Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 410
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 23(3): 423-430, 2022 03.
Article in English | MEDLINE | ID: mdl-35228696

ABSTRACT

The global severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic requires effective therapies against coronavirus disease 2019 (COVID-19), and neutralizing antibodies are a promising therapy. A noncompeting pair of human neutralizing antibodies (B38 and H4) blocking SARS-CoV-2 binding to its receptor, ACE2, have been described previously. Here, we develop bsAb15, a bispecific monoclonal antibody (bsAb) based on B38 and H4. bsAb15 has greater neutralizing efficiency than these parental antibodies, results in less selective pressure and retains neutralizing ability to most SARS-CoV-2 variants of concern (with more potent neutralizing activity against the Delta variant). We also selected for escape mutants of the two parental mAbs, a mAb cocktail and bsAb15, demonstrating that bsAb15 can efficiently neutralize all single-mAb escape mutants. Furthermore, prophylactic and therapeutic application of bsAb15 reduced the viral titer in infected nonhuman primates and human ACE2 transgenic mice. Therefore, this bsAb is a feasible and effective strategy to treat and prevent severe COVID-19.


Subject(s)
Antibodies, Bispecific/immunology , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Bispecific/chemistry , Antibodies, Bispecific/genetics , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/genetics , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/chemistry , Antibodies, Viral/genetics , COVID-19/immunology , COVID-19/pathology , COVID-19/prevention & control , COVID-19/virology , Cloning, Molecular , Disease Models, Animal , Dose-Response Relationship, Immunologic , Epitopes , Humans , Macaca mulatta , Mice , Neutralization Tests , Protein Engineering/methods , Structure-Activity Relationship
2.
Immunity ; 53(3): 685-696.e3, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32783921

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic poses a current world-wide public health threat. However, little is known about its hallmarks compared to other infectious diseases. Here, we report the single-cell transcriptional landscape of longitudinally collected peripheral blood mononuclear cells (PBMCs) in both COVID-19- and influenza A virus (IAV)-infected patients. We observed increase of plasma cells in both COVID-19 and IAV patients and XIAP associated factor 1 (XAF1)-, tumor necrosis factor (TNF)-, and FAS-induced T cell apoptosis in COVID-19 patients. Further analyses revealed distinct signaling pathways activated in COVID-19 (STAT1 and IRF3) versus IAV (STAT3 and NFκB) patients and substantial differences in the expression of key factors. These factors include relatively increase of interleukin (IL)6R and IL6ST expression in COVID-19 patients but similarly increased IL-6 concentrations compared to IAV patients, supporting the clinical observations of increased proinflammatory cytokines in COVID-19 patients. Thus, we provide the landscape of PBMCs and unveil distinct immune response pathways in COVID-19 and IAV patients.


Subject(s)
Coronavirus Infections/immunology , Cytokines/immunology , Influenza, Human/immunology , Leukocytes, Mononuclear/immunology , Pneumonia, Viral/immunology , Signal Transduction/immunology , Betacoronavirus/immunology , COVID-19 , Humans , Influenza A Virus, H1N1 Subtype/immunology , Pandemics , SARS-CoV-2
3.
Nature ; 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37019149

ABSTRACT

SARS-CoV-2, the causative agent of COVID-19, emerged in December 2019. Its origins remain uncertain. It has been reported that a number of the early human cases had a history of contact with the Huanan Seafood Market. Here we present the results of surveillance for SARS-CoV-2 within the market. From January 1st 2020, after closure of the market, 923 samples were collected from the environment. From 18th January, 457 samples were collected from 18 species of animals, comprising of unsold contents of refrigerators and freezers, swabs from stray animals, and the contents of a fish tank. Using RT-qPCR, SARS-CoV-2 was detected in 73 environmental samples, but none of the animal samples. Three live viruses were successfully isolated. The viruses from the market shared nucleotide identity of 99.99% to 100% with the human isolate HCoV-19/Wuhan/IVDC-HB-01/2019. SARS-CoV-2 lineage A (8782T and 28144C) was found in an environmental sample. RNA-seq analysis of SARS-CoV-2 positive and negative environmental samples showed an abundance of different vertebrate genera at the market. In summary, this study provides information about the distribution and prevalence of SARS-CoV-2 in the Huanan Seafood Market during the early stages of the COVID-19 outbreak.

4.
PLoS Pathog ; 20(9): e1012508, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39303003

ABSTRACT

Influenza and coronavirus disease 2019 (COVID-19) represent two respiratory diseases that have significantly impacted global health, resulting in substantial disease burden and mortality. An optimal solution would be a combined vaccine capable of addressing both diseases, thereby obviating the need for multiple vaccinations. Previously, we conceived a chimeric protein subunit vaccine targeting both influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), utilizing the receptor binding domain of spike protein (S-RBD) and the stalk region of hemagglutinin protein (HA-stalk) components. By integrating the S-RBD from the SARS-CoV-2 Delta variant with the headless hemagglutinin (HA) from H1N1 influenza virus, we constructed stable trimeric structures that remain accessible to neutralizing antibodies. This vaccine has demonstrated its potential by conferring protection against a spectrum of strains in mouse models. In this study, we designed an mRNA vaccine candidate encoding the chimeric antigen. The resultant humoral and cellular immune responses were meticulously evaluated in mouse models. Furthermore, the protective efficacy of the vaccine was rigorously examined through challenges with either homologous or heterologous influenza viruses or SARS-CoV-2 strains. Our findings reveal that the mRNA vaccine exhibited robust immunogenicity, engendering high and sustained levels of neutralizing antibodies accompanied by robust and persistent cellular immunity. Notably, this vaccine effectively afforded complete protection to mice against H1N1 or heterosubtypic H5N8 subtypes, as well as the SARS-CoV-2 Delta and Omicron BA.2 variants. Additionally, our mRNA vaccine design can be easily adapted from Delta RBD to Omicron RBD antigens, providing protection against emerging variants. The development of two-in-one vaccine targeting both influenza and COVID-19, incorporating the mRNA platform, may provide a versatile approach to combating future pandemics.


Subject(s)
COVID-19 Vaccines , COVID-19 , Hemagglutinin Glycoproteins, Influenza Virus , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , mRNA Vaccines , Animals , Mice , SARS-CoV-2/immunology , COVID-19/prevention & control , COVID-19/immunology , mRNA Vaccines/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Humans , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , COVID-19 Vaccines/immunology , Influenza Vaccines/immunology , Antibodies, Viral/immunology , Mice, Inbred BALB C , Female , Influenza A Virus, H1N1 Subtype/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Vaccines, Synthetic/immunology , Influenza, Human/prevention & control , Influenza, Human/immunology , Antibodies, Neutralizing/immunology
5.
PLoS Pathog ; 20(8): e1012487, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39213280

ABSTRACT

Protective vaccines are crucial for preventing and controlling coronavirus disease 2019 (COVID-19). Updated vaccines are needed to confront the continuously evolving and circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. These vaccines should be safe, effective, amenable to easily scalable production, and affordable. Previously, we developed receptor binding domain (RBD) dimer-based protein subunit vaccines (ZF2001 and updated vaccines) in mammalian cells. In this study, we explored a strategy for producing RBD-dimer immunogens in Pichia pastoris. We found that wild-type P. pastoris produced hyperglycosylated RBD-dimer protein containing four N-glycosylation sites in P. pastoris. Therefore, we engineered the wild type P. pastoris (GS strain) into GSΔOCH1pAO by deleting the OCH1 gene (encoding α-1,6-mannosyltransferase enzyme) to decrease glycosylation, as well as by overexpressing the HIS4 gene (encoding histidine dehydrogenase) to increase histidine synthesis for better growth. In addition, RBD-dimer protein was truncated to remove the R328/F329 cleavage sites in P. pastoris. Several homogeneous RBD-dimer proteins were produced in the GSΔOCH1pAO strain, demonstrating the feasibility of using the P. pastoris expression system. We further resolved the cryo-EM structure of prototype-Beta RBD-dimer complexed with the neutralizing antibody CB6 to reveal the completely exposed immune epitopes of the RBDs. In a murine model, we demonstrated that the yeast-produced RBD-dimer induces robust and protective antibody responses, which is suitable for boosting immunization. This study developed the yeast system for producing SARS-CoV-2 RBD-dimer immunogens, providing a promising platform and pipeline for the future continuous updating and production of SARS-CoV-2 vaccines.


Subject(s)
COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Animals , Mice , COVID-19/prevention & control , COVID-19/immunology , COVID-19 Vaccines/immunology , Glycosylation , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Humans , Antibodies, Neutralizing/immunology , Mice, Inbred BALB C , Antibodies, Viral/immunology , Saccharomycetales/genetics , Saccharomycetales/immunology , Saccharomycetales/metabolism , Female , Pichia/genetics , Pichia/metabolism
6.
Plant Cell ; 35(9): 3303-3324, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37220754

ABSTRACT

Flowering is the transition from vegetative to reproductive growth and is critical for plant adaptation and reproduction. FLOWERING LOCUS C (FLC) plays a central role in flowering time control, and dissecting its regulation mechanism provides essential information for crop improvement. Here, we report that DECAPPING5 (DCP5), a component of processing bodies (P-bodies), regulates FLC transcription and flowering time in Arabidopsis (Arabidopsis thaliana). DCP5 and its interacting partner SISTER OF FCA (SSF) undergo liquid-liquid phase separation (LLPS) that is mediated by their prion-like domains (PrDs). Enhancing or attenuating the LLPS of both proteins using transgenic methods greatly affects their ability to regulate FLC and flowering time. DCP5 regulates FLC transcription by modulating RNA polymerase II enrichment at the FLC locus. DCP5 requires SSF for FLC regulation, and loss of SSF or its PrD disrupts DCP5 function. Our results reveal that DCP5 interacts with SSF, and the nuclear DCP5-SSF complex regulates FLC expression at the transcriptional level.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Flowers/physiology , Gene Expression Regulation, Plant/genetics , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Mutation , Processing Bodies , Reproduction
7.
Nature ; 584(7819): 120-124, 2020 08.
Article in English | MEDLINE | ID: mdl-32454512

ABSTRACT

An outbreak of coronavirus disease 2019 (COVID-19)1-3, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)4, has spread globally. Countermeasures are needed to treat and prevent further dissemination of the virus. Here we report the isolation of two specific human monoclonal antibodies (termed CA1 and CB6) from a patient convalescing from COVID-19. CA1 and CB6 demonstrated potent SARS-CoV-2-specific neutralization activity in vitro. In addition, CB6 inhibited infection with SARS-CoV-2 in rhesus monkeys in both prophylactic and treatment settings. We also performed structural studies, which revealed that CB6 recognizes an epitope that overlaps with angiotensin-converting enzyme 2 (ACE2)-binding sites in the SARS-CoV-2 receptor-binding domain, and thereby interferes with virus-receptor interactions by both steric hindrance and direct competition for interface residues. Our results suggest that CB6 deserves further study as a candidate for translation to the clinic.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/chemistry , Antibodies, Viral/pharmacology , Betacoronavirus/chemistry , Binding, Competitive , COVID-19 , Cell Line , Chlorocebus aethiops , Crystallization , Crystallography, X-Ray , Female , Humans , In Vitro Techniques , Macaca mulatta/immunology , Macaca mulatta/virology , Male , Models, Molecular , Neutralization Tests , Pandemics , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Protein Binding/drug effects , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells , Viral Load/immunology
8.
Nature ; 583(7818): 830-833, 2020 07.
Article in English | MEDLINE | ID: mdl-32380511

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of coronavirus disease 2019 (COVID-19), which has become a public health emergency of international concern1. Angiotensin-converting enzyme 2 (ACE2) is the cell-entry receptor for severe acute respiratory syndrome coronavirus (SARS-CoV)2. Here we infected transgenic mice that express human ACE2 (hereafter, hACE2 mice) with SARS-CoV-2 and studied the pathogenicity of the virus. We observed weight loss as well as virus replication in the lungs of hACE2 mice infected with SARS-CoV-2. The typical histopathology was interstitial pneumonia with infiltration of considerable numbers of macrophages and lymphocytes into the alveolar interstitium, and the accumulation of macrophages in alveolar cavities. We observed viral antigens in bronchial epithelial cells, macrophages and alveolar epithelia. These phenomena were not found in wild-type mice infected with SARS-CoV-2. Notably, we have confirmed the pathogenicity of SARS-CoV-2 in hACE2 mice. This mouse model of SARS-CoV-2 infection will be valuable for evaluating antiviral therapeutic agents and vaccines, as well as understanding the pathogenesis of COVID-19.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/pathology , Coronavirus Infections/virology , Lung/pathology , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Transgenes , Angiotensin-Converting Enzyme 2 , Animals , Antigens, Viral/immunology , Antigens, Viral/metabolism , Betacoronavirus/immunology , Betacoronavirus/metabolism , Bronchi/pathology , Bronchi/virology , COVID-19 , Coronavirus Infections/immunology , Disease Models, Animal , Epithelial Cells/pathology , Epithelial Cells/virology , Female , Humans , Immunoglobulin G/immunology , Lung/immunology , Lung/virology , Lymphocytes/immunology , Macrophages, Alveolar/immunology , Macrophages, Alveolar/virology , Male , Mice , Mice, Transgenic , Pandemics , Pneumonia, Viral/immunology , Receptors, Complement 3d/genetics , Receptors, Complement 3d/metabolism , SARS-CoV-2 , Virus Replication , Weight Loss
9.
Development ; 149(14)2022 07 15.
Article in English | MEDLINE | ID: mdl-35735108

ABSTRACT

Metabolites such as crotonyl-CoA and lactyl-CoA influence gene expression by covalently modifying histones, known as histone lysine crotonylation (Kcr) and lysine lactylation (Kla). However, the existence patterns, dynamic changes, biological functions and associations of these modifications with histone lysine acetylation and gene expression during mammalian development remain largely unknown. Here, we find that histone Kcr and Kla are widely distributed in the brain and undergo global changes during neural development. By profiling the genome-wide dynamics of H3K9ac, H3K9cr and H3K18la in combination with ATAC and RNA sequencing, we reveal that these marks are tightly correlated with chromatin state and gene expression, and extensively involved in transcriptome remodeling to promote cell-fate transitions in the developing telencephalon. Importantly, we demonstrate that global Kcr and Kla levels are not the consequence of transcription and identify the histone deacetylases (HDACs) 1-3 as novel 'erasers' of H3K18la. Using P19 cells as an induced neural differentiation system, we find that HDAC1-3 inhibition by MS-275 pre-activates neuronal transcriptional programs by stimulating multiple histone lysine acylations simultaneously. These findings suggest that histone Kcr and Kla play crucial roles in the epigenetic regulation of neural development.


Subject(s)
Histones , Lysine , Acetylation , Animals , Epigenesis, Genetic , Histones/metabolism , Lysine/metabolism , Mammals/metabolism , Protein Processing, Post-Translational
10.
J Virol ; 98(1): e0078923, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38168677

ABSTRACT

Zika virus (ZIKV) infection caused neurological complications and male infertility, leading to the accumulation of antigen-specific immune cells in immune-privileged organs (IPOs). Thus, it is important to understand the immunological responses to ZIKV in IPOs. We extensively investigated the ZIKV-specific T cell immunity in IPOs in Ifnar1-/- mice, based on an immunodominant epitope E294-302 tetramer. The distinct kinetics and functions of virus-specific CD8+ T cells infiltrated into different IPOs were characterized, with late elevation in the brain and spinal cord. Single epitope E294-302-specific T cells can account for 20-60% of the total CD8+ T cells in the brain, spinal cord, and testicle and persist for at least 90 days in the brain and spinal cord. The E294-302-specific TCRαßs within the IPOs are featured with the majority of clonotypes utilizing TRAV9N-3 paired with diverse TRBV chains, but with distinct αß paired clonotypes in 7 and 30 days post-infection. Specific chemokine receptors, Ccr2 and Ccr5, were selectively expressed in the E294-302-specific CD8+ T cells within the brain and testicle, indicating an IPO-oriented migration of virus-specific CD8+ T cells after infection. Overall, this study adds to the understanding of virus-specific CD8+ T cell responses for controlling and clearing ZIKV infection in IPOs.IMPORTANCEThe immune-privileged organs (IPOs), such as the central nervous system and testicles, presented pathogenicity and inflammation after Zika virus (ZIKV) infection with infiltrated CD8+ T cells. Our data show that CD8+ T cells keep up with virus increases and decreases in immune-privileged organs. Furthermore, our study provides the first ex vivo comparative analyses of the composition and diversity related to TCRα/ß clonotypes across anatomical sites and ZIKV infection phases. We show that the vast majority of TCRα/ß clonotypes in tissues utilize TRAV9N-3 with conservation. Specific chemokine expression, including Ccr2 and Ccr5, was found to be selectively expressed in the E294-302-specific CD8+ T cells within the brain and testicle, indicating an IPO-oriented migration of the virus-specific CD8+ T cells after the infection. Our study adds insights into the anti-viral immunological characterization and chemotaxis mechanism of virus-specific CD8+ T cells after ZIKV infection in different IPOs.


Subject(s)
CD8-Positive T-Lymphocytes , Immune Privilege , Zika Virus Infection , Animals , Male , Mice , Brain/immunology , Brain/virology , CD8-Positive T-Lymphocytes/immunology , Receptor, Interferon alpha-beta/genetics , Zika Virus , Zika Virus Infection/immunology , Mice, Knockout , Testis/immunology , Testis/virology
11.
Plant Physiol ; 196(1): 261-272, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38758108

ABSTRACT

Acidity is a key factor controlling fruit flavor and quality. In a previous study, combined transcriptome and methylation analyses identified a P3A-type ATPase from apple (Malus domestica), MdMa11, which regulates vacuolar pH when expressed in Nicotiana benthamiana leaves. In this study, the role of MdMa11 in controlling fruit acidity was verified in apple calli, fruits, and plantlets. In addition, we isolated an APETALA2 domain-containing transcription factor, designated MdESE3, based on yeast one-hybrid (Y1H) screening using the MdMa11 promoter as bait. A subcellular localization assay indicated that MdESE3 localized to the nucleus. Analyses of transgenic apple calli, fruits, and plantlets, as well as tomatoes, demonstrated that MdESE3 enhances fruit acidity and organic acid accumulation. Meanwhile, chromatin immunoprecipitation quantitative PCR, luciferase (LUC) transactivation assays, and GUS reporter assays indicated that MdESE3 could bind to the ethylene-responsive element (ERE; 5'-TTTAAAAT-3') upstream of the MdMa11 transcription start site, thereby activating its expression. Furthermore, MdtDT, MdDTC2, and MdMDH12 expression increased in apple fruits and plantlets overexpressing MdESE3 and decreased in apple fruits and plantlets where MdESE3 was silenced. The ERE was found in MdtDT and MdMDH12 promoters, but not in the MdDTC2 promoter. The Y1H, LUC transactivation assays, and GUS reporter assays indicated that MdESE3 could bind to the MdtDT and MdMDH12 promoters and activate their expression. Our findings provide valuable functional validation of MdESE3 and its role in the transcriptional regulation of MdMa11, MdtDT, and MdMDH12 and malic acid accumulation in apple.


Subject(s)
Fruit , Gene Expression Regulation, Plant , Malates , Malus , Plant Proteins , Transcription Factors , Malus/genetics , Malus/metabolism , Malates/metabolism , Fruit/genetics , Fruit/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Promoter Regions, Genetic/genetics , Plants, Genetically Modified , Genes, Plant
12.
Plant Physiol ; 194(4): 2616-2630, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38206190

ABSTRACT

The plant cuticle is essential in plant defense against biotic and abiotic stresses. To systematically elucidate the genetic architecture of maize (Zea mays L.) cuticular wax metabolism, 2 cuticular wax-related traits, the chlorophyll extraction rate (CER) and water loss rate (WLR) of 389 maize inbred lines, were investigated and a genome-wide association study (GWAS) was performed using 1.25 million single nucleotide polymorphisms (SNPs). In total, 57 nonredundant quantitative trait loci (QTL) explaining 5.57% to 15.07% of the phenotypic variation for each QTL were identified. These QTLs contained 183 genes, among which 21 strong candidates were identified based on functional annotations and previous publications. Remarkably, 3 candidate genes that express differentially during cuticle development encode ß-ketoacyl-CoA synthase (KCS). While ZmKCS19 was known to be involved in cuticle wax metabolism, ZmKCS12 and ZmKCS3 functions were not reported. The association between ZmKCS12 and WLR was confirmed by resequencing 106 inbred lines, and the variation of WLR was significant between different haplotypes of ZmKCS12. In this study, the loss-of-function mutant of ZmKCS12 exhibited wrinkled leaf morphology, altered wax crystal morphology, and decreased C32 wax monomer levels, causing an increased WLR and sensitivity to drought. These results confirm that ZmKCS12 plays a vital role in maize C32 wax monomer synthesis and is critical for drought tolerance. In sum, through GWAS of 2 cuticular wax-associated traits, this study reveals comprehensively the genetic architecture in maize cuticular wax metabolism and provides a valuable reference for the genetic improvement of stress tolerance in maize.


Subject(s)
Genome-Wide Association Study , Zea mays , Zea mays/genetics , Zea mays/metabolism , Quantitative Trait Loci/genetics , Phenotype , Water/metabolism , Plant Leaves/genetics
13.
Genomics ; 116(5): 110946, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39326642

ABSTRACT

Patients with preimplantation embryo arrest (PREMBA) often experience assisted reproductive failure primarily due to the lack of transferable embryos, and the molecular mechanisms underlying PREMBA remain unclear. In our study, the embryos from five women with recurrent preimplantation embryo arrest and three women with tubal factor infertility were used for single-embryo transcriptome sequencing. Meanwhile, the transcriptomes of normal human preimplantation embryos obtained from GSE36552 were utilized to perform a comparative analysis with the transcriptomes of PREMBA embryos. Our results showed dysregulation of the cell cycle phase transition might be a potential pathogenic factor contributing to PREMBA. Through integrated analysis of the differentially expressed genes (DEGs) and weighted gene co-expression network analysis (WGCNA), we identified a number of hub genes using the protein-protein interaction network. The top 5 hub genes were as follows: CCNB2, BUB1B, CDC25A, CCNB3, and PLK3. The expression of hub genes was validated in PREMBA embryos and donated embryos using RT-qPCR. The knockdown of Ccnb2 in mouse zygotes led to an increase in embryo fragmentation, a rise in apoptosis, and a reduction in blastocyst formation. Furthermore, silencing the expression of CDC25A in HEK293T cells resulted in a decrease in cell proliferation and an increase in apoptosis, providing further support for our findings. Our findings could predict the development outcomes of preimplantation embryos and be used as potential therapeutic targets to prevent recurrent failures of IVF/ICSI attempts.

14.
Plant J ; 115(5): 1231-1242, 2023 09.
Article in English | MEDLINE | ID: mdl-37219375

ABSTRACT

Malic acid is a major organic acid component of apples and a crucial determinant of fruit organoleptic quality. A candidate gene for malic acid content, designated MdMa1, was previously identified in the Ma locus, which is a major quantitative trait locus (QTL) for apple fruit acidity located on the linkage group 16. Region-based association mapping to detect candidate genes in the Ma locus identified MdMa1 and an additional MdMYB21 gene putatively associated with malic acid. MdMYB21 was significantly associated with fruit malic acid content, accounting for ~7.48% of the observed phenotypic variation in the apple germplasm collection. Analyses of transgenic apple calli, fruits and tomatoes demonstrated that MdMYB21 negatively regulated malic acid accumulation. The apple fruit acidity-related MdMa1 and its tomato ortholog, SlALMT9, exhibited lower expression profiles in apple calli, mature fruits and tomatoes in which MdMYB21 was overexpressed, compared with their corresponding wild-type variety. MdMYB21 directly binds to the MdMa1 promoter and represses its expression. Interestingly, a 2-bp variation in the MdMYB21 promoter region altered its expression and regulation of its target gene, MdMa1, expression. Our findings not only demonstrate the efficiency of integrating QTL and association mapping in the identification of candidate genes controlling complex traits in apples, but also provide insights into the complex regulatory mechanism of fruit malic acid accumulation.


Subject(s)
Malus , Malus/genetics , Malus/metabolism , Fruit/genetics , Fruit/metabolism , Malates/metabolism , Quantitative Trait Loci/genetics , Gene Expression Regulation, Plant/genetics , Plant Proteins/genetics , Plant Proteins/metabolism
15.
Apoptosis ; 29(5-6): 649-662, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38409352

ABSTRACT

Cumulus granulosa cells (CGCs) play a crucial role in follicular development, but so far, no research has explored the impact of SARS-CoV-2 infection on ovarian function from the perspective of CGCs. In the present study, we compared the cycle outcomes between infected and uninfected female patients undergoing controlled ovarian stimulation, performed bulk RNA-sequencing of collected CGCs, and used bioinformatic methods to explore transcriptomic changes. The results showed that women with SARS-CoV-2 infection during stimulation had significantly lower number of oocytes retrieved and follicle-oocyte index, while subsequent fertilization and embryo development were similar. CGCs were not directly infected by SARS-CoV-2, but exhibited dramatic differences in gene expression (156 up-regulated and 65 down-regulated). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses demonstrated a high enrichment in antiviral, immune and inflammatory responses with necroptosis. In addition, the pathways related to telomere organization and double strand break repair were significantly affected by infection in gene set enrichment analysis. Further weighted gene co-expression network analysis identified a key module associated with ovarian response traits, which was mainly enriched as a decrease of leukocyte chemotaxis and migration in CGCs. For the first time, our study describes how SARS-CoV-2 infection indirectly affects CGCs at the transcriptional level, which may impair oocyte-CGC crosstalk and consequently lead to poor ovarian response during fertility treatment.


Subject(s)
COVID-19 , Cumulus Cells , Ovulation Induction , SARS-CoV-2 , Transcriptome , Humans , Female , COVID-19/virology , COVID-19/genetics , SARS-CoV-2/physiology , SARS-CoV-2/genetics , Adult , Cumulus Cells/metabolism , Cumulus Cells/virology , Granulosa Cells/virology , Granulosa Cells/metabolism , Oocytes/virology , Oocytes/metabolism , Oocyte Retrieval
16.
J Med Virol ; 96(1): e29377, 2024 01.
Article in English | MEDLINE | ID: mdl-38235921

ABSTRACT

The clinical effect of Coronavirus disease 2019 (COVID-19) on endometrial receptivity and embryo implantation remains unclear. Herein, we aim to investigate whether a COVID-19 history adversely affect female pregnancy outcomes after frozen-thawed embryo transfer (FET). This prospective cohort study enrolled 230 women who underwent FET cycles from December 2022 to April 2023 in an academic fertility center. Based on the history of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection before FET, women were divided into the infected group (n = 136) and the control group (n = 94). The primary outcome was the clinical pregnancy rate per cycle. Multivariate logistic regression analysis was conducted to adjust for potential confounders, while subgroup analysis and restricted cubic splines were used to depict the effect of postinfection time interval on FET. The results showed that the clinical pregnancy rate was 59.6% in the infected group and 63.9% in the control group (p = 0.513). Similarly, the two groups were comparable in the rates of biochemical pregnancy (69.1% vs. 76.6%; p = 0.214) and embryo implantation (51.7% vs. 54.5%; p = 0.628). After adjustment, the nonsignificant association remained between prior infection and clinical pregnancy (OR = 0.78, 95% CI: 0.42-1.46). However, the odds for clinical pregnancy were significantly lower in the ≤30 days subgroup (OR = 0.15, 95% CI: 0.03-0.77), while no statistical significance was detected for 31-60 days and >60 days subgroups compared with the uninfected women. In conclusion, our findings suggested that SARS-CoV-2 infection in women had no significant effect on subsequent FET treatment overall, but pregnancy rates tended to be decreased if vitrified-thawed embryos were transferred within 30 days after infection. A 1-month postponement should be rationally recommended, while further studies with larger sample groups and longer follow-up periods are warranted for confirmation.


Subject(s)
COVID-19 , Pregnancy Outcome , Pregnancy , Female , Humans , Prospective Studies , Cryopreservation/methods , Retrospective Studies , COVID-19/therapy , SARS-CoV-2 , Embryo Transfer/methods
17.
Chemphyschem ; 25(14): e202400103, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38606697

ABSTRACT

Conducting polymers (CPs), a significant class of electrochemical capacitor electrode materials, exhibit exceptional capacitive energy storage performance in aqueous electrolytes. Current research primarily concentrates on enhancing the electrical conductivity and capacitive performance of CPs via molecular design and structural control. However, the absence of a comprehensive understanding of the impact of molecular chain spatial order on ion/electron transport and capacitive performance impedes the development and optimization of advanced electrode materials. Here, a solvent treatment strategy is employed to modulate the molecular chain spatial order of PEDOT : PSS films. The results of electrochemical performance tests and Grazing Incidence Wide Angle X-ray Scattering (GIWAXS) show that Poly(3,4-ethylenedioxythiophene) : poly(styrenesulfonic acid) (PEDOT : PSS) films with both face-on and edge-on orientations exhibit exceptional electronic conductivity and ion diffusion efficiency, with capacitive performance 1.33 times higher than that of PEDOT : PSS films with only edge-on orientation. Consequently, molecular chain orientations conducive to charge transport not only enhance inter-chain coupling, but also effectively reduce ion transport resistance, enabling efficient capacitive energy storage. This research provides novel insights for the design and development of higher performance CPs-based electrode materials.

18.
Environ Sci Technol ; 58(22): 9548-9558, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38778038

ABSTRACT

Agricultural applications of nanotechnologies necessitate addressing safety concerns associated with nanopesticides, yet research has not adequately elucidated potential environmental risks between nanopesticides and their conventional counterparts. To address this gap, we investigated the risk of nanopesticides by comparing the ecotoxicity of nanoencapsulated imidacloprid (nano-IMI) with its active ingredient to nontarget freshwater organisms (embryonic Danio rerio, Daphnia magna, and Chironomus kiinensis). Nano-IMI elicited approximately 5 times higher toxicity than IMI to zebrafish embryos with and without chorion, while no significant difference was observed between the two invertebrates. Toxicokinetics further explained the differential toxicity patterns of the two IMI analogues. One-compartmental two-phase toxicokinetic modeling showed that nano-IMI exhibited significantly slower elimination and subsequently higher bioaccumulation potential than IMI in zebrafish embryos (dechorinated), while no disparity in toxicokinetics was observed between nano-IMI and IMI in D. magna and C. kiinensis. A two-compartmental toxicokinetic model successfully simulated the slow elimination of IMI from C. kiinensis and confirmed that both analogues of IMI reached toxicologically relevant targets at similar levels. Although nanopesticides exhibit comparable or elevated toxicity, future work is of utmost importance to properly understand the life cycle risks from production to end-of-life exposures, which helps establish optimal management measures before their widespread applications.


Subject(s)
Fresh Water , Toxicokinetics , Zebrafish , Animals , Fresh Water/chemistry , Water Pollutants, Chemical/toxicity , Daphnia/drug effects , Neonicotinoids/toxicity
19.
Phys Chem Chem Phys ; 26(14): 10868-10879, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38525602

ABSTRACT

Fluorite materials have received particular attention in electron optics due to their favorable optical properties. However, further exploration of these materials in the thermoelectric (TE) field is hampered by the lack of studies on their lattice thermal transport properties. In this work, we use first-principles calculations, combined with self-consistent phonon theory, compressive sensing lattice dynamics and the Boltzmann transport equation, to study the microscopic mechanism of lattice thermal transport properties in AF2 (A = Ca, Sr, Ba) with a fluorite structure. We investigate the effects of three-phonon and four-phonon scattering and quartic anharmonic renormalization of phonon frequencies on this system. The results show that the bonding strength of atoms A (Ca, Sr, and Ba) plays an important role in the thermal transport process, and the third-order anharmonicity also plays an important role in this system. Meanwhile, the role of the quartic anharmonicity cannot be ignored. Our findings not only fill in the gaps in the study of lattice thermal transport of fluorite materials, but also deepen the comprehensive understanding of the high κL value of fluorite materials.

20.
J Nat Prod ; 87(7): 1778-1785, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-38949068

ABSTRACT

Ten undocumented carbazole derivatives (2-11) along with the reported analogue (1) were isolated from the mangrove-derived Streptomyces sp. OUCMDZ-5511, cultured with NaBr-supplemented liquid medium. Compounds 1-7 are brominated carbazoles, and 8, 10, and 11 feature an additional thiazole or 2,3-dihydro-1,4-oxathiine rings, respectively. Their structures were identified through spectroscopic techniques, computational chemistry, and X-ray crystallography. Notably, compounds 6 and 8 effectively inhibited immune cell migration, indicating anti-inflammatory activity in vivo, potentially via Myd88/Nf-κB pathways, as suggested for compound 6.


Subject(s)
Carbazoles , Streptomyces , Streptomyces/chemistry , Carbazoles/chemistry , Carbazoles/pharmacology , Carbazoles/isolation & purification , Molecular Structure , Crystallography, X-Ray , Bromine/chemistry , Sulfur/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Marine Biology , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism , Animals
SELECTION OF CITATIONS
SEARCH DETAIL