Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters

Publication year range
1.
Nature ; 612(7941): 720-724, 2022 12.
Article in English | MEDLINE | ID: mdl-36477530

ABSTRACT

Tobacco and alcohol use are heritable behaviours associated with 15% and 5.3% of worldwide deaths, respectively, due largely to broad increased risk for disease and injury1-4. These substances are used across the globe, yet genome-wide association studies have focused largely on individuals of European ancestries5. Here we leveraged global genetic diversity across 3.4 million individuals from four major clines of global ancestry (approximately 21% non-European) to power the discovery and fine-mapping of genomic loci associated with tobacco and alcohol use, to inform function of these loci via ancestry-aware transcriptome-wide association studies, and to evaluate the genetic architecture and predictive power of polygenic risk within and across populations. We found that increases in sample size and genetic diversity improved locus identification and fine-mapping resolution, and that a large majority of the 3,823 associated variants (from 2,143 loci) showed consistent effect sizes across ancestry dimensions. However, polygenic risk scores developed in one ancestry performed poorly in others, highlighting the continued need to increase sample sizes of diverse ancestries to realize any potential benefit of polygenic prediction.


Subject(s)
Alcohol Drinking , Genetic Predisposition to Disease , Genetic Variation , Internationality , Multifactorial Inheritance , Tobacco Use , Humans , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Genome-Wide Association Study/methods , Multifactorial Inheritance/genetics , Risk Factors , Tobacco Use/genetics , Alcohol Drinking/genetics , Transcriptome , Sample Size , Genetic Loci/genetics , Europe/ethnology
2.
Psychol Med ; 53(6): 2296-2306, 2023 04.
Article in English | MEDLINE | ID: mdl-37310313

ABSTRACT

BACKGROUND: Recent well-powered genome-wide association studies have enhanced prediction of substance use outcomes via polygenic scores (PGSs). Here, we test (1) whether these scores contribute to prediction over-and-above family history, (2) the extent to which PGS prediction reflects inherited genetic variation v. demography (population stratification and assortative mating) and indirect genetic effects of parents (genetic nurture), and (3) whether PGS prediction is mediated by behavioral disinhibition prior to substance use onset. METHODS: PGSs for alcohol, cannabis, and nicotine use/use disorder were calculated for Minnesota Twin Family Study participants (N = 2483, 1565 monozygotic/918 dizygotic). Twins' parents were assessed for histories of substance use disorder. Twins were assessed for behavioral disinhibition at age 11 and substance use from ages 14 to 24. PGS prediction of substance use was examined using linear mixed-effects, within-twin pair, and structural equation models. RESULTS: Nearly all PGS measures were associated with multiple types of substance use independently of family history. However, most within-pair PGS prediction estimates were substantially smaller than the corresponding between-pair estimates, suggesting that prediction is driven in part by demography and indirect genetic effects of parents. Path analyses indicated the effects of both PGSs and family history on substance use were mediated via disinhibition in preadolescence. CONCLUSIONS: PGSs capturing risk of substance use and use disorder can be combined with family history measures to augment prediction of substance use outcomes. Results highlight indirect sources of genetic associations and preadolescent elevations in behavioral disinhibition as two routes through which these scores may relate to substance use.


Subject(s)
Cannabis , Hallucinogens , Substance-Related Disorders , Child , Adolescent , Humans , Young Adult , Adult , Nicotine , Genome-Wide Association Study , Ethanol , Substance-Related Disorders/epidemiology , Substance-Related Disorders/genetics , Cannabinoid Receptor Agonists
3.
Biochem Biophys Res Commun ; 616: 8-13, 2022 08 06.
Article in English | MEDLINE | ID: mdl-35636257

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) provoked a pandemic of acute respiratory disease, namely coronavirus disease 2019 (COVID-19). Currently, effective drugs for this disease are urgently warranted. Anisodamine is a traditional Chinese medicine that is predicted as a potential therapeutic drug for the treatment of COVID-19. Therefore, this study aimed to investigate its antiviral activity and crucial targets in SARS-CoV-2 infection. SARS-CoV-2 and anisodamine were co-cultured in Vero E6 cells, and the antiviral activity of anisodamine was assessed by immunofluorescence assay. The antiviral activity of anisodamine was further measured by pseudovirus entry assay in HEK293/hACE2 cells. Finally, the predictions of crucial targets of anisodamine on SARS-CoV-2 were analyzed by molecular docking studies. We discovered that anisodamine suppressed SARS-CoV-2 infection in Vero E6 cells, and reduced the SARS-CoV-2 pseudovirus entry to HEK293/hACE2 cells. Furthermore, molecular docking studies indicated that anisodamine may target SARS-CoV-2 main protease (Mpro) with the docking score of -6.63 kcal/mol and formed three H-bonds with Gly143, Cys145, and Cys44 amino acid residues at the predicted active site of Mpro. This study suggests that anisodamine is a potent antiviral agent for treating COVID-19.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Coronavirus 3C Proteases , SARS-CoV-2 , Solanaceous Alkaloids , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , COVID-19/virology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/drug effects , Coronavirus 3C Proteases/metabolism , HEK293 Cells , Humans , Molecular Docking Simulation , Peptide Hydrolases , Protease Inhibitors/pharmacology , Solanaceous Alkaloids/pharmacology , Viral Nonstructural Proteins/chemistry
4.
Psychol Med ; 52(5): 968-978, 2022 04.
Article in English | MEDLINE | ID: mdl-32762793

ABSTRACT

BACKGROUND: Substance use occurs at a high rate in persons with a psychiatric disorder. Genetically informative studies have the potential to elucidate the etiology of these phenomena. Recent developments in genome-wide association studies (GWAS) allow new avenues of investigation. METHOD: Using results of GWAS meta-analyses, we performed a factor analysis of the genetic correlation structure, a genome-wide search of shared loci, and causally informative tests for six substance use phenotypes (four smoking, one alcohol, and one cannabis use) and five psychiatric disorders (ADHD, anorexia, depression, bipolar disorder, and schizophrenia). RESULTS: Two correlated externalizing and internalizing/psychosis factor were found, although model fit was beneath conventional standards. Of 458 loci reported in previous univariate GWAS of substance use and psychiatric disorders, about 50% (230 loci) were pleiotropic with additional 111 pleiotropic loci not reported from past GWAS. Of the 341 pleiotropic loci, 152 were associated with both substance use and psychiatric disorders, implicating neurodevelopment, cell morphogenesis, biological adhesion pathways, and enrichment in 13 different brain tissues. Seventy-five and 114 pleiotropic loci were specific to either psychiatric disorders or substance use phenotypes, implicating neuronal signaling pathway and clathrin-binding functions/structures, respectively. No consistent evidence for phenotypic causation was found across different Mendelian randomization methods. CONCLUSIONS: Genetic etiology of substance use and psychiatric disorders is highly pleiotropic and involves shared neurodevelopmental path, neurotransmission, and intracellular trafficking. In aggregate, the patterns are not consistent with vertical pleiotropy, more likely reflecting horizontal pleiotropy or more complex forms of phenotypic causation.


Subject(s)
Mental Disorders , Schizophrenia , Substance-Related Disorders , Genetic Pleiotropy , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Mental Disorders/epidemiology , Mental Disorders/genetics , Phenotype , Polymorphism, Single Nucleotide , Schizophrenia/epidemiology , Schizophrenia/genetics , Substance-Related Disorders/epidemiology , Substance-Related Disorders/genetics
5.
Microb Cell Fact ; 21(1): 12, 2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35090444

ABSTRACT

BACKGROUND: Polysaccharides are important active ingredients in Ophiocordyceps gracilis with many physiological functions. It can be obtained from the submerged fermentation by the anamorph (Paraisaria dubia) of Ophiocordyceps gracilis. However, it was found that the mycelial pellets of Paraisaria dubia were dense and increased in volume in the process of fermentation, and the center of the pellets was autolysis due to the lack of nutrient delivery, which extremely reduced the yield of polysaccharides. Therefore, it is necessary to excavate a fermentation strategy based on morphological regulation for Paraisaria dubia to promote polysaccharides accumulation. RESULTS: In this study, we developed a method for enhancing polysaccharides production by Paraisaria dubia using microparticle enhanced technology, talc microparticle as morphological inducer, and investigated the enhancement mechanisms by transcriptomics. The optimal size and dose of talc were found to be 2000 mesh and 15 g/L, which resulted in a high polysaccharides yield. It was found that the efficient synthesis of polysaccharides requires an appropriate mycelial morphology through morphological analysis of mycelial pellets. And, the polysaccharides synthesis was found to mainly rely on the ABC transporter-dependent pathway revealed by transcriptomics. This method was also showed excellent robustness in 5-L bioreactor, the maximum yields of intracellular polysaccharide and exopolysaccharides were 83.23 ± 1.4 and 518.50 ± 4.1 mg/L, respectively. And, the fermented polysaccharides were stable and showed excellent biological activity. CONCLUSIONS: This study provides a feasible strategy for the efficient preparation of cordyceps polysaccharides via submerged fermentation with talc microparticles, which may also be applicable to similar macrofungi.


Subject(s)
Fungal Polysaccharides/biosynthesis , Hypocreales/metabolism , Bioreactors , Biosynthetic Pathways , Culture Media , Fermentation , Gene Expression Profiling , Gene Expression Regulation, Fungal , Hypocreales/cytology , Hypocreales/genetics , Mycelium/cytology , Particle Size , Talc
6.
Inorg Chem ; 61(25): 9808-9815, 2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35687762

ABSTRACT

Employing in situ-generated metal complexes as structural decorating agents, we, for the first time, isolated two [Co(bipy)3]3+-templated silver halobismuthate hybrids, namely [Co(bipy)3]2Ag4Bi2X16 (X = Br (1), I (2); bipy = 2,2'-bipyridine). Compounds 1 and 2 belong to the isomorphic phrases and exhibit the nonperovskite structures characteristic of the discrete [Ag4Bi2X16]6- anions. UV-vis absorption spectra analyses showed that the optical band gaps of compounds 1 and 2 are 2.40 and 1.95 eV, respectively, implying the visible light responding semiconductor properties. Moreover, under the alternate light illumination, the title compounds exhibited "on/off" photocurrent behaviors, with high photocurrent densities comparable to many metal halide hybrids. Presented in this work also involved the Hirshfeld surface analyses and X-ray photoelectron spectroscopy studies together with the theoretical band structures, density of states, and electron wave functions.

7.
Inorg Chem ; 61(1): 406-413, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34931819

ABSTRACT

Using in situ formed metal complexes of [Fe(bipy)3]2+ or [Ni(bipy)3]2+ (bipy = 2,2'-bipyridine) as templates, four new Ag-Bi-X (X = I and Br) compounds are first isolated in the metal-complex-decorated heterometallic halobismuthate family, namely [M(bipy)3]AgBiI6 (M = Fe (1), Ni (2)), [Fe(bipy)3]AgBiBr6 (3), and [Ni(bipy)3]AgBiBr6 (4). Compounds 1-4 feature discrete [AgBiX6]n2n- anions, exhibiting three polymorphisms that may be ascribed to the different stackings and the flexible condensations of [BiX6] octahedrons and [AgX4] tetrahedra/[AgX3] triangles. UV-vis diffuse reflectance analyses reveal that they are narrow band gap semiconductor materials (ca. 1.82-2.13 eV). Intriguingly, the title compounds display excellent photoelectrical switching properties, with photocurrent density following the order 3 > 4 > 2 > 1. In addition, the comparative studies of intermolecular interactions, theoretical band structures, density of states, and effective masses of three polymorphisms have also been investigated.

8.
J Asian Nat Prod Res ; 24(3): 203-230, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34253101

ABSTRACT

Secondary metabolites generated by marine fungi have relatively small molecular weights and excellent activities and have become an important source for developing drug lead compounds. The review summarizes the structures of novel small-molecule compounds derived from marine fungi in recent years; introduces representative monomers in antimicrobial, antitumor, anti-viral, and anti-neuritis aspects; and discusses their biological activities and molecular mechanisms. This review will act as a guide for further discovering marine-derived drugs with novel chemical structures and specific targeting mechanisms.


Subject(s)
Anti-Infective Agents , Biological Products , Anti-Bacterial Agents , Fungi , Molecular Structure
9.
Genet Epidemiol ; 44(7): 748-758, 2020 10.
Article in English | MEDLINE | ID: mdl-32803792

ABSTRACT

Smoking is a major contributor to lung cancer and chronic obstructive pulmonary disease (COPD). Two of the strongest genetic associations of smoking-related phenotypes are the chromosomal regions 15q25.1, encompassing the nicotinic acetylcholine receptor subunit genes CHRNA5-CHRNA3-CHRNB4, and 19q13.2, encompassing the nicotine metabolizing gene CYP2A6. In this study, we examined genetic relations between cigarettes smoked per day, smoking cessation, lung cancer, and COPD. Data consisted of genome-wide association study summary results. Genetic correlations were estimated using linkage disequilibrium score regression software. For each pair of outcomes, z-score-z-score (ZZ) plots were generated. Overall, heavier smoking and decreased smoking cessation showed positive genetic associations with increased lung cancer and COPD risk. The chromosomal region 19q13.2, however, showed a different correlational pattern. For example, the effect allele-C of the sentinel SNP (rs56113850) within CYP2A6 was associated with an increased risk of heavier smoking (z-score = 19.2; p = 1.10 × 10-81 ), lung cancer (z-score = 8.91; p = 5.02 × 10-19 ), and COPD (z-score = 4.04; p = 5.40 × 10-5 ). Surprisingly, this allele-C (rs56113850) was associated with increased smoking cessation (z-score = -8.17; p = 2.52 × 10-26 ). This inverse relationship highlights the need for additional investigation to determine how CYP2A6 variation could increase smoking cessation while also increasing the risk of lung cancer and COPD likely through increased cigarettes smoked per day.


Subject(s)
Lung Neoplasms/genetics , Pulmonary Disease, Chronic Obstructive/genetics , Receptors, Nicotinic/genetics , Smoking Cessation/statistics & numerical data , Smoking/genetics , Alleles , Cytochrome P-450 CYP2A6/genetics , Genome-Wide Association Study , Humans , Linkage Disequilibrium/genetics , Lung Neoplasms/etiology , Male , Middle Aged , Nerve Tissue Proteins/genetics , Nicotine/metabolism , Polymorphism, Single Nucleotide/genetics , Pulmonary Disease, Chronic Obstructive/etiology , Risk Factors , Smoking Cessation/methods
10.
Psychol Med ; : 1-11, 2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33731234

ABSTRACT

BACKGROUND: To better characterize brain-based mechanisms of polygenic liability for psychopathology and psychological traits, we extended our previous report (Liu et al. Psychophysiological endophenotypes to characterize mechanisms of known schizophrenia genetic loci. Psychological Medicine, 2017), focused solely on schizophrenia, to test the association between multivariate psychophysiological candidate endophenotypes (including novel measures of θ/δ oscillatory activity) and a range of polygenic scores (PGSs), namely alcohol/cannabis/nicotine use, an updated schizophrenia PGS (containing 52 more genome-wide significant loci than the PGS used in our previous report) and educational attainment. METHOD: A large community-based twin/family sample (N = 4893) was genome-wide genotyped and imputed. PGSs were constructed for alcohol use, regular smoking initiation, lifetime cannabis use, schizophrenia, and educational attainment. Eleven endophenotypes were assessed: visual oddball task event-related electroencephalogram (EEG) measures (target-related parietal P3 amplitude, frontal θ, and parietal δ energy/inter-trial phase clustering), band-limited resting-state EEG power, antisaccade error rate. Principal component analysis exploited covariation among endophenotypes to extract a smaller number of meaningful dimensions/components for statistical analysis. RESULTS: Endophenotypes were heritable. PGSs showed expected intercorrelations (e.g. schizophrenia PGS correlated positively with alcohol/nicotine/cannabis PGSs). Schizophrenia PGS was negatively associated with an event-related P3/δ component [ß = -0.032, nonparametric bootstrap 95% confidence interval (CI) -0.059 to -0.003]. A prefrontal control component (event-related θ/antisaccade errors) was negatively associated with alcohol (ß = -0.034, 95% CI -0.063 to -0.006) and regular smoking PGSs (ß = -0.032, 95% CI -0.061 to -0.005) and positively associated with educational attainment PGS (ß = 0.031, 95% CI 0.003-0.058). CONCLUSIONS: Evidence suggests that multivariate endophenotypes of decision-making (P3/δ) and cognitive/attentional control (θ/antisaccade error) relate to alcohol/nicotine, schizophrenia, and educational attainment PGSs and represent promising targets for future research.

11.
Mol Psychiatry ; 25(10): 2392-2409, 2020 10.
Article in English | MEDLINE | ID: mdl-30617275

ABSTRACT

Smoking is a major heritable and modifiable risk factor for many diseases, including cancer, common respiratory disorders and cardiovascular diseases. Fourteen genetic loci have previously been associated with smoking behaviour-related traits. We tested up to 235,116 single nucleotide variants (SNVs) on the exome-array for association with smoking initiation, cigarettes per day, pack-years, and smoking cessation in a fixed effects meta-analysis of up to 61 studies (up to 346,813 participants). In a subset of 112,811 participants, a further one million SNVs were also genotyped and tested for association with the four smoking behaviour traits. SNV-trait associations with P < 5 × 10-8 in either analysis were taken forward for replication in up to 275,596 independent participants from UK Biobank. Lastly, a meta-analysis of the discovery and replication studies was performed. Sixteen SNVs were associated with at least one of the smoking behaviour traits (P < 5 × 10-8) in the discovery samples. Ten novel SNVs, including rs12616219 near TMEM182, were followed-up and five of them (rs462779 in REV3L, rs12780116 in CNNM2, rs1190736 in GPR101, rs11539157 in PJA1, and rs12616219 near TMEM182) replicated at a Bonferroni significance threshold (P < 4.5 × 10-3) with consistent direction of effect. A further 35 SNVs were associated with smoking behaviour traits in the discovery plus replication meta-analysis (up to 622,409 participants) including a rare SNV, rs150493199, in CCDC141 and two low-frequency SNVs in CEP350 and HDGFRP2. Functional follow-up implied that decreased expression of REV3L may lower the probability of smoking initiation. The novel loci will facilitate understanding the genetic aetiology of smoking behaviour and may lead to the identification of potential drug targets for smoking prevention and/or cessation.


Subject(s)
Genetic Loci , Smoking/genetics , Biological Specimen Banks , Databases, Factual , Europe/ethnology , Exome , Female , Humans , Male , Polymorphism, Single Nucleotide/genetics , United Kingdom
12.
PLoS Genet ; 14(7): e1007452, 2018 07.
Article in English | MEDLINE | ID: mdl-30016313

ABSTRACT

Meta-analysis of genetic association studies increases sample size and the power for mapping complex traits. Existing methods are mostly developed for datasets without missing values, i.e. the summary association statistics are measured for all variants in contributing studies. In practice, genotype imputation is not always effective. This may be the case when targeted genotyping/sequencing assays are used or when the un-typed genetic variant is rare. Therefore, contributed summary statistics often contain missing values. Existing methods for imputing missing summary association statistics and using imputed values in meta-analysis, approximate conditional analysis, or simple strategies such as complete case analysis all have theoretical limitations. Applying these approaches can bias genetic effect estimates and lead to seriously inflated type-I or type-II errors in conditional analysis, which is a critical tool for identifying independently associated variants. To address this challenge and complement imputation methods, we developed a method to combine summary statistics across participating studies and consistently estimate joint effects, even when the contributed summary statistics contain large amounts of missing values. Based on this estimator, we proposed a score statistic called PCBS (partial correlation based score statistic) for conditional analysis of single-variant and gene-level associations. Through extensive analysis of simulated and real data, we showed that the new method produces well-calibrated type-I errors and is substantially more powerful than existing approaches. We applied the proposed approach to one of the largest meta-analyses to date for the cigarettes-per-day phenotype. Using the new method, we identified multiple novel independently associated variants at known loci for tobacco use, which were otherwise missed by alternative methods. Together, the phenotypic variance explained by these variants was 1.1%, improving that of previously reported associations by 71%. These findings illustrate the extent of locus allelic heterogeneity and can help pinpoint causal variants.


Subject(s)
Data Analysis , Tobacco Products/statistics & numerical data , Tobacco Use/genetics , Alleles , Data Interpretation, Statistical , Datasets as Topic , Genetic Loci/genetics , Genome-Wide Association Study , Genotype , Humans , Phenotype , Polymorphism, Single Nucleotide
13.
Biotechnol J ; 19(3): e2300612, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38472102

ABSTRACT

Schizochytrium sp. is a heterotrophic microorganism capable of accumulating polyunsaturated fatty acids and has achieved industrial production of docosahexaenoic acid (DHA). It also has the potential for eicosapentaenoic acid (EPA) production. In this study, it was found that the cell growth, lipid synthesis and fatty acid composition of Schizochytrium sp. were significantly affected by the level of cobalamin in the medium, especially with regard to the content of EPA in the fatty acids. The content of EPA in the fatty acids increased 17.91 times, reaching 12.00%, but cell growth and lipid synthesis were significantly inhibited under cobalamin deficiency. The response mechanism for this phenomenon was revealed through combined lipidomic and transcriptomic analysis. Although cell growth was inhibited under cobalamin deficiency, the genes encoding key enzymes in central carbon metabolism were still up-regulated to provide precursors (Acetyl-CoA) and reducing power (NADPH) for the synthesis and accumulation of fatty acids. Moreover, the main lipid subclasses observed during cobalamin deficiency were glycerolipids (including glycerophospholipids), with EPA primarily distributed in them. The genes involved in the biosynthesis of these lipid subclasses were significantly up-regulated, such as the key enzymes in the Kennedy pathway for the synthesis of triglycerides. Thus, this study provided insights into the specific response of Schizochytrium sp. to cobalamin deficiency and identified a subset of new genes that can be engineered for modification.


Subject(s)
Eicosapentaenoic Acid , Lipidomics , Eicosapentaenoic Acid/metabolism , Eicosapentaenoic Acid/pharmacology , Fatty Acids , Gene Expression Profiling , Vitamin B 12
14.
Int Immunopharmacol ; 130: 111676, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38367465

ABSTRACT

ß-arrestin-1 has been demonstrated to participate in the regulation of inflammatory reactions in several diseases. Thus, this study aimed to investigate the role of macrophage ß-arrestin-1 in the pathogenesis and progression of ulcerative colitis (UC). A myeloid ß-arrestin-1 conditional knockout mouse model was generated to explore the role of macrophage ß-arrestin-1. DSS was employed for the establishment of an ulcerative colitis mouse model, using TNF-α as an inflammatory stressor in vitro. The expression level of ß-arrestin-1 was detected via western blot and immunofluorescence assays, whilst disease severity was evaluated by clinical score and H&E staining in the DSS-induced colitis model. In the in vitro experiments, the levels of inflammatory cytokines were examined using real-time PCR. NF-κB activation was detected through the double luciferase reporter system, western blot, and electrophoretic mobility shift assay (EMSA). BAY11-7082 was used to inhibit NF-κB activation. Our results exposed that the level of ß-arrestin-1 was increased in monocytes/macrophages derived from DSS-induced colitis mice or under the TNF-α challenge. Moreover, conditionally knocking out the expression of myeloid ß-arrestin-1 alleviated disease severity, while knocking out the expression of ß-arrestin-1 decreased the levels of inflammatory cytokines. Additionally, NF-κB was identified as a central regulatory element of ß-arrestin-1 promoter, and using BAY11-7082 to inhibit NF-κB activation lowered the level of ß-arrestin-1 under TNF-α challenge. ß-arrestin-1 led to the activation of the NF-κB signaling pathway by enhancing binding to IκBα and IKK under the TNF-α challenge. Taken together, our findings demonstrated macrophage ß-arrestin-1 contributes to the deterioration of DSS-induced colitis through the interaction with NF-κB signaling, thus highlighting a novel target for the treatment of UC.


Subject(s)
Colitis, Ulcerative , Colitis , Nitriles , Sulfones , Animals , Mice , NF-kappa B/metabolism , Colitis, Ulcerative/drug therapy , Tumor Necrosis Factor-alpha/metabolism , beta-Arrestin 1/genetics , beta-Arrestin 1/metabolism , beta-Arrestin 1/therapeutic use , Signal Transduction , Colitis/chemically induced , Colitis/drug therapy , Cytokines/metabolism , Macrophages/metabolism , Dextran Sulfate , Mice, Inbred C57BL , Disease Models, Animal
15.
PLoS One ; 19(2): e0291543, 2024.
Article in English | MEDLINE | ID: mdl-38354108

ABSTRACT

Our previous work demonstrated that the anisodamine (ANI) and neostigmine (NEO) combination produced an antiseptic shock effect and rescued acute lethal crush syndrome by activating the α7 nicotinic acetylcholine receptor (α7nAChR). This study documents the therapeutic effect and underlying mechanisms of the ANI/NEO combination in dextran sulfate sodium (DSS)-induced colitis. Treating mice with ANI and NEO at a ratio of 500:1 alleviated the DSS-induced colitis symptoms, reduced body weight loss, improved the disease activity index, enhanced colon length, and alleviated colon inflammation. The combination treatment also enhanced autophagy in the colon of mice with DSS-induced colitis and lipopolysaccharide/DSS-stimulated Caco-2 cells. Besides, the ANI/NEO treatment significantly reduced INF-γ, TNF-α, IL-6, and IL-22 expression in colon tissues and decreased TNF-α, IL-1ß, and IL-6 mRNA levels in Caco-2 cells. Meanwhile, the autophagy inhibitor 3-methyladenine and ATG5 siRNA attenuated these effects. Furthermore, 3-methyladenine (3-MA) and the α7nAChR antagonist methyllycaconitine (MLA) weakened the ANI/NEO-induced protection on DSS-induced colitis in mice. Overall, these results indicate that the ANI/NEO combination exerts therapeutic effects through autophagy and α7nAChR in a DSS-induced colitis mouse model.


Subject(s)
Colitis , Neostigmine , Solanaceous Alkaloids , Mice , Animals , Humans , Neostigmine/adverse effects , Tumor Necrosis Factor-alpha/metabolism , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Interleukin-6/metabolism , Caco-2 Cells , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Autophagy , Dextran Sulfate/toxicity , Colon/metabolism , Mice, Inbred C57BL , Disease Models, Animal
16.
Article in English | MEDLINE | ID: mdl-38809723

ABSTRACT

Advancements in brain-machine interfaces (BMIs) have led to the development of novel rehabilitation training methods for people with impaired hand function. However, contemporary hand exoskeleton systems predominantly adopt passive control methods, leading to low system performance. In this work, an active brain-controlled hand exoskeleton system is proposed that uses a novel augmented reality-fused stimulus (AR-FS) paradigm as a human-machine interface, which enables users to actively control their fingers to move. Considering that the proposed AR-FS paradigm generates movement artifacts during hand movements, an enhanced decoding algorithm is designed to improve the decoding accuracy and robustness of the system. In online experiments, participants performed online control tasks using the proposed system, with an average task time cost of 16.27 s, an average output latency of 1.54 s, and an average correlation instantaneous rate (CIR) of 0.0321. The proposed system shows 35.37% better efficiency, 8.03% reduced system delay, and 35.28% better stability than the traditional system. This study not only provides an efficient rehabilitation solution for people with impaired hand function but also expands the application prospects of brain-control technology in areas such as human augmentation, patient monitoring, and remote robotic interaction. The video in Graphical Abstract Video demonstrates the user's process of operating the proposed brain-controlled hand exoskeleton system.

17.
Genome Med ; 16(1): 43, 2024 03 21.
Article in English | MEDLINE | ID: mdl-38515211

ABSTRACT

BACKGROUND: Limited understanding of the diversity of variants in the cystic fibrosis transmembrane conductance regulator (CFTR) gene across ancestries hampers efforts to advance molecular diagnosis of cystic fibrosis (CF). The consequences pose a risk of delayed diagnoses and subsequently worsened health outcomes for patients. Therefore, characterizing the spectrum of CFTR variants across ancestries is critical for revolutionizing molecular diagnoses of CF. METHODS: We analyzed 454,727 UK Biobank (UKBB) whole-exome sequences to characterize the diversity of CFTR variants across ancestries. Using the PanUKBB classification, the participants were assigned into six major groups: African (AFR), American/American Admixed (AMR), Central South Asia (CSA), East Asian (EAS), European (EUR), and Middle East (MID). We segregated ancestry-specific CFTR variants, including those that are CF-causing or clinically relevant. The ages of certain CF-causing variants were determined and analyzed for selective pressure effects, and curated phenotype analysis was performed for participants with clinically relevant CFTR genotypes. RESULTS: We detected over 4000 CFTR variants, including novel ancestry-specific variants, across six ancestries. Europeans had the most unique CFTR variants [n = 2212], while the American group had the least unique variants [n = 23]. F508del was the most prevalent CF-causing variant found in all ancestries, except in EAS, where V520F was the most prevalent. Common EAS variants such as 3600G > A, V456A, and V520, which appeared approximately 270, 215, and 338 generations ago, respectively, did not show evidence of selective pressure. Sixteen participants had two CF-causing variants, with two being diagnosed with CF. We found 154 participants harboring a CF-causing and varying clinical consequences (VCC) variant. Phenotype analysis performed for participants with multiple clinically relevant variants returned significant associations with CF and its pulmonary phenotypes [Bonferroni-adjusted p < 0.05]. CONCLUSIONS: We leveraged the UKBB database to comprehensively characterize the broad spectrum of CFTR variants across ancestries. The detection of over 4000 CFTR variants, including several ancestry-specific and uncharacterized CFTR variants, warrants the need for further characterization of their functional and clinical relevance. Overall, the presentation of classical CF phenotypes seen in non-CF diagnosed participants with more than one CF-causing variant indicates that they may benefit from current CFTR modulator therapies.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Humans , Biological Specimen Banks , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Exome , Mutation , UK Biobank
18.
Curr Microbiol ; 67(4): 442-7, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23689940

ABSTRACT

Vibrio harveyi has been reported to enter into a viable but nonculturable (VBNC) state. One marine V. harveyi strain, SF1 became nonculturable when incubated in seawater microcosm at 4 °C within 60 days. We investigated protein expression in the exponential phase of V. harveyi SF1 and compared it to the VBNC state. Cytosolic proteins were resolved by two-dimensional polyacrylamide gel electrophoresis using pH 4-7 linear gradients. Among these proteins, sixteen proteins which were strongly downregulated or upregulated in the VBNC cells were identified by MALDI-TOF-TOF mass spectrometry. The results indicated that the differentially expressed proteins were mainly focused on stress response proteins and key components of central and intermediary metabolism, like carbohydrate metabolism, transport, and translation. This study provided clues for understanding the mechanism of adaptation to the VBNC state.


Subject(s)
Bacterial Proteins/chemistry , Fish Diseases/microbiology , Proteomics , Vibrio Infections/veterinary , Vibrio/growth & development , Vibrio/metabolism , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Colony Count, Microbial , Culture Media/metabolism , Electrophoresis, Gel, Two-Dimensional , Gene Expression Regulation, Bacterial , Mass Spectrometry , Microbial Viability , Molecular Sequence Data , Perciformes , Vibrio/chemistry , Vibrio/genetics , Vibrio Infections/microbiology
19.
Arch Esp Urol ; 76(5): 347-356, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37545154

ABSTRACT

OBJECTIVE: To observe the therapeutic effect of Si-Ni-San (SNS) on interstitial cystitis/bladder pain syndrome (IC/BPS) in rats, and explore the possible regulatory mechanism of SNS on IC/BPS combined with transcriptome analysis. METHODS: An IC/BPS model of Sprague-Dawley (SD) rats was established with cyclophosphamide (CYP), and the SNS was extracted for treatment. The rats were divided into 4 groups (n = 10 in each group): Control group (blank), cyclophosphamide group (CYP group, CYP injection + normal saline gavage), lower-dose SNS group (LSNS group, CYP injection + 6 g/kg SNS gavage), and higher-dose SNS group (HSNS group, CYP injection + 12 g/kg SNS gavage). Urination, pain, and histological changes were observed in the rats after the experiment, and Western blotting (WB) and transcriptome analysis were performed on bladder tissues. RESULTS: Compared with the CYP group, the urination, pain and inflammation symptoms of the IC/BPS model rats in the SNS treatment groups (LSNS and HSNS) were significantly improved (p < 0.05). WB results showed that the expressions of inflammation-related proteins interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in the SNS treatment groups were significantly decreased compared with those in the CYP group. Transcriptome results showed that SNS can affect the expression of inflammation-related genes and inflammatory signaling pathways. CONCLUSIONS: SNS can significantly alleviate the symptoms of inflammation and pain in IC/BPS rats, and its mechanism may be related to the down-regulation of inflammatory factors IL-6 and TNF-α through messenger RNA (mRNA) and long non-coding RNA (LncRNA) pathways.


Subject(s)
Cystitis, Interstitial , Rats , Animals , Cystitis, Interstitial/drug therapy , Cystitis, Interstitial/metabolism , Cystitis, Interstitial/pathology , Interleukin-6/therapeutic use , Tumor Necrosis Factor-alpha/therapeutic use , Rats, Sprague-Dawley , Inflammation/drug therapy , Cyclophosphamide/therapeutic use , Pain
20.
Dalton Trans ; 52(10): 2999-3005, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36790336

ABSTRACT

Pursuits of new types of Pb-free heterometallic halides adequate for photovoltaic applications are still urgent but challenging. In this study, by using in situ-produced [(Me)2-(DABCO)]2+ (DABCO = 1,4-diazabicyclo[2.2.2]octane; Me = methyl) cations as structure-directing agents, we successfully constructed a non-perovskite copper iodobismuthate hybrid, namely [(Me)2-(DABCO)]2Cu2Bi2I12 (1), which features discrete [Cu2Bi2I12]4- anionic moieties formed by the building units of [CuI4] tetrahedra and [BiI6] octahedra. UV-Vis diffuse reflectance analyses showed that compound 1 possesses semiconductive behaviors with a narrow optical bandgap of 1.80 eV. More importantly, it exhibits excellent photoelectric switching abilities, and its photocurrent density (2.30 µA cm-2) far exceeds those of some high-performance halide-based counterparts. Different from many heterometallic analogues, noteworthily, it also has dispersive band structure and strong electronic coupling near the Fermi level, resulting in a material with small effective masses that may be responsible for the good photoelectricity. This study may offer new guidance for the design and synthesis of eco-friendly heterometallic halides with unique structures and desirable properties.

SELECTION OF CITATIONS
SEARCH DETAIL