Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Opt Express ; 32(5): 8364-8378, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38439493

ABSTRACT

In this paper, we demonstrate a simplified one-to-many scheme for efficient mid-infrared (MIR) parametric conversion. Such a scheme is based on a continuous wave (CW) single longitudinal mode master oscillator power-amplifier (MOPA) fiber system as the signal source and a picosecond pulsed MOPA fiber system, exhibiting multiple longitudinal modes, as the pump source. The signal and pump beams are combined and co-coupled into a piece of 50-mm long 5% MgO-doped PPLN crystal for the parametric conversion. As high as ∼3.82 W average power at a central idler wavelength of ∼3.4 µm is achieved when the launched pump and signal powers are ∼41.73 and ∼11.45 W, respectively. Above some threshold value, the delivered idler power shows a roll-over effect against the signal power and saturation-like effect against the pump power. Consequently, the highest conversion efficiency is observed at such a threshold pump power. To the best of our knowledge, our result represents the highest average power produced from any single-pass parametric conversion source with >3 µm idler wavelength feeding with a CW signal. Moreover, our proposed scheme can simplify the design of parametric conversion system significantly and meanwhile make the system more robust in applications. This is attributed to two main aspects. Firstly, the scheme's one-to-many feature can reduce wavelength sensitivity remarkably in the realization of quasi-phase-matching. Secondly, for moderate power requirement it does not always require a high peak power synchronized pulsed signal source; a CW one can be an alternative, thereby making the system free from complex time synchronization and the related time jitter.

2.
Opt Express ; 32(11): 18539-18549, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38859007

ABSTRACT

We present a nonlinear amplifying loop mirror-based mode-locked fiber laser. By adjusting the pump power, the proposed laser exhibits a dissipative soliton resonance (DSR)-like pulse operation with a maximum pulse width of 150 ns. Subsequently, a three-stage Tm3+-doped fiber amplifier is implemented using a single-mode double-cladding Tm3+-doped fiber to increase the DSR-like pulse output power to 52.5 W, achieving a pump slope efficiency of 47.1% in the main amplifier. A 25 m first-order Raman-gain fiber (UHNA7) is pumped by a DSR-like pulse, and 16.3 W of pure 2.135 µm first-order Raman light with a spectral purity of 73.4% is obtained. Finally, 5.4 W of 2.35 µm second-order Raman light with a spectral purity of 66% is obtained using a 10 m 98% germania-core fiber as a second-order Raman-gain fiber cascaded after UHNA7 fiber. To the best of our knowledge, this is the highest output power ever obtained from a 2.3 µm laser.

3.
Opt Express ; 29(7): 10172-10180, 2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33820150

ABSTRACT

Herein, we presented a high energy noise-like (NL) pulse Tm-doped fiber laser (TDFL) system. Relying on the nonlinear amplifying loop mirror (NALM), stable noise-like pulses with coherence spike width of ∼317 fs and envelope width of ∼4.2 ns were obtained from an all polarization-maintaining fiberized oscillator at central wavelength of ∼1946.4 nm with 3 dB bandwidth of ∼24.9 nm. After the amplification in an all-fiberized TDF amplifier system, the maximum average output power of ∼32.8 W and pulse energy of ∼10.1 µJ were obtained, which represents the highest pulse energy of NL pulse at ∼2 µm, to the best of our knowledge. We believe that the high energy NL pulse source has the potential application in mid-infrared supercontinuum generation.

4.
Opt Express ; 24(11): 12072-81, 2016 May 30.
Article in English | MEDLINE | ID: mdl-27410128

ABSTRACT

In this paper, we first achieve nanosecond-scale dissipative soliton resonance (DSR) generation in a thulium-doped double-clad fiber (TDF) laser with all-anomalous-dispersion regime, and also first scale the average power up to 100.4 W by employing only two stage TDF amplifiers, corresponding to gains of 19.3 and 14.4 dB, respectively. It is noted that both the fiber laser oscillator and the amplification system employ double-clad fiber as the gain medium for utilizing the advantages in high-gain-availability, high-power-handling and good-mode-quality-maintaining. DSR mode-locking of the TDF oscillator is realized by using a nonlinear optical loop mirror (NOLM), which exhibits all-fiber-format, high nonlinear and passive saturable absorption properties. The TDF oscillator can deliver rectangular-shape pulses with duration ranging from ~3.74 to ~72.19 ns while maintaining a nearly equal output peak power level of ~0.56 W, namely peak power clamping (PPC) effect. Comparatively, the two stage amplifiers can scale the seeding pulses to similar average power levels, but to dramatically different peak powers ranging from ~0.94 to ~18.1 kW depending on the durations. Our TDF master-oscillator-power-amplifier (MOPA) system can provide a high power 2-µm band all-fiber-format laser source both tunable in pulse duration and peak power.

5.
Oncologist ; 17(2): 220-32, 2012.
Article in English | MEDLINE | ID: mdl-22291092

ABSTRACT

The role of Notch signaling in cervical cancer is seemingly controversial. To confirm the function of Notch signaling in this type of cancer, we established a stable Notch1-activated cervical cancer HeLa cell line. We found that Notch1 activation resulted in apoptosis, cell cycle arrest, and tumor suppression. At the molecular level, we found that a variety of genes associated with cyclic AMP, G protein-coupled receptor, and cancer signaling pathways contributed to Notch1-mediated tumor suppression. We observed that the expression of somatostatin (SST) was dramatically induced by Notch1 signaling activation, which was accompanied by enhanced expression of the cognate SST receptor subtype 1 (SSTR1) and SSTR2. Certain genes, such as tumor protein 63 (TP63, p63), were upregulated, whereas others, such as B-cell lymphoma 2 (BCL-2), Myc, Akt, and STAT3, were downregulated. Subsequently, knockdown of Notch1-induced SST reversed Notch1-induced decrease of BCL-2 and increase of p63, indicating that Notch1-induced tumor suppression may be partly through upregulating SST signaling. Our findings support a possible crosstalk between Notch signaling and SST signaling. Moreover, Notch-induced SSTR activation could enhance SSTR-targeted cancer chemotherapy. Valproic acid (VPA), a histone deacetylase inhibitor, suppressed cell growth and upregulated the expression of Notch1 and SSTR2. A combination therapy with VPA and the SSTR2-targeting cytotoxic conjugate CPT-SST strongly led to greater suppression, as compared to each alone. Our findings thus provide us with a promising clinical opportunity for enhanced cancer therapy using combinations of Notch1-activating agents and SSTR2-targeting agents.


Subject(s)
Receptor, Notch1/physiology , Receptors, Somatostatin/physiology , Signal Transduction/physiology , Somatostatin/physiology , Uterine Cervical Neoplasms/prevention & control , Animals , Cell Cycle Checkpoints , Cell Proliferation , Colforsin/pharmacology , Cyclic AMP/metabolism , Female , HeLa Cells , Humans , Mice , Receptors, Somatostatin/antagonists & inhibitors , Uterine Cervical Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL