4-DCP) depended on the nature of DOMs and their adsorption on nFe/Ni. HA showed an enhancing effect on the dechlorination of 2,4-DCP by nFe/Ni, while the inhibition effect of other DOMs resulted in the following dechlorination order: BDOM300 ≈FA>BDOM700 ≈BDOM500. The C2 component with higher aromaticity and molecular weight promoted the corrosion of nFe/Ni and the production of reactive hydrogen atoms (H*). The effects of different DOMs on nFe/Ni include that (1) HA accelerates the corrosion and H* production of nFe/Ni, (2) FA and BDOM300 enhance the corrosion but inhibit H* production, and (3) Both nFe/Ni corrosion and H* formation are suppressed by BDOM500/BDOM700. Therefore, this study will provide a reference for understanding the nature of DOM-nFe/Ni interaction and improving the catalytic activity of nFe/Ni when different DOMs coexist in practical applications.

15.
Article in English | MEDLINE | ID: mdl-38468521

ABSTRACT

INTRODUCTION: TP508 is a thrombin peptide that participates in the inflammatory response and wound healing. Its role in the molecular mechanism of distraction osteogenesis remains unclear. This study established a tibia distraction osteogenesis (DO) model in rats and investigated the role and mechanism of TP508 in bone regeneration during DO. METHOD: Micro-computed tomography (Micro-CT) and hematoxylin-eosin (HE) staining were used to track osteogenesis. Western blot and quantitative real-time polymerase chain reaction (qRT-PCR) were performed to measure the expression of osteoblast-related factors, Wnt/ß- catenin signaling-related proteins and genes. Immunohistochemistry was used to measure the expression of ß-catenin in the cytoplasm and nucleus. TP508 accelerated bone regeneration increased the expression of the osteoblast-related factors Alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2), and osteocalcin (OCN). RESULTS: After the Wnt signaling was inhibited by LGK974, the expression of osteoblast-related factors was downregulated, leading to a decrease in bone regeneration ability. More importantly, TP508 upregulated ß-catenin and its target CYCLIN-D1 and could reverse the decreased osteogenic ability caused by LGK974. CONCLUSION: In conclusion, TP508 promotes bone regeneration in DO by activating the Wnt/ß- catenin signaling pathway.

16.
Cell Signal ; 116: 111037, 2024 04.
Article in English | MEDLINE | ID: mdl-38184268

ABSTRACT

BACKGROUND: This study is to investigate the role and mechanism of Hippo/YAP1 in the repair of osteoporotic bone defects in aged mice, both in vivo and in vitro. METHODS: We investigated the expression differences of the Hippo signaling in young and aged individuals both in vivo and in vitro. By manipulating the expression of Lats1/2 and Yap1, we investigated the role of Hippo/YAP1 in regulating osteogenic differentiation in aged BMSCs. In vivo, by intervening in the local and systemic expression of Lats1/2 and Yap1 respectively, we sought to demonstrate whether Hippo/YAP1 promotes the repair of bone defects in aged osteoporotic conditions. Finally, we delved into the underlying mechanisms of Hippo/YAP1 in regulating osteogenic differentiation. RESULTS: We observed differences in the expression of the Hippo signaling between young and aged individuals. After knocking out Lats1/2 in aged BMSCs, we observed that the upregulation of endogenous YAP1 promotes cellular osteogenic differentiation and proliferation capacity. Through interference with Yap1 expression, we provided strong evidence for the role of Hippo/YAP1 in promoting osteogenic differentiation in aged BMSCs. In vivo, we confirmed that Hippo/YAP1 promotes the repair of bone defects in aging osteoporosis. Moreover, we discovered an interaction relationship among YAP1, ß-catenin, and TEAD1. CONCLUSION: This study elucidates the role of Hippo/YAP1 in promoting the repair of osteoporotic bone defects in aged mice. Mechanistically, YAP1 functions by activating the Wnt/ß-catenin pathway, and this process is not independent of TEAD1.


Subject(s)
Osteoporosis , beta Catenin , Animals , Mice , Adaptor Proteins, Signal Transducing , Osteogenesis , Protein Serine-Threonine Kinases , Transcription Factors , Wnt Signaling Pathway
17.
J Hazard Mater ; 467: 133696, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38341889

ABSTRACT

Accumulation of microplastics (MPs) and cadmium (Cd) are ubiquitous in paddy soil. However, the combined effects of MPs and Cd on physiochemical and microbial mechanisms in soils and the attendant implications for greenhouse gas (GHG) emissions, remain largely unknown. Here, we evaluated the influence of polylactic acid (PLA) and polyethylene (PE) MPs on GHG emissions from Cd-contaminated paddy soil using a microcosm experiment under waterlogged and drained conditions. The results showed that PLA significantly increased CH4 and N2O emission fluxes and hence the global warming potential (GWP) of waterlogged soil. Soils treated with MPs+Cd showed significantly reduced GWP compared to those treated only with MPs suggesting that, irrespective of attendant consequences, Cd could alleviate N2O emissions in the presence of MPs. Conversely, the presence of MPs in Cd-contaminated soils tended to alleviate the bioavailability of Cd. Based on a structural equation model analysis, both the MPs-derived dissolved organic matter and the soil bioavailable Cd affected indirectly on soil GHG emissions through their direct influencing on microbial abundance (e.g., Firmicutes, Nitrospirota bacteria). These findings provide new insights into the assessment of GHG emissions and soil/cereal security in response to MPs and Cd coexistence that behaved antagonistically with respect to adverse ecological effects in paddy systems.

18.
Bioresour Technol ; 401: 130745, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677381

ABSTRACT

The interaction mechanisms of silicon (Si) and active ingredient iron (Fe) on cadmium (Cd) removal are still unknown. Herein, the Fe/Si modified biochar (Fe/Si-BC) was synthesized to enhance Cd removal by pre-immersion of Fe and ball milling loading of Si. Detailed characterizations indicated that Fe and Si were successfully introduced into Fe/Si-BC, resulting in the formation of a new metallic silicate (Ca2.87Fe0.13(SiO3)2). The maximum Cd adsorption capacity of Fe/Si-BC (31.66 mg g-1) was 3.6 times and 2.5 times higher than that of Fe-BC (8.89 mg g-1) and Si-BC (11.03 mg g-1), respectively, deriving from an enhancement of Si dissolution induced by Fe introduction. The dissolved Si could capture and combine Cd to form CdSiO3 precipitation, which was strongly supported by the random forest regression and correlation between dissolved Si content and Cd adsorption capacity. This study advances the mechanistic insights into synergistic functions of Si and Fe in Cd removal.


Subject(s)
Cadmium , Charcoal , Iron , Silicon , Solubility , Water Pollutants, Chemical , Water Purification , Cadmium/chemistry , Silicon/chemistry , Charcoal/chemistry , Iron/chemistry , Adsorption , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Hydrogen-Ion Concentration
19.
Biomaterials ; 304: 122406, 2024 01.
Article in English | MEDLINE | ID: mdl-38096618

ABSTRACT

Calcium phosphate ceramics-based biomaterials were reported to have good biocompatibility and osteoinductivity and have been widely applied for bone defect repair and regeneration. However, the mechanism of their osteoinductivity is still unclear. In our study, we established an ectopic bone formation in vivo model and an in vitro macrophage cell co-culture system with calcium phosphate ceramics to investigate the effect of biphasic calcium phosphate on osteogenesis via regulating macrophage M1/M2 polarization. Our micro-CT data suggested that biphasic calcium phosphate had significant osteoinductivity, and the fluorescence co-localization detection found increased F4/80+/integrin αvß3+ macrophages surrounding the biphasic calcium phosphate scaffolds. Besides, our study also revealed that biphasic calcium phosphate promoted M2 polarization of macrophages via upregulating integrin αvß3 expression compared to tricalcium phosphate, and the increased M2 macrophages could subsequently augment the osteogenic differentiation of MSCs in a TGFß mediated manner. In conclusion, we demonstrated that macrophages subjected to biphasic calcium phosphate could polarize toward M2 phenotype via triggering integrin αvß3 and secrete TGFß to increase the osteogenesis of MSCs, which subsequently enhances bone regeneration.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Integrin alphaVbeta3/metabolism , Calcium Phosphates/pharmacology , Macrophages/metabolism , Transforming Growth Factor beta/metabolism , Ceramics/pharmacology
20.
Sci Total Environ ; 954: 176435, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39326760

ABSTRACT

Chromium (Cr) is a toxic and redox-sensitive contaminant that has accumulated in water and soil systems, becoming a serious issue worldwide. Producing novel remedial materials with enhanced removal efficiency from plentiful available sources is a pleasing aspect for Cr removal. This review explores valuable insights into the production of nitrogen doped biochar (N/BC), iron doped biochar (Fe/BC), and iron­nitrogen doped biochar (Fe-N/BC) and their application for Cr (trivalent (Cr(III)) and hexavalent (Cr(VI)) removal. Specifically, this review focuses on conferring knowledge about producing environmentally friendly N and Fe doped BCs with enhanced surface functionalities, physicochemical properties, and holding capacities for removing Cr(VI) through adsorption and reduction. Affecting factors for Cr(VI) removal by N/BC, Fe/BC, and Fe-N/BC through reviewing the literature on the reaction system pH, mass transfer driving forces, effect of coexisting ions, BC production conditions, and redox potential are overviewed. Notably, isotherm and kinetic models and removal mechanisms of Cr(VI) by N/BC, Fe/BC, and Fe-N/BC with the assistance of characterization analyses, experimental results, and computational modeling methods are explored. Finally, the regeneration, cost evaluation, and environmental implications, as well as the real-world applications and environmental risks of N/BC, Fe/BC, and Fe-N/BC are discussed. This review shows that N and Fe doped BCs are remedial materials that can potentially remediate Cr(VI) contaminated water and soil.

SELECTION OF CITATIONS
SEARCH DETAIL