Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Nat Methods ; 18(6): 643-651, 2021 06.
Article in English | MEDLINE | ID: mdl-34099937

ABSTRACT

Cytosine base editors (CBEs) have the potential to correct human pathogenic point mutations. However, their genome-wide specificity remains poorly understood. Here we report Detect-seq for the evaluation of CBE specificity. It enables sensitive detection of CBE-induced off-target sites at the genome-wide level. Detect-seq leverages chemical labeling and biotin pulldown to trace the editing intermediate deoxyuridine, thereby revealing the editome of CBE. In addition to Cas9-independent and typical Cas9-dependent off-target sites, we discovered edits outside the protospacer sequence (that is, out-of-protospacer) and on the target strand (which pairs with the single-guide RNA). Such unexpected off-target edits are prevalent and can exhibit a high editing ratio, while their occurrences exhibit cell-type dependency and cannot be predicted based on the sgRNA sequence. Moreover, we found out-of-protospacer and target-strand edits nearby the on-target sites tested, challenging the general knowledge that CBEs do not induce proximal off-target mutations. Collectively, our approaches allow unbiased analysis of the CBE editome and provide a widely applicable tool for specificity evaluation of various emerging genome editing tools.


Subject(s)
Cytosine/metabolism , Gene Editing/methods , CRISPR-Cas Systems , Humans , MCF-7 Cells , Mutation , RNA/genetics , Whole Genome Sequencing
2.
Epilepsy Behav ; 157: 109868, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38823075

ABSTRACT

BACKGROUND: Previous research has demonstrated that neuroinflammation is a key element in the progress of epilepsy. Nevertheless, it is currently unidentified which inflammatory factors and proteins increase or decrease the risk of epilepsy. METHODS: We adopted Mendelian randomization techniques to explore the causal relationship between circulating inflammatory factors and proteins and various epilepsy. Our principal approach was inverse variance weighting, supplemented by several sensitivity analyses to guarantee the robustness of our findings. RESULTS: Studies have identified associations between epilepsy and specific inflammatory factors and proteins: three inflammatory factors and six proteins are linked to epilepsy in general; one inflammatory factor and four proteins are associated with focal epilepsy with no documented lesions; two inflammatory factors and three proteins are related to focal epilepsy, excluding cases with hippocampal sclerosis; two inflammatory factors and two proteins are connected to juvenile myoclonic epilepsy; two inflammatory factors and five proteins are linked to juvenile absence epilepsy; four inflammatory proteins are associated with childhood absence epilepsy; two inflammatory factors are related to focal epilepsy overall; two inflammatory factors and two proteins are connected to generalized epilepsy; and two inflammatory proteins are linked to generalized epilepsy with tonic-clonic seizures. Additionally, six inflammatory factors may play a downstream role in focal epilepsy. CONCLUSION: Our study uncovers various inflammatory factors and proteins that influence the risk of epilepsy, offering instructive insights to the diagnosis and therapy of the condition.

3.
Neurochem Res ; 48(7): 2129-2137, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36808393

ABSTRACT

Parkinson's disease (PD) is a chronic neurodegenerative disorder characterized by dopaminergic neuron loss, which is related to excessive reactive oxygen species (ROS) accumulation. Endogenous peroxiredoxin-2 (Prdx-2) has potent anti-oxidative and anti-apoptotic effects. Proteomics studies revealed plasma levels of Prdx-2 were significantly lower in PD patients than in healthy individuals. For further study of the activation of Prdx-2 and its role in vitro, SH-SY5Y cells and the neurotoxin 1-methyl-4-phenylpyridinium (MPP+) were used to model PD. ROS content, mitochondrial membrane potential, and cell viability were used to assess the effect of MPP+ in SH-SY5Y cells. JC-1 staining was used to determine mitochondrial membrane potential. ROS content was detected using a DCFH-DA kit. Cell viability was measured using the Cell Counting Kit-8 assay. Western blot detected the protein levels of tyrosine hydroxylase (TH), Prdx-2, silent information regulator of transcription 1 (SIRT1), Bax, and Bcl-2. The results showed that MPP+-induced accumulation of ROS, depolarization of mitochondrial membrane potential, and reduction of cell viability occurred in SH-SY5Y cells. In addition, the levels of TH, Prdx-2, and SIRT1 decreased, while the ratios of Bax and Bcl-2 increased. Then, Prdx-2 overexpression in SH-SY5Y cells showed significant protection against MPP+ -induced neuronal toxicity, as evidenced by the decrease in ROS content, increase in cell viability, increase in the level of TH, and decrease in the ratios of Bax and Bcl-2. Meanwhile, SIRT1 levels increase with the level of Prdx-2. This suggests that the protection of Prdx-2 may be related to SIRT1. In conclusion, this study indicated that overexpression of Prdx-2 reduces MPP+-induced toxicity in SH-SY5Y cells and may be mediated by SIRT1.


Subject(s)
Neuroblastoma , Parkinson Disease , Humans , Reactive Oxygen Species/metabolism , Cell Line, Tumor , bcl-2-Associated X Protein/metabolism , 1-Methyl-4-phenylpyridinium/toxicity , Parkinson Disease/metabolism , Sirtuin 1/metabolism , Neuroblastoma/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Dopaminergic Neurons , Apoptosis , Cell Survival
4.
Protein Expr Purif ; 195-196: 106097, 2022 08.
Article in English | MEDLINE | ID: mdl-35470011

ABSTRACT

Growth hormone (GH) plays important roles in growth and development of mammalian animals and is valuable for many applications. This study aimed to express and purify biological active recombinant ovine growth hormone (roGH) through prokaryotic expression system. The roGH coding sequence was ligated into the prokaryotic expression vector and transformed into Escherichia coli (E. coli) for protein expression. Factors that influence the roGH expression were examined and the appropriate culture temperature (20 °C) and inducer (IPTG) concentration (25 µM) were determined. To enhance the soluble expression of the protein, co-expression with the molecular chaperone GroEL-GroES was utilized and eventually achieved a high yield of soluble roGH expressed in E. coli. Further, the fusion tag in expressed target protein could be efficiently removed through thrombin-specific cleavage. The expressed roGH was identified by Western blotting and the LC-MS spectrum confirmed its molecular weight of 22749.22 Da. Finally, the purified roGH had an expected biological activity when assayed in cell models in vitro and experimental mouse in vivo. In conclusion, the present study established an efficient and simple approach to produce recombinant GH, and facilitate relevant research and applications.


Subject(s)
Escherichia coli Proteins , Growth Hormone , Animals , Chaperonin 10 , Chaperonin 60/genetics , Chaperonin 60/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Growth Hormone/genetics , Growth Hormone/metabolism , Heat-Shock Proteins/metabolism , Mice , Molecular Chaperones/metabolism , Recombinant Proteins , Sheep
5.
Small ; 17(51): e2104365, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34726839

ABSTRACT

The urgent need for high energy batteries is pushing the battery studies toward the Li metal and solid-state direction, and the most central question is finding proper solid-state electrolyte (SSE). So far, the recently studied electrolytes have obvious advantages and fatal weaknesses, resulting in indecisive plans for industrial production. In this work, a thin and dense lithiated polyphenylene sulfide-based solid state separator (PPS-SSS) prepared by a solvent-free process in pilot stage is proposed. Moreover, the PPS surface is functionalized to immobilize the anions, increasing the Li+ transference number to 0.8-0.9, and widening the electrochemical potential window (EPW > 5.1 V). At 25 °C, the PPS-SSS exhibits high intrinsic Li+ diffusion coefficient and ionic conductivity (>10-4 S cm-1 ), and Li+ transport rectifying effect, resulting in homogenous Li-plating on Cu at 2 mA cm-2 density. Based on the limited Li-plated Cu anode or anode-free Cu, high loadings cathode and high voltage, the Li-metal batteries (LMBs) with polyethylene (PE) protected PPS-SSSs deliver high energy and power densities (>1000 Wh L-1 and 900 W L-1 ) with >200 cycling life and high safety, exceeding those of state-of-the-art Li-ion batteries. The results promote the Li metal battery toward practicality.

6.
Opt Lett ; 45(4): 968-971, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-32058519

ABSTRACT

The spectrum overlapping of the radiative power between magnetic and electric dipole moments in nanoparticles can be used to realize unidirectional light scattering, which is promising for various kinds of applications. Nevertheless, it is still challenging to achieve such overlapping in a broadband manner. Herein, we propose that the combination of a genetic algorithm, Maxwell's equations, and electromagnetic multipole expansion can be used to design a nanoparticle that supports resonant broadband forward light scattering. Microwave experiments are performed to demonstrate our numerical results. The proposed method is quite general, and it can be straightforwardly generalized to design functional unidirectional scatters.

7.
Nat Chem Biol ; 14(7): 680-687, 2018 07.
Article in English | MEDLINE | ID: mdl-29785056

ABSTRACT

Uracil in DNA can be generated by cytosine deamination or dUMP misincorporation; however, its distribution in the human genome is poorly understood. Here we present a selective labeling and pull-down technology for genome-wide uracil profiling and identify thousands of uracil peaks in three different human cell lines. Surprisingly, uracil is highly enriched at the centromere of the human genome. Using mass spectrometry, we demonstrate that human centromeric DNA contains a higher level of uracil. We also directly verify the presence of uracil within two centromeric uracil peaks on chromosomes 6 and 11. Moreover, centromeric uracil is preferentially localized within the binding regions of the centromere-specific histone CENP-A and can be excised by human uracil-DNA glycosylase UNG. Collectively, our approaches allow comprehensive analysis of uracil in the human genome and provide robust tools for mapping and future functional studies of uracil in DNA.


Subject(s)
Centromere/metabolism , Chromosome Mapping , DNA/metabolism , Deoxyuridine/metabolism , Uracil/metabolism , Cell Line , Centromere/genetics , DNA/genetics , Humans , Mass Spectrometry
8.
J Sci Food Agric ; 100(15): 5627-5636, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32712996

ABSTRACT

BACKGROUND: Serofluid dish, a traditional Chinese fermented food, possesses unique flavors and health beneficial effects. These properties are likely due to the sophisticated metabolic networks during fermentation, which are mainly driven by microbiota. However, the exact roles of metabolic pathways and the microbial community during this process remain equivocal. RESULTS: Here, we investigated the microbial dynamics by next-generation sequencing, and outlined a differential non-targeted metabolite profiling in the process of serofluid dish fermentation using the method of hydrophilic interaction liquid chromatography column with ultra-high-performance liquid chromatography-quadruple time-of-flight mass spectrometry. Lactobacillus was the leading genus of bacteria, while Pichia and Issatchenkia were the dominant fungi. They all accumulated during fermentation. In total, 218 differential metabolites were identified, of which organic acids, amino acids, sugar and sugar alcohols, fatty acids, and esters comprised the majority. The constructed metabolic network showed that tricarboxylic acid cycle, urea cycle, sugar metabolism, amino acids metabolism, choline metabolism, and flavonoid metabolism were regulated by the fermentation. Furthermore, correlation analysis revealed that the leading fungi, Pichia and Issatchenkia, were linked to organic acids, amino acid and sugar metabolism, flavonoids, and several other flavor and functional components. Antibacterial tests indicated the antibacterial effect of serofluid soup against Salmonella and Staphylococcus. CONCLUSION: This work provides new insights into the complex microbial and metabolic networks during serofluid dish fermentation, and a theoretical basis for the optimization of its industrial production. © 2020 Society of Chemical Industry.


Subject(s)
Bacteria/isolation & purification , Fermented Foods/analysis , Fermented Foods/microbiology , Fungi/isolation & purification , Microbiota , Amino Acids/analysis , Amino Acids/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Chromatography, High Pressure Liquid , Fatty Acids/analysis , Fatty Acids/metabolism , Fermentation , Fungi/classification , Fungi/genetics , Fungi/metabolism , Humans , Mass Spectrometry , Metabolomics , Taste , Vegetables/chemistry , Vegetables/metabolism , Vegetables/microbiology
9.
Proc Natl Acad Sci U S A ; 113(28): 7792-7, 2016 07 12.
Article in English | MEDLINE | ID: mdl-27354518

ABSTRACT

NEIL1 (Nei-like 1) is a DNA repair glycosylase guarding the mammalian genome against oxidized DNA bases. As the first enzymes in the base-excision repair pathway, glycosylases must recognize the cognate substrates and catalyze their excision. Here we present crystal structures of human NEIL1 bound to a range of duplex DNA. Together with computational and biochemical analyses, our results suggest that NEIL1 promotes tautomerization of thymine glycol (Tg)-a preferred substrate-for optimal binding in its active site. Moreover, this tautomerization event also facilitates NEIL1-catalyzed Tg excision. To our knowledge, the present example represents the first documented case of enzyme-promoted tautomerization for efficient substrate recognition and catalysis in an enzyme-catalyzed reaction.


Subject(s)
DNA Glycosylases/metabolism , DNA Repair , DNA/metabolism , Computer Simulation , Crystallography , Escherichia coli , Furans , Humans , Models, Chemical , Thymine/analogs & derivatives
10.
Molecules ; 24(14)2019 Jul 16.
Article in English | MEDLINE | ID: mdl-31315294

ABSTRACT

The proton transfer mechanism on the carbon cathode surface has been considered as an effective way to boost the electrochemical performance of Zn-ion hybrid supercapacitors (SCs) with both ionic liquid and organic electrolytes. However, cheaper, potentially safer, and more environmental friendly supercapacitor can be achieved by using aqueous electrolyte. Herein, we introduce the proton transfer mechanism into a Zn-ion hybrid supercapacitor with the ZnSO4 aqueous electrolyte and functionalized activated carbon cathode materials (FACs). We reveal both experimentally and theoretically an enhanced performance by controlling the micropores structure and hydrogen-containing functional groups (-OH and -NH functions) of the activated carbon materials. The Zn-ion SCs with FACs exhibit a high capacitance of 435 F g-1 and good stability with 89% capacity retention over 10,000 cycles. Moreover, the proton transfer effect can be further enhanced by introducing extra hydrogen ions in the electrolyte with low pH value. The highest capacitance of 544 F g-1 is obtained at pH = 3. The proton transfer process tends to take place preferentially on the hydroxyl-groups based on the density functional theory (DFT) calculation. The results would help to develop carbon materials for cheaper and safer Zn-ion hybrid SCs with higher energy.


Subject(s)
Carbon/chemistry , Hydrogen/chemistry , Zinc/chemistry , Density Functional Theory , Electric Capacitance , Electrodes , Electrolytes , Ionic Liquids
11.
Angew Chem Int Ed Engl ; 58(1): 130-133, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30407705

ABSTRACT

The emergence of unnatural DNA bases provides opportunities to demystify the mechanisms by which DNA polymerases faithfully decode chemical information on the template. It was previously shown that two unnatural cytosine bases (termed "M-fC" and "I-fC"), which are chemical labeling adducts of the epigenetic base 5-formylcytosine, can induce C-to-T transition during DNA amplification. However, how DNA polymerases recognize such unnatural cytosine bases remains enigmatic. Herein, crystal structures of unnatural cytosine bases pairing to dA/dG in the KlenTaq polymerase-host-guest complex system and pairing to dATP in the KlenTaq polymerase active site were determined. Both M-fC and I-fC base pair with dA/dATP, but not with dG, in a Watson-Crick geometry. This study reveals that the formation of the Watson-Crick geometry, which may be enabled by the A-rule, is important for the recognition of unnatural cytosines.


Subject(s)
Cytosine/chemistry , DNA-Directed DNA Polymerase/chemistry , DNA/chemistry , Thymine/chemistry , Humans , Molecular Structure
12.
Nat Methods ; 12(11): 1047-50, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26344045

ABSTRACT

Active DNA demethylation in mammals involves oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). However, genome-wide detection of 5fC at single-base resolution remains challenging. Here we present fC-CET, a bisulfite-free method for whole-genome analysis of 5fC based on selective chemical labeling of 5fC and subsequent C-to-T transition during PCR. Base-resolution 5fC maps showed limited overlap with 5hmC, with 5fC-marked regions more active than 5hmC-marked ones.


Subject(s)
Cytosine/analogs & derivatives , DNA Methylation , Sequence Analysis, DNA/methods , 5-Methylcytosine/chemistry , Animals , Cell Line , CpG Islands , Cytosine/chemistry , DNA Primers/chemistry , Epigenomics , Gene Expression Regulation , Genome , Mice , Mice, Transgenic , Oligonucleotides/genetics , Oxygen/chemistry , Polymerase Chain Reaction , Stem Cells/cytology , Sulfites/chemistry
13.
Heliyon ; 10(1): e23940, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38223707

ABSTRACT

Normal pressure hydrocephalus (NPH) is a prevalent type of hydrocephalus, including secondary normal pressure hydrocephalus (SNPH) and idiopathic normal pressure hydrocephalus (INPH). However, its clinical diagnosis and pathological mechanism are still unclear. Leucine-rich α-2 glycoprotein (LRG) is involved in various human diseases, including cancer, diabetes, cardiovascular disease, and nervous system diseases. Now the physiological mechanism of LRG is still being explored. According to the current research results on LRG, we found that the agency of LRG has much to do with the known pathological process of NPH. This review focuses on analyzing the LRG signaling pathways and the pathological mechanism of NPH. According to the collected literature evidence, we speculated that LRG probably be involved in the pathological process of NPH. Finally, based on the mechanism of LRG and NPH, we also summarized the evidence of molecular targeted therapies for future research and clinical application.

14.
Article in English | MEDLINE | ID: mdl-37936533

ABSTRACT

As the main component of Brain-computer interface (BCI) technology, the classification algorithm based on EEG has developed rapidly. The previous algorithms were often based on subject-dependent settings, resulting in BCI needing to be calibrated for new users. In this work, we propose IMH-Net, an end-to-end subject-independent model. The model first uses Inception blocks extracts the frequency domain features of the data, then further compresses the feature vectors to extract the spatial domain features, and finally learns the global information and classification through Multi-Head Attention mechanism. On the OpenBMI dataset, IMH-Net obtained 73.90 ± 13.10% accuracy and 73.09 ± 14.99% F1-score in subject-independent manner, which improved the accuracy by 1.96% compared with the comparison model. On the BCI competition IV dataset 2a, this model also achieved the highest accuracy and F1-score in subject-dependent manner. The IMH-Net model we proposed can improve the accuracy of subject-independent Motor Imagery (MI), and the robustness of the algorithm is high, which has strong practical value in the field of BCI.

15.
Front Endocrinol (Lausanne) ; 14: 1216817, 2023.
Article in English | MEDLINE | ID: mdl-37780610

ABSTRACT

Pituitary adenoma (PA) is the third most common central nervous system tumor originating from the anterior pituitary, but its pathogenesis remains unclear. The Wnt signaling pathway is a conserved pathway involved in cell proliferation, Self-renewal of stem cells, and cell differentiation. It is related to the occurrence of various tumors, including PA. This article reviews the latest developments in Wnt pathway inhibitors and pathway-targeted drugs. It discusses the possibility of combining Wnt pathway inhibitors with immunotherapy to provide a theoretical basis for the combined treatment of PA.


Subject(s)
Pituitary Neoplasms , Wnt Signaling Pathway , Humans , Pituitary Neoplasms/pathology , Stem Cells/metabolism , Cell Differentiation
16.
Cell Death Dis ; 14(6): 388, 2023 06 30.
Article in English | MEDLINE | ID: mdl-37391410

ABSTRACT

Chemotherapy is a common strategy to treat cancer. However, acquired resistance and metastasis are the major obstacles to successful treatment. Anastasis is a process by which cells survive executioner caspase activation when facing apoptotic stress. Here we demonstrate that colorectal cancer cells can undergo anastasis after transient exposure to chemotherapeutic drugs. Using a lineage tracing system to label and isolate cells that have experienced executioner caspase activation in response to drug treatment, we show that anastasis grants colorectal cancer cells enhanced migration, metastasis, and chemoresistance. Mechanistically, treatment with chemotherapeutic drugs induces upregulated expression of cIAP2 and activation of NFκB, which are required for cells to survive executioner caspase activation. The elevated cIAP2/NFκB signaling persists in anastatic cancer cells to promote migration and chemoresistance. Our study unveils that cIAP2/NFκB-dependent anastasis promotes acquired resistance and metastasis after chemotherapy.


Subject(s)
Cell Death Reversal , Colorectal Neoplasms , Humans , Drug Resistance, Neoplasm , NF-kappa B , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Caspases
17.
Oncogenesis ; 12(1): 34, 2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37355711

ABSTRACT

Cancer relapse and metastasis are major obstacles for effective treatment. One important mechanism to eliminate cancer cells is to induce apoptosis. Activation of executioner caspases is the key step in apoptosis and was considered "a point of no return". However, in recent years, accumulating evidence has demonstrated that cells can survive executioner caspase activation in response to apoptotic stimuli through a process named anastasis. Here we show that breast cancer cells that have survived through anastasis (anastatic cells) after exposure to chemotherapeutic drugs acquire enhanced proliferation and migration. Mechanistically, cadherin 12 (CDH12) is persistently upregulated in anastatic cells and promotes breast cancer malignancy via activation of ERK and CREB. Moreover, we demonstrate that executioner caspase activation induced by chemotherapeutic drugs results in loss of DNA methylation and repressive histone modifications in the CDH12 promoter region, leading to increased CDH12 expression. Our work unveils the mechanism underlying anastasis-induced enhancement in breast cancer malignancy, offering new therapeutic targets for preventing post-chemotherapy cancer relapse and metastasis.

18.
Yi Chuan ; 34(12): 1628-37, 2012 Dec.
Article in Zh | MEDLINE | ID: mdl-23262112

ABSTRACT

The grasshoppers are ideal materials to study various meiotic stages of spermatogenesis due to their easy availability, fairly large chromosomes, and fewer numbers of chromosomes. It is easy to make temporary squash preparation of grasshopper testes; however, it is usually difficult for the beginners to differentiate between stages of meiosis. In view of this, we demonstrated the method of identification of meiotic stages by chromosome number and chromosome conformation, taking spermatogonial meiosis of Locusta migratoria manilensis as an example. We described briefly the mitosis of spermatogonia and the spermatogenesis of this species as well.


Subject(s)
Grasshoppers/genetics , Meiosis , Spermatogenesis , Spermatozoa/chemistry , Spermatozoa/cytology , Staining and Labeling/methods , Animals , Chromosomes, Insect/chemistry , Chromosomes, Insect/genetics , Grasshoppers/chemistry , Grasshoppers/cytology , Male
19.
Huan Jing Ke Xue ; 42(10): 4826-4833, 2021 Oct 08.
Article in Zh | MEDLINE | ID: mdl-34581125

ABSTRACT

To explore the mechanism and efficiency of ammonia nitrogen removal, a pilot-scale biofilter for the simultaneous removal of high concentrations of iron, manganese, and ammonia nitrogen[Fe(Ⅱ) 11.9-14.8 mg·L-1, Mn(Ⅱ) 1.1-1.5mg·L-1, and NH4+-N 1.1-3.2 mg·L-1] from low temperature(5-6℃) groundwater was operated in a water supply plant in Northeast China. Results indicated excellent performance for ammonia nitrogen removal during the initial start-up stage. According to theoretical analysis and experimental verification, TNloss was driven by the adsorption of ammonia nitrogen by iron oxides, and the conversion of ammonia nitrogen into nitrate nitrogen occurred via biological nitrification. When the concentration of ammonia nitrogen increased, due to limited adsorption sites, the adsorption capacity of iron oxides remained stable at approximately 1 mg·L-1. For the same period, the amount of ammonia nitrogen removal via oxidation continued to increase, with higher quantities removed in the upper filter layer than in the lower filter layer. Dissolved oxygen(DO) is the limiting factor in the further increase in the removal of ammonia nitrogen by oxidation. With an increase in the filtration rate, the adsorption time of ammonia nitrogen by iron oxides was shortened, and the adsorption amount was reduced. Meanwhile, the shortening of EBCT reduced the ammonia nitrogen removed by nitrification under the action of nitrifying bacteria in the unit volume of the filter material. Based on these findings, it is recommended that the thickness of the filter layer should be increased to improve ammonia nitrogen removal performance.


Subject(s)
Groundwater , Water Purification , Ammonia , Filtration , Nitrification , Nitrogen , Temperature
20.
Nat Commun ; 12(1): 4108, 2021 07 05.
Article in English | MEDLINE | ID: mdl-34226550

ABSTRACT

DNA glycosylases must distinguish the sparse damaged sites from the vast expanse of normal DNA bases. However, our understanding of the nature of nucleobase interrogation is still limited. Here, we show that hNEIL1 (human endonuclease VIII-like 1) captures base lesions via two competing states of interaction: an activated state that commits catalysis and base excision repair, and a quarantine state that temporarily separates and protects the flipped base via auto-inhibition. The relative dominance of the two states depends on key residues of hNEIL1 and chemical properties (e.g. aromaticity and hydrophilicity) of flipped bases. Such a DNA repair mechanism allows hNEIL1 to recognize a broad spectrum of DNA damage while keeps potential gratuitous repair in check. We further reveal the molecular basis of hNEIL1 activity regulation mediated by post-transcriptional modifications and provide an example of how exquisite structural dynamics serves for orchestrated enzyme functions.


Subject(s)
DNA Glycosylases/chemistry , DNA Glycosylases/metabolism , DNA Repair/physiology , Triage , Amino Acid Sequence , Binding Sites , Catalytic Domain , DNA/chemistry , DNA Damage , DNA Glycosylases/genetics , Deoxyribonuclease (Pyrimidine Dimer)/chemistry , Deoxyribonuclease (Pyrimidine Dimer)/genetics , Deoxyribonuclease (Pyrimidine Dimer)/metabolism , Humans , Molecular Dynamics Simulation , Mutation , Protein Conformation , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL